文档视界 最新最全的文档下载
当前位置:文档视界 › 遥感图像分类后处理

遥感图像分类后处理

遥感图像分类后处理
遥感图像分类后处理

遥感图像分类后处理

一、实验目的与要求

监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。

本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。

二、实验内容与方法

1.实验内容

1.小斑块去除

●Majority和Minority分析

●聚类处理(Clump)

●过滤处理(Sieve)

2.分类统计

3.分类叠加

4.分类结果转矢量

5.ENVI Classic分类后处理

●浏览结果

●局部修改

●更改类别颜色

6.精度评价

1.实验方法

在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料

1.实验设备

装有ENVI5.1的计算机

2.实验材料

以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于" (13)

据\"。其他数据描述:

?can_tmr.img ——原始数据

?can_tmr_验证.roi ——精度评价时用到的验证ROI

四、实验步骤

1.小斑块去除

应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过

滤处理(Sieve)。

1)Majority和Minority分析

Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。

下面介绍详细操作流程:

(1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat";

(2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK;

(3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

图1 Majority/Minority Parameters面板参数设置

(4)查看结果如图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。

注:参数说明如下

?Select Classes时,用户可根据需要选择其中几个类别;

?如果选择Analysis Methods为Minority,则执行次要分析;

?Kernel Size为核的大小,必须为奇数×奇数,核越大,则处理后结果越平滑;

?中心像元权重(Center Pixel Weight)。在判定在变换核中哪个类别占主体地位时,中心像元权重用于设定中心像元类别将被计算多少次。例如:如果输入的权重为1,系统仅计算1次中心像元类别;如果输入5,系统将计算5次中心像元类别。权重设置越大,中心像元分为其他类别的概率越小。

图2原始分类结果(左),Majority分析结果(右)

2)聚类处理(Clump)

聚类处理(clump)是运用数学形态学算子(腐蚀和膨胀),将临近的类似分类区域聚类并进行合并。分类图像经常缺少空间连续性(分类区域中斑点或洞的存在)。低通滤波虽然可以用来平滑这些图像,但是类别信息常常会被临近类别的编码干扰,聚类处理解决了这个问题。首先将被选的分类用一个膨胀操作合并到一块,然后用变换核对分类图像进行腐蚀操作。

下面介绍详细操作流程:

(1)打开分类结果——"\分类后处理\数据\can_tmr_class.dat";

(2)打开聚类处理工具,路径为Toolbox /Classification/Post Classification/Clump Classes,在弹出对话框中选择"can_tmr_class.dat",点击OK;

(3)在Clump Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

图3 Clump Parameters面板参数设置结果

(4)查看结果如下图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。

注:参数说明如下

?Select Classes时,用户可根据需要选择其中几个类别;

?Operator Size Rows和Cols为数学形态学算子的核大小,必须为奇数,设置的值越大,效果越明显。

图4 原始分类结果(左),聚类处理结果(右)

3)过滤处理(Sieve)

过滤处理(Sieve)解决分类图像中出现的孤岛问题。过滤处理使用斑点分组方法来消除这些被隔离的分类像元。类别筛选方法通过分析周围的4个或8个像元,判定一个像元是否与周围的像元同组。如果一类中被分析的像元数少于输入的阈值,这些像元就会被从该类中删除,删除的像元归为未分类的像元(Unclassified)。

下面介绍详细操作流程:

(1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat";

(2)打开过滤处理工具,路径为Toolbox /Classification/Post Classification/Sieve Classes,在弹出对话框中选择"can_tmr_class.dat",点击OK;

(3)在Sieve Parameters面板中,点击Select All Items选中所有的类别,Group Min Threshold设置为5,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作;

图5Sieve Parameters面板参数设置

(4)查看结果如下图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。

注:参数说明如下

?Select Classes时,用户可根据需要选择其中几个类别;

?过滤阈值(Group Min Threshold),一组中小于该数值的像元将从相应类别中删除,归为未分类(Unclassified);

?聚类领域大小(Number of Neighbors),可选四连通域或八连通域。分别表示使用中心像元周围4个或8个像元进行统计。

图6 原始分类结果(左),过滤处理结果(右)

