文档视界 最新最全的文档下载
当前位置:文档视界 › 高分子_石墨烯纳米复合材料研究进展

高分子_石墨烯纳米复合材料研究进展

高分子_石墨烯纳米复合材料研究进展
高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展

高秋菊1,夏绍灵1,2*

,邹文俊1,彭 进1,曹少魁2

(1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052

)收稿:2012-01-09;修回:2012-04-

24;基金项目:郑州科技攻关项目(0910SGYG23258-

1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj

u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling

_xia@haut.edu.cn. 摘要:

石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。

关键词:石墨烯;高分子;纳米复合材料;研究进展

引言

石墨烯是以sp2

杂化连接的碳原子层构成的二维材料,

其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具

有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬,

强度比世界上最好的钢铁还高100倍[1]

。石墨烯还具有特殊的电光热特性,

包括室温下高速的电子迁移率、

半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛

的应用前景[

2]

。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。

1 石墨烯的改性方法

1.1 化学改性石墨烯

该方法基于改性Hummers法[3]

。首先,由天然石墨制得石墨氧化物,

再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5]

、还原氧化石墨烯的非共价功能化[

6]、环氧基的亲核取代[7]、重氮基盐的耦合[8]

等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11]

改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性

和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯

利用离子液体对石墨烯进行电化学改性已见报道[12]

。用电化学的方法,使石墨变成用化学改性石

墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电

·

78· 第9期 高 分 子 通 报

压,经过30min的电化学反应,得到了功能化石墨烯,将其放入二甲基甲酰胺中,经超声波处理,得均匀分散的石墨烯溶液。功能化石墨烯的平均长度和宽度分别是700nm和500nm,厚度约1.1nm。1.3 π-π键相互作用

最近Liu[13]

报道了一种石墨烯改性技术。即通过石墨烯的π轨道和聚(N-异丙基丙烯酰胺)

之间的π-π键相互作用。将聚(N-异丙基丙烯酰胺)溶解在水中,再与石墨烯的水溶液混合。在冰水浴中,经过超声波处理,便得到分散的石墨烯水溶液。

2 高分子/石墨烯纳米复合材料的制备方法

高分子/石墨烯纳米复合材料的机械性能取决于极性、分子量、疏水性、反应性基团等。目前复合材料的制备方法有以下三种。2.1 原位插层聚合

在原位插层聚合方法中,石墨烯或改性石墨烯首先在液态单体中溶胀。然后用合适的引发剂,扩散

并引发聚合,或者用加热或辐射来引发聚合[

14,15]

。许多种高分子纳米复合材料已经用这个方法来制备,例如环氧树脂/石墨烯、聚苯胺/石墨烯等。2.2 溶液插层

石墨烯或改性石墨烯很容易分散在合适的溶剂中,例如水、丙酮、氯仿、四氢呋喃(THF)、二甲基甲酰胺(DMF)

或甲苯,在分子间作用力的作用下使层与层之间堆叠在一起。然后高分子吸附在层片上,当溶剂蒸发后,层片之间重新组装,形成纳米复合材料[

16]

。溶液插层需要高分子或高分子预聚物是可溶的,而石墨烯或改性石墨烯发生膨胀。该方法中溶剂的去除是一个十分重要的问题。在溶液中高分子插层的驱动力,源于溶剂分子的解吸熵,这个过程补偿了插层高分子链构象熵的减少。因此,为了使填充物与高分子链更好地结合,

需要大量的溶剂分子解吸附。该方法的主要优点是,极性低或没有极性的高分子可用溶液插层合成纳米复合材料。例如聚乙烯接枝顺丁烯二酸酐(PE-g-MA)/石墨、聚苯乙烯(PS)/石墨烯等。2.3 熔融插层

熔融插层法是指不需要溶剂,在熔融状态,石墨或石墨烯或改性石墨烯与高分子基体进行混合。在

高温下,

热塑性高分子和石墨烯或改性石墨烯,用传统方法机械混合,如挤出和注射成型[17]

,然后高分子链插层或剥落而形成纳米复合材料。用这种方法制备热塑性纳米复合材料很受欢迎。不易吸附或不适合原位聚合的高分子,可用此法,例如聚对苯二甲酸乙二醇酯/石墨烯、聚碳酸酯/石墨烯等。