2.分类统计

分类统计(Class statistics)可以基于分类结果计算源分类图像的统计信息。基本统计包括:类别中的像元数、最小值、最大值、平均值以及类中每个波段的标准差等。可以绘制每一类对应源分类图像像元值的最小值、最大值、平均值以及标准差,还可以记录每类的直方图,以及计算协方差矩阵、相关矩阵、特征值和特征向量,并显示所有分类的总结记录。

下面介绍详细操作流程:

(1)打开分类结果和原始影像——"\12.分类后处理\数据\can_tmr_class.dat"和"can_tmr.img";

(2)打开分类统计工具,路径为Toolbox/Classification/Post Classification/Class Statistics,在弹出对话框中选择"can_tmr_class.dat",点击OK;

(3)在Statistics Input File面板中,选择原始影像"can_tmr.img",点击OK;

(4)在弹出的Class Selection面板中,点击Select All Items,统计所有分类的信息,点

击OK;

注:可根据需要只选择分类列表中的一个或多个类别进行统计。

(5)在Compute Statistics Parameters面板可以设置统计信息(如下图所示),按照图中参数进行设置,点击Report Precision…按钮可以设置输入精度,按默认即可。点击OK;

图7 统计结果参数设置面板

注1:统计功能包含三种统计类型,分别为:

?基本统计(Basic Stats):基本统计信息包括所有波段的最小值、最大值、均值和标准差,若该文件是多波段的,还包括特征值。

?直方图统计(Histograms):生成一个关于频率分布的统计直方图,列出图像直方图(如果直方图的灰度小于或等于256)中每个DN值的Npts(点的数量)、Total (累积点的数量)、Pct(每个灰度值的百分比)、和Acc Pct(累积百分比)。

?协方差统计(Covariance):协方差统计信息包括协方差矩阵和相关系数矩阵以及特征值和特征向量,当选择这一项时,还可以将协方差结果输出为图像(Covariance Image)。

注2:输出结果的方式有三种:输出到屏幕显示(Output to the Screen)、生成一个

统计文件(.sta)和生成一个文本文件。其中生成的统计文件可以通过以下工具打开:?ENVI 5.x:Toolbox/Statistics/View Statistics File

?ENVI Classic:Classification > Post Classification > View Statistics File

(6)如下图所示为显示统计结果的窗口,统计结果以图形和列表形式表示。从Select Plot下拉命令中选择图形绘制的对象,如基本统计信息、直方图等。从Stats for标签中选择分类结果中类别,在列表中显示类别对应输入图像文件DN值统计信息,如协方差、相关系数、特征向量等信息。在列表中的第一段显示的为分类结果中各个类别的像元数、占百分比等统计信息。

图7显示统计结果的窗口

3.分类叠加

分类叠加(Overlay Classes)功能,可以将分类结果的各种类别叠加在一幅RGB彩色合成图或者灰度图像上,从而生成一幅RGB 图像。如果要想得到较好的效果,在叠加之前,背景图像经过拉伸并保存为字节型(8bit)图像,下面是具体操作过程。

(1)打开分类结果和原始影像——"\分类后处理\数据\can_tmr_class.dat"和"can_tmr.img";

注:这里将原始影像的真彩色图像作为背景图像。

(2)打开拉伸工具(Toolbox/Raster Management/Stretch Data),在弹出的对话框中选择"can_tmr.img"文件,然后点击下方的Spectral Subset(如下图所示),在弹出面板中选择波段1、2、3,点击OK;

图8 选择拉伸文件和波段选择

(3)在Data Stretching面板中,按照下图进行参数设置,点击OK即可;

图9拉伸参数设置

(4)打开分类叠加工具,路径为Toolbox/Classification/Post Classification/Overlay Classes;

(5)在打开的Input Overlay RGB Image Input Bands面板中,R、G、B分别选择拉伸结果"can_tmr_background.dat"的band 3、2、1,点击OK;

注:如果需要一个灰度背景,为RGB三个通道输入同样的波段即可。

图10选择背景图像的RGB波段组合

(6)在Classification Input File面板中选择分类图像"can_tmr_class.dat",点击OK;(7)在Class Overlay to RGB Parameters面板中选择要叠加显示的类别(如下图所示),这里选择林地、裸地、沙地三个类别,设置输出路径,点击OK即可。

注:按住Ctrl键,点击鼠标左键可以实现多选。

图11 选择要叠加显示的类别

(8)查看叠加结果,如下图所示。

注:可以通过File > Save As将"can_tmr_overlay.dat"转换为TIFF格式,这样使用普通图片查看器便可以进行浏览,并保持了背景拉伸效果与原始类别颜色。

图12叠加效果

4.分类结果转矢量

可以利用ENVI提供的Classification to Vector工具,将分类结果转换为矢量文件,下面介绍详细操作步骤:

(1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat";

(2)打开转矢量工具,路径为Toolbox /Classification/Post Classification/Classification to Vector;

(3)在Raster to Vector Input Band面板中,选择"can_tmr_class.dat"文件的波段,点击OK;

(4)在Raster to Vector Parameters面板中设置矢量输出参数。这里选择林地和沙地两个类别,设置输出路径,点击OK即可。

注:Output可选Single Layer和One Layer per Class两种情况。如果选择Single Layer,则所有的类别均输出到一个evf矢量文件中;如果选择One Layer per Class,则每一个类别输出到一个单独的evf矢量文件中。

图13 输出矢量参数设置

(5)查看输出结果,打开刚才生成的evf文件,并加载到视图中。可以在图层列表右键点击矢量文件名(如下图左),选择Properties,在弹出面板中可以根据Class_Name修改不同类别的颜色,如下图(右)所示,修改林地和裸地分别为红色和蓝色,点击OK,最终效果如图所示。

图14设置矢量图层属性

图15 矢量显示最终效果

5.ENVI Classic分类后处理

以上的分类后处理在ENVI Classic和ENVI 5.x版本中均能完成,操作步骤基本一致。本节的操作需要在ENVI Classic下完成的,主要为局部手动修改、更改类别颜色等。1)浏览结果

打开ENVI Classic,使用File > Open Image File打开"can_tmr.img"和

"can_tmr_class.dat"。在显示"can_tmr.img"的Display中,选择Overlay > Classification,打开Interactive Class Tool Input File面板中选择"can_tmr_class.dat",将分类结果叠加显示在Display上。如下图所示,可以勾选复选框进行类别的叠加显示。

图16Interactive Class Tool面板

2)局部修改

对于局部错分、漏分的像元,可以手动进行修改。在Interactive Class Tool面板可利用两个工具进行修改。

将一定范围内像元都并入其他一个类别中

(1)在Interactive Class Tool面板中,选择Edit > Mode: Polygon Add to Class;(2)在Interactive Class Tool面板中,鼠标左键单击"Unclassified"前面的方型色块,让"Unclassified"类别处于激活状态;

(3)选择一个编辑窗口:Image,在Image窗口中绘制多边形,多边形以内的像元全部归于"Unclassified"一类。

图17设置激活类别

将一定范围内某一类像元并入其他一类中

(1)在Interactive Class Tool面板中,选择Edit > Mode: Polygon Delete from Class;

(2)选择Edit > Set delete class Value,选择并入的目标类,以林地为例,如下图所示;

图18设置删除归入的目标类别

(3)在Interactive Class Tool面板中,鼠标左键单击"Unclassified"前面的方型色块,让"Unclassified"类别处于激活状态。

(4)选择一个编辑窗口:Image,在Image窗口中绘制多边形,多边形以内的类别

"Unclassified"全部归于"林地"。

(5)选择Edit > Undo Changes,可以取消修改,选择File > Save changes to File,可以将修改结果保存。

3)更改类别颜色

(1)在Interactive Class Tool面板中,选择Option > Edit class colors/names,如下图所示,直接在对应的类别中修改颜色。