3 石墨烯填充不同的高分子复合材料

近年来,以环氧树脂、聚甲基丙烯酸甲酯、聚丙烯、线型低密度聚乙烯、高密度聚乙烯、聚苯乙烯、聚苯硫醚、尼龙、聚苯胺和硅橡胶为基体的石墨烯复合材料的研究都有所报道。其中,出现了较多关于石墨烯

在高分子基体中[

18~20]

达到纳米水平分散的研究。这些纳米混合材料中,填充少量石墨烯便可使性能有相当大的提高,

而这些性能是传统的复合材料无法实现的。3.1 聚乙烯醇/石墨烯纳米复合材料

Zhao等[21]

研究表明,通过水溶解的方法,制备以聚乙烯醇为基体的石墨烯纳米复合材料。在石墨烯填充量很低的情况下,聚乙烯醇/石墨烯纳米复合材料的机械性能有了显著的提高。其中,抗张强度提高150%,当石墨烯的填充量为1.8%(体积百分含量)时,其杨氏模量增加近10倍。对比实验结果和理论

模拟的杨氏模量,表明在纳米复合材料薄膜中,石墨烯在高分子基体中主要是随机分散。3.2 环氧树脂/石墨烯纳米复合材料

Kuilla等[2

用原位插层聚合制备了环氧树脂/石墨烯纳米复合材料。环氧树脂的热导率很小,但是加入石墨烯后,其热导率得到了显著提高。填充1%(wt)氧化石墨烯(GO)和填充1%(wt

)单壁碳纳米管对提高环氧树脂热导率的效果是相似的。而填充5%(wt

)GO的环氧树脂基复合材料,其热导率是·88· 高 分 子 通 报2012年9月 

1W/mK,这是纯环氧树脂热导率的4倍。当填充20%(wt)GO的环氧树脂基复合材料,

其热导率增加到6.44W/mK。这些结果表明,石墨烯复合材料用于散热是一种很有前途的热界面材料。在玻璃转变温度以下,石墨烯纳米复合材料和单壁碳纳米管的体积热膨胀系数相似。纯环氧树脂的热膨胀系数约8.2×10-5℃,

而填充石墨5%(wt)的环氧树脂复合材料,在玻璃转变温度以下,热膨胀系数下降了31.7%。填充量为15%(wt)的环氧树脂/石墨烯复合材料,适合用于电磁干扰屏蔽材料,其屏蔽值达到20dB。3.3 聚苯乙烯/石墨烯纳米复合材料

用二甲基甲酰胺为溶剂[23]

,采用溶液插层,制备了聚苯乙烯/异氰酸酯改性石墨烯纳米复合材料。由于石墨烯的大部分表面已改性,当填充量仅为2.4%(体积百分数)时,该复合材料几乎完全被石墨烯填充。当在PS基体中填充0.1%(体积百分数)GO时,可以得到电导率的渗滤阀值。这个渗滤阀值与任何二维填料相比是它们的三分之一,

这归功于石墨烯的均匀分散和极大的纵横比。对于薄膜,填充量大约0.15%(体积百分数)时,复合材料的电导率满足防静电标准(10-6

S·m-1)。当填充量在0.4%~1%

(体积百分数)之间时,其电导率迅速增加。当填充量是2.5%(体积百分数)时,复合材料的电导率是0.1~1S·m-1。

3.4 聚苯胺/石墨烯纳米复合材料

用原位插层聚合的方法,制备聚苯胺/石墨烯碳纳米层片/碳纳米管(PANI/GNS/CNT)

复合材料[24]

。PANI/GNS/CNT复合材料的比电容比纯PANI和PANI/CNT复合材料的比电容要高得多。

GNS和PANI之间的协同效应,使得其比电容提高。PANI/GNS/CNT复合材料的长期循环稳定性优于PANI/CNT和PANI/GNS复合材料。经过1000个周期,PANI/GNS/CNT复合材料的电容与初始电容比仅下降了6%,而PANI/GNS和PANI/CNT复合材料的电容分别下降了52%和67%。3.5 聚醋酸乙烯酯/石墨烯纳米复合材料