(2)在Class Color Map Editing面板中选择RGB、HLS或HSV其中一种颜色系统。单击"Color"按钮选择标准颜色,或者通过移动颜色调整滑块分别调整各个颜色分量定义颜色。选择Options >Reset Color Mapping,可以恢复初始值。

注:也可以根据一个显示的RGB影像来自动分配类别颜色,打开主菜单> Classification > Post Classification > Assign Class Colors。

图19分类颜色和名字的更改

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

遥感图像的监督分类与处理_赵文彪

杭州师范大学《遥感原理与应用》实验报告 题目:遥感图像的监督分类与处理实验姓名:赵文彪 学号: 2014212425 班级:地信141 学院:理学院

1实验目的 运用envi软件对自己家乡的遥感影像经行分类和分类后操作。 2概述 分类方法:监督分类和非监督分类 监督分类——从遥感数据中找到能够代表已知地面覆盖类型的均质样本区域(训练样区),然后用这些已知区域的光谱特征(包括均值、标准差、协方差矩阵和相关矩阵等)来训练分类算法,完成影像剩余部分的地面覆盖制图(将训练样区外的每个像元划分到具有最大相似性的类别中)。 非监督分类——依据一些统计判别准则将具有相似光谱特征的像元组分分为特定的光谱类;然后,再对这些光谱类进行标识并合并成信息类。 光谱特征空间 同名地物点在丌同波段图像中亮度的观测量将构成一个多维的随机向量X,称为光谱特征向量。而这些向量在直角坐标系中分布的情况为光谱特征空间。 同类地物在光谱特征空间中不可能是一个点,而是形成一个相对聚集的点群。丌同地物的点群在特征空间内一般具有不同的分布。 特征点集群的分布情况: 理想情况:至少在一个子空间中可以相互区分 典型情况:任一子空间都有相互重叠,总的特征空间可以区分 一般情况:任一子空间都存在重叠现象 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。在分类乊前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决凼数迚行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决凼数去对其他待分数据迚行分类。使每个像元和训练样本做比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 3实验步骤 3.1遥感影像图的剪切 用envi打开下载的遥感影像图,剪切出一个地貌信息丰富的区域(因为一景遥感影像太大,分类时间较长,故而采用剪切的方法,剪切一个地貌丰富的遥感影像图。既便于分类也使得分类种数不至于减小的太多) 以下为剪切出来的遥感影像

envi遥感图像监督分类与非监督分类

envi遥感图像监督分类 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 遥感影像的监督分类一般包括以下6个步骤,如下图所示: 详细操作步骤 第一步:类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。

启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。 通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。 第二步:样本选择 (1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。 1)在Region of Interest (ROI) Tool面板上,设置以下参数: ROI Name:林地 ROI Color: 2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择; 3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上; 4)这样就为林地选好了训练样本。 注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。 2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。 3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。 (2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择工具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本; (3)如下图为选好好的样本。

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

遥感图像分类方法研究综述_李石华

第2期,总第64期国土资源遥感N o.2,2005 2005年6月15日RE MOTE SENSI N G FOR LAND&RESOURCES Jun.,2005 遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明650092;2.云南省寄生虫病防治所,思茅665000; 3.云南开远市第一中学,开远661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751文献标识码:A文章编号:1001-070X(2005)02-0001-06 0引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节)))图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I SO M I X)、循环集群 法(ISODATA)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及/同物异谱0、 /异物同谱0现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Ba lstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2],孙家 对M.A.Fried l(1992)和 C.E.Brodley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2基于统计分析的遥感图像分类方法 2.1监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-N earest Ne i g hbor)、决策树法(Decisi o n Tree C lassif-i er)和贝叶斯分类法(Bayesian C lassifier)。主要步骤包括:1选择特征波段;o选择训练区;?选择或构造训练分类器;?对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre m a等提出的启发式像素分类估计先验概率法。M clachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感影像分类方法实验报告