Liang等用水作为溶剂,

把GO加入到聚醋酸乙烯酯中,而制得聚醋酸乙烯酯(PVA)/石墨烯纳米复合材料[26]

。PVA/石墨烯纳米复合材料机械性能优于纯PVA。这是由于石墨烯在PVA基体中分子水

平的分散和大的纵横比,以及由于在石墨烯和PVA间氢键的存在,而产生牢固的界面粘合。当填充0.7%(wt)的GO时,PVA/石墨烯纳米复合材料的玻璃化转变温度从37.5℃增加到40.8℃。玻璃化转

变温度的增加也是由于在石墨烯和PVA间存在氢键。其结晶性和热稳定性比初始PVA高。3.6 聚氨酯/石墨烯纳米复合材料

用原位插层聚合制备功能化石墨烯(FGS)的水性聚氨酯(WPU)纳米复合材料[25]

。由于FGS粒子在WPU基体中的均匀分散,使纳米复合材料电导率比初始WPU增加了10

倍。由于导电通道的形成,在高分子基体中引发了电导率的突变。当填充FGS仅为2%(wt)时,可得到渗滤阀值。FGS和碳纳米

管在提高WPU的电导率方面是等效的。在纳米复合材料中,FGS的存在可提高熔点和WPU软链段的

熔化热(Δ

Hm)。然而,随着FGS在纳米复合材料中填充量的增加,硬链段的结晶度降低。Liang等[26]

通过溶液插层的方法,

制备了三种纳米复合材料。其纳米填充物是用异氰酸酯改性后的石墨烯、磺化石墨烯、以及还原石墨烯,基体高分子是热塑性聚氨酯(TPU)。TPU

/异氰酸酯改性石墨烯纳米复合材料的热降解率大大高于磺化石墨烯和还原石墨烯填充TPU纳米复合材料。与异氰酸酯改性石墨烯相比,磺化石墨烯片上附着的官能团很少。当TPU/石墨烯纳米复合材料填充1%(wt)时,表现出可重复的红外触发行为。此外,TPU/磺化石墨烯纳米复合材料的机械性能有了显著地提高。3.7 聚偏二氟乙烯/石墨烯纳米复合材料

通过溶解法和压缩模塑法,制备聚偏二氟乙烯(PVDF)/功能化石墨烯(FGS)纳米复合材料[27]

。其结晶性和玻璃化转变温度没有明显的变化。然而,PVDF/FGS复合材料的热稳定高于PVDF/乙二醇(EG)复合材料。而这两种复合材料的机械性能优于纯PVDF。当填充2%(wt)FGS时,可得到PVDF/FGS复合材料电导率的渗滤阀值。而当填充5%(wt)EG时,可得到PVDF/EG复合材料电导率的渗滤阀值。FGS与EG相比,具有更大的纵横比,因而有利于形成更好的传导网络,而导致较低的渗滤阀值。3.8 聚对苯二甲酸乙二醇酯/石墨烯纳米复合材料

·

98· 第9期 高 分 子 通 报

用熔融插层,制备聚对苯二甲酸乙二醇酯(PET)

/石墨烯纳米复合材料[28]

。从该纳米复合材料形态分析可知,

单层石墨烯的一些片层是由大量薄片堆叠组成的,这些折皱和重叠的石墨烯片可以有效地连接个别石墨烯片,并运载高电流密度,从而导致高电导率。PET/石墨烯纳米复合材料的电导率从2.0×

10-13 

S·m-1迅速增加为7.4×10-2S·m-1,而当石墨烯含量在0.47%到1.2%(

体积百分数)之间时,电导率只有稍微的增加。当填充量是2.4%(

体积百分数)时,可得到石墨填充的复合材料的渗滤。3.9 聚碳酸酯/石墨烯纳米复合材料

用熔融插层,制备石墨和功能化石墨烯(FGS)增强的聚碳酸酯(PC)复合材料[29]

。在PC/FGS复合材料中,FGS呈现高度的片状剥离状态。FGS的填充量比石墨的填料量低时,就可得到电导率的渗滤。PC/FGS纳米复合材料的拉伸模量高于纯PC的拉伸模量。此外,随着FGS的填充,

复合材料的热膨胀系数(CTE)

大幅度地下降。4 高分子石墨烯纳米复合材料的应用展望

在未来几年生物医学领域,高分子/石墨烯纳米复合材料具有广泛的应用前景,如超小型低成本的传感器,用于分析血液和尿液等。在一系列的电致变色设备中,导电高分子/石墨烯复合材料还可作为电极材料。

高分子/石墨烯柔韧电极有一些商业应用,如透明导电太阳能电池涂料和显示器等。而高分子/石墨烯纳米复合材料还可以提供适用于电磁辐射的轻量级有效屏蔽材料。

高分子/石墨烯复合材料其他的商业应用包括:轻汽油灌、塑料容器、省油飞机和汽车部件、较强的风力涡轮机、

医疗埋植剂和运动器材等。总之,石墨烯作为纳米填充物的发现,为生产重量轻、成本低、性能高的复合材料开辟了一个新的领域。

5 总结

石墨烯复合材料是代表最尖端技术发展之一。然而,为充分发挥其潜能,仍面临许多挑战。比如,用超声处理和热冲击技术对氧化石墨烯进行剥离,

导致剥离片的纵横比减小,其负面影响是使电和热性能增强。由于缺乏共价键或非共价键的相互作用,比如π-π键相互作用或氢键结合,而使高分子/石墨烯复合材料的界面附着力降低,因此,应该强调表面化学研究的重要性。

进一步改善石墨烯复合材料的性能还需要重视形态学的影响。因为缺陷和皱褶可能影响其增强能力,因此加强剥离和分散技术的研究,进而提高石墨烯复合材料的机械性能。同时,增加对石墨烯填充物空间组织的掌握,也有利于几乎所有类型复合材料性能的研究。

虽然目前石墨烯复合材料面临着巨大挑战,但是其工业和商业价值不可估量,并且未来会更加明显。

参考文献:

[1] 刘平桂,

龚克成.化学世界,1999,(5):227~232.[2] Georgios K D,Emmanuel T,George E F.Nano Lett,2008,(10):3166~3170.[3] Hummers W S,Offeman R E.J Am Chem 

Soc,1958,(80):1339.[4] Park S,An J,Piner R D,Jung I,Yang D,Velamakanni A,SonBinh T,Nguyen &Rodney 

S,Ruoff.Chem Mater,2008,(20):6592~4.

[5] Worsley K A,Ramesh P,Mandal S K,Niyogi S,Itkis M E,Haddon R C.Chem Phys Lett,2007,(445):51~56.[6] Bai H,Xu Y,Zhao L,Li C,Shi G.Chem 

Commun,2009,1667~1669.[7] Bourlinos A B,Gournis D,Petridis D,Szabo T,Szeri A,Dekany I.Chem Mater,2003,(19):6050~6055.[8] Lomeda J R,Doyle C D,Kosynkin D V,Hwang 

W F,Tour J M.J Am Chem Soc,2008,(130):16201~16206.[9] McAllister M J,Li J L,Adamson D H,Schniepp 

H C,Abdala A A,Liu J,Herrera-Alonso X M,Milius D L,Car R,PrudHomme R K &Aksay 

I A.Chem Mater,2007,(19):4396~4404.[10] Niyogi S,Bekyarova E,Itkis M E,McWilliams J L,Hamon M A,Haddon R C.J Am Chem Soc,2006,(128):7720~7721.[11] Stankovich S,Piner R D,Nguy

en S T,Ruoff R S.Carbon,2006,(44):3342~3347.·09· 高 分 子 通 报2012年9月 

[12] Liu N,Luo F,Wu H,Liu Y,Zhang 

C,Chen J.Adv Funct Mater,2008,(18):1518~1525.[13] Liu J,Yang W,Tao L,Li D,Boyer C,Davis T P.J Polym Sci Part A Polym Chem,2010,(48):425~433.[14] Zheng W,Lu X,Wong 