实验报告

目录 1 实验目的................................................... 错误!未定义书签。 2 实验数据................................................... 错误!未定义书签。 3 实验内容................................................... 错误!未定义书签。 4 实验步骤................................................... 错误!未定义书签。 对人口矢量数据(shapefile)进行投影转换.................. 错误!未定义书签。 文件投影坐标的检查................................... 错误!未定义书签。 将投影坐标转换为WGS_1984_UTM_Zone_16N ............... 错误!未定义书签。 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准)错误!未定义书签。 在ENVI软件的加载.................................... 错误!未定义书签。 对遥感影像进行几何精校正(以矢量数据为基准)................... 错误!未定义书签。 用矢量图层对遥感影像进行裁剪................................................... 错误!未定义书签。 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价错误!未定义书签。 两种融合方法的原理....................................................................... 错误!未定义书签。 进行 Gram-Schmidt Spectral Sharpening融合........................ 错误!未定义书签。 融合效果进行定性评价................................................................... 错误!未定义书签。 融合效果进行定量评价(软件提供的计算方法)........................... 错误!未定义书签。 融合效果进行定量评价(Matlab编程计算).................................. 错误!未定义书签。 遥感影像融合定量分析代码........................................................... 错误!未定义书签。 生成住房密度栅格影像........................................................................... 错误!未定义书签。 两表的连接....................................................................................... 错误!未定义书签。 计算房屋密度................................................................................... 错误!未定义书签。 直接栅格化....................................................................................... 错误!未定义书签。 IDW插值............................................................................................ 错误!未定义书签。 对房屋密度图进行重分类............................................................... 错误!未定义书签。 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 .. 错误!未定义书签。 监督分类(融合方法为HSV,波段为5,4,3)................................. 错误!未定义书签。 打开Google Earth影像作为监督分类的参照............................. 错误!未定义书签。 建立兴趣区....................................................................................... 错误!未定义书签。 训练样区的选择............................................................................... 错误!未定义书签。 训练样区的评价............................................................................... 错误!未定义书签。 执行监督分类................................................................................... 错误!未定义书签。 分类后处理....................................................................................... 错误!未定义书签。 评价结果分析................................................................................... 错误!未定义书签。

遥感图像格式GeoTIFF解析

第2期2006年3月华东师范大学学报(自然科学版)Journal of East China Norm al University (Natural Science)No.2 M ar.2006文章编号:1000-5641(2006)02-0018-09 遥感图像格式GeoTIFF 解析 陈端伟, 束 炯, 王 强, 段玉森 (华东师范大学地理信息科学教育部重点实验室,上海 200062) 摘要:介绍了T IF F 格式的图像格式,Geo T IFF 中G eoK ey 的存储结构和G eo T IF F 支持的3种坐标空间,并引出了六大G eoT ag (地理标志域),描述了它们的具体含义和相互关系.介绍了坐标转换和地理编码.最后阐述了GeoT IFF 的优点及其应用前景. 关键词:GeoT IFF; Geo Key ; 栅格空间; 设备空间; 模型空间; 地理编码 中图分类号:K909 文献标识码:A Analysis of Remote Sensing Image Format G eoTIFF CH EN Duan -wei, SH U Jiong, WANG Qiang , DUAN Yu -sen (K ey L aboratory of Geog rap hic I nf or mation S cience ,M inistr y of Ed ucation , E ast China Normal Univ er sity ,Sh anghai 200062,China) Abstract: G eoT IF F,a g eog raphica lly ex tended image fo rmat of T I FF,w as st udied in this pa -per.Descr iptio n and analysis wer e g iv en to T IFF fo rmat,st oring methods o f G eoK eys,thr ee kinds of coo rdinate sy st ems support ed by G eoT IF F,six GeoT ags and their relationships,as well as co or dinate tr ansfo rmatio n and geo co ding.A dv antag es o f G eoT IF F wer e ex plained,and its ap -plication pro spect is ant icipated. Key words: G eoT I FF; Geo key ; r aster space; device space; model space; geo co ding 收稿日期:2004-04 基金项目:国家863高科技项目(2002AA 134020) 第一作者:陈端伟(1980-),男,硕士研究生,现在上海市宝山区环境监测站工作. 通讯作者:束炯(1952-),男,博士,教授. 随着地理信息系统被广泛应用和遥感技术的日渐成熟,遥感影像及数据的获取正在向多种传感器、多种分辨率、多波段和多时相方向发展,这就迫切需要一种标准的遥感卫星数字影像格式.GeoTIFF(Geogr aphically Registered T agg ed Im age File For mat)格式应运而生.A ldus -A dobe 公司的T IFF(Tag ged Image File Form at)格式是当今应用最广泛的栅格图像格式之一,它不但独立而且还提供扩展.GeoT IFF 就是利用了TIFF 的可扩展性,在其基础上加了一系列标志地理信息的标签(Tag),来描述卫星成像系统、航空摄影、地图信息 和DEM 等[1]. 1 TIFF 图像格式 TIFF 文件由许多标签(T ag)组成.在Adobe 的有关TIFF6.0的说明中,将Tag 解释为各种标签所对应的数值,而在文件中各个标签的实际入口称为域(Field).