S C.J Appl Polym Sci,2004,(91):2781~2788.[15] Liang J,Wang Y,Huang Y,Ma Y,Liu Z,Cai J,Zhang C,Gao H,Chen Y.Carbon,2009,(47):922~925.[16] Lee W D,Im S S.J Polym Sci Part B Polym Phys,2007,(45):28~40.[17] Wanga W P,Pana C Y.Poly

mer,2004,(45):3987~3995.[18] Ramanathan T,Abdala A A,Stankovich S,Dikin D A,Alonso M H,Piner R D,Adamson D H,Schniepp 

H C,Chen X,Ruoff RS,Nguyen S T,Aksay 

I A,Prud Homme R K &Brinson L C.Nat Nanotechnol,2008,(3):327~331.[19] Kuilla T,Bhadra S,Yao D,Kim N H,Bose S,Lee J H,2010,(35):1350~1375.[20] Kotov 

N A.Nature,2006,(442):254~255.[21] Xin Zhao,Qinghua Zhang &Dajun Chen.Macromolecules,2010,(43):2357~2363.[22] Kuilla T,Srivastava S K,Bhowmick A K.J Appl Poly

m Sci,2009,(111):635~641.[23] Stankovich S,Dikin D A,Dommett G H B,Kohlhaas K M,Zimney 

E J,Stach E A,Piner R D,Nguyen S T &Ruoff R S.Nature,2006,(442):282~286.

[24] Peponi L,Tercjak A,Verdejo R,Lopez-Manchado M A,Mondragon I,Kenny J M.J Phys Chem,2009,(113):17973~17978.[25] Lee Y R,Raghu A V,Jeong 

H M,Kim B K.Macromol Chem Phys,2009,(210):1247~1254.[26] Liang J,Xu Y,Huang Y,Zhang L,Wang Y,Ma Y,Li F,Guo T &Chen Y.J Phys Chem,2009,(113):9921~9927.[27] Ansari S,Giannelis E P.J Polym Sci Part B Polym Phy

s,2009,(47):888~897.[28] Zhang H B,Zheng W G,Yan Q,Yang Y,Wang J,Lu Z H,Ji G Y,Yu Z Z.Polymer,2010,(51):1191~1196.[29] Kim H,Macosko C W.Poly

mer,2009,(50):3797~3809.The Research Progress of Polymer/Graphene Nanocomp

ositesGAO Qiu-ju1,XIA Shao-ling1,

2*,ZOU Wen-j

un1,PENG Jin1,CAO Shao-kui 2

(1.School of Materials Science and Engineering,Henan University 

of Technology,Zhengzhou450001,China;2.School of Materials Science and Engineering,Zhengzhou University,Zheng

zhou450052,China)Abstract:Graphene is well known for their excellent properties in mechanics,optics,electricity 

andthermology.So,more and more researchers are interested in it.The current paper introduces thestructure and characteristics of graphene.The modification methods of grap

hene are also summarized.The research progress of polymer/graphene nanocomposites is emphasized in this paper,and threekinds of preparation methods of the polymer/graphene nanocomposites were introduced,namely in situintercalative polymerization,solution intercalation,melt intercalation.Besides,the applicationprospect of polymer/graphene nanocomposites is outlooked,and the existing problems and the directionof the future research are also 

discussed.Key 

words:Graphene;Polymer;Nanocomposites;Application·

19· 第9期 高 分 子 通 报

神奇的石墨烯——石墨烯研究进展

神奇的石墨烯 ——石墨烯的研究进展 石墨烯简介 石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V?s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为“单层石墨”。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。 既然石墨烯这么的神奇,有这么多的特性,那它的制备会不会特别难呢? 事实表明现在大规模的制造石墨烯还比较困难,但小规模的制造用于科研还是比较容易

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.docsj.com/doc/4c13863835.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.docsj.com/doc/4c13863835.html, or J.F.Che; e-mail:xiaoche@https://www.docsj.com/doc/4c13863835.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.docsj.com/doc/4c13863835.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

石墨烯力学性能研究进展

石墨烯力学性能研究进展* 韩同伟‘贺鹏飞2,t骆英‘张小燕“ 江苏大学土木工程与力学学院,江苏镇江212013 2同济大学航空航天与力学学院,上海200092 3江苏大学化学化工学院,江苏镇江212013 摘要石墨烯是近年来发现的由单层碳原子通过共价键结合而成的具有规则六方对称的理想二维晶体,是继富勒烯和碳纳米管之后的又一种新型低维碳材料.由于具有非凡的电学、热学和力学性能以及广阔的应用前景,石墨烯被认为是具有战略意义的新材料,近年来迅速成为材料科学和凝聚态物理等领域最为活跃的研究前沿.本文简要介绍了研究石墨烯力学性能的实验测试、数值模拟和理论分析方法,重点综述了石墨烯力学性能的最新研究进展,主要包括二维石墨烯的不平整性和稳定性,石墨烯的杨氏模量、强度等基本力学性能参数的预测,石墨烯力学性能的温度相关性和应变率相关性、原子尺度缺陷和掺杂等对力学性能的影响以及石墨烯在纳米增强复合材料和微纳电子器件等领域的应用,最后对石墨烯材料与结构的力学研究进行了展望. 关键词石墨烯,力学性能.分子动力学,缺陷 1引言 石墨烯(graphene),又称为二维石墨片,是由单层碳原子通过共价键(碳5pz杂化轨道所形成的二键、二键)结合而成的具有规则六方对称的理想二维晶体11-21,如图1所示,于2004年由英国曼彻斯特大学的安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)首先发现[fll,是继富勒烯(Cso)和碳纳米管(CNTs)之后的又一种新型低维碳材料,其厚度仅为头发丝直径的20万分之一。约为0.335 nm,是目前发现的最薄的层状材料. 在石墨烯中,每个碳原子通过很强的0键(自然界中最强的化学键)与其他3个碳原子相连接,这些很强的碳一碳键致使石墨烯片层具有极其优异的力学性质和结构刚性.碳原子有4个价电子,每个碳原子都贡献一个未成键的兀电子。这些兀电子与平面成垂直的方向可形成二轨道,二电子可在晶体中自由移动,赋予石墨烯良好的导电性.但这些面外离位的二键与相邻层内的二键的层间相互作用远远小于一个6键,即片层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片.石墨烯的碳基二维晶体是形成sp“杂化碳质材料的基元,它可以包裹起来形成零维的富勒烯(fullerene, Cso),卷起来形成一维的纳米碳管(carbon nanotube, CNT),层层堆积形成三维的石墨(graphite),石墨烯是构建众多碳质材料的基本结构单元[[3J,如图2所示. 由于独特的二维结构以及优异的晶体品质,石墨烯具有十分优异的电学、热学、磁学和力学性能fl-$1,有望在高性能纳米电子器件、复合材料、场发射材料、气体传感器、能量存储等领域获得广泛应用.石墨烯是零隙半导体,具有一般低维碳材料所无法比拟的载流子特性,是其备受关注的重要原因之一石墨烯成为凝聚态物理学中独一无二的描述无质量狄拉克一费米子(masslessDirac Fermions)的模型体系,这种现象导致了许多新奇的电学性质因此,石墨烯为相对论量子电动力学现象的研究提供了重要借鉴.研究还表明,石墨烯的热导率和机械强度(5kW}m-1}K-1和1.06 TPa)可与宏观石墨材料相媲美,断裂强度与碳纳米管相当f7-sl.此外,石墨烯为制备集超高导电、导热及机械性能等各种优越性能于一体的新型功能复合材料提供了一种理想的纳米填料[fl。一’‘].因此,石墨烯被誉为新一代战略材料,近年来迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2,1“一’51. 2009年12月,Science杂志将石墨烯研究取得新进展”列为2009年十大科技进展之一2010年10月,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁.诺沃肖罗夫因在二维空间材料石墨烯方面的开创性实验而获得诺贝尔物理学奖,由此引发石墨烯新的研究热潮.

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

石墨烯的研究进展概述

龙源期刊网 https://www.docsj.com/doc/4c13863835.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

Pt-石墨烯复合材料

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institution and sharing with colleagues. Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article(e.g.in Word or Tex form)to their personal website or institutional repository.Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: https://www.docsj.com/doc/4c13863835.html,/copyright

相关文档