遥感图像分类

实验六遥感图像分类 一、实习目的和要求 ·了解遥感图像分类的节本原理和过程,懂得遥感图像分类的依据,了解遥感图像分类的几种常用方法; ·掌握监督分类与非监督分类的原理以及它们的区别,熟悉两种不同的分类方法的操作过程; ·熟悉遥感图像的各个波段所含有的特征,熟悉地物的光谱特征,能够根据实际的应用目的选择不同的波段组合,以使分类效果最满意得到解译的目的; ·掌握监督分类分类模板的建立方法,知道如何进行模板的评价; ·掌握分类精度评定的原理以及实验方法和操作步骤,了解什么样的分类精度才是符合要求的分类结果; ·熟练掌握分类后处理的方法,当结果不合格或需要高精度分类结果时以及非监督分类的时候都要用到分类后处理,熟练掌握分类后处理的操作步骤; 二、实验原理 ·图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规图像分类主要有两种方法:非监督分类与监督分类,专家分类方法是近年来发展起来的新兴遥感图像分类方法; ·遥感图像分类的依据是地物的光谱特征,即地物电磁波辐射的多波段测量值,这些测量值作为遥感图像分类的原始特征变量; ·非监督分类运用ISODA TA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时。原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析; ·监督分类比非监督分类更多地要求用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)、评价模板、确定初步分类图、检验分类

遥感图像计算机分类

实验六遥感图像计算机分类 一、 实验目的 通过实验,掌握利用ENVI软件进行遥感图像进行有监督分类的方法和操作流程,从而加深对有监督分类本质及方法的理解。了解监督分类与非监督分类的区别。 二、 实验内容 利用TM5多光谱图像can_tmr.img数据完成定义训练样本、执行监督分类、评价分类结果和分类后处理四个过程。 三、 实验数据 1.can_tmr.img TM5多光谱图像 2.can_tm-验证.roi 验证ROI 四、 实验操作原理及步骤 遥感图像通过亮度值或像元值的高低差异(反应地物的光谱)及空间变化(反应了地物的空间信息)来表示不同地物的差异。这是区分不同图像的物理基础。遥感图像分类就是利用计算机通过对遥感图像中各地物的光谱信息和空间信息进行分析,选择特征,将图像中每个像元按照某种规则或算法划分为不同的类别,然后获取遥感图像中与实际地物的对应信息,从而实现遥感图像的分类。一般分为监督分类与非监督分类,后期将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。 1.监督分类 监督分类又称“训练分类法”,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中图像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些子类别对判决函数进行训练,使其符合于对各种子类别分类的要求;随后用训练好的判决函数去对其他待分类数据进行分类,使每个像元和训练样本作比较,按不同的规则将其划分到与其最相似的样本类,以完成对整个图像的分类。 在ENVI的Classification下拉菜单提供访问 ENVI 的监督分类和非监督分类。工具也提供了收集终端单元、对以前 RULE 图像的分类、计算分级统计信息、计算混淆矩阵、成块或筛选分类、合成分类、对灰阶图像的叠置分类以对矢量层的输出分类。监督技术

相关文档