文档视界 最新最全的文档下载
当前位置:文档视界 › 镁基复合材料的研究发展现状与展望

镁基复合材料的研究发展现状与展望

镁基复合材料的研究发展现状与展望
镁基复合材料的研究发展现状与展望

——颗粒增强镁基复合材料

课程名称:金属基复合材料

学生姓名:

学号:

班级:

日期:2010/12/26

——颗粒增强镁基复合材料

摘要:镁基复合材料具有很高的比强度、比刚度以及优良的阻尼减震性能,是汽车制造、航空航天等领域的理想材料之一。本文综述了颗粒增强镁基复合材料的研究概况,镁基复合材料常用的基体合金和常用的增强相。着重介绍了其制备方法、力学以及阻尼性能,并对它的发展趋势进行了展望。

关键词:镁基复合材料;制备方法;基体镁合金;颗粒增强体;性能

1.前言

与传统的金属材料相比,金属基复合材料具有高的比强度、比刚度、耐高温、耐磨损耐疲劳、热膨胀系数小、化学稳定性和尺寸稳定性好等优异性能。金属基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;由于镁的密度更低(1.74 g/cm3),仅为铝的2/3,具有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空、航天、汽车、机械及电子等高技术领域的重视.自20世纪8O年代至现在,镁基复合材料已成为金属基复合材料的研究热点之一。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易近终成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。

2.制备方法

2.1粉末冶金法

粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。

2.2熔体浸渗法

包括压力浸渗、无压浸渗和负压浸渗。压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。

2.3全液态搅拌法

在保护气氛下,将增强颗粒加入熔融的镁合金基体中,再进行机械搅拌,最后浇铸成型。此方法设备以及工序简单,成本也较低,但在搅拌的过程中容易产生气孔,另外由于增强颗粒与基体的密度不同易发生颗粒沉积和团聚的现象:铸锭凝固后可以进行热挤压,可以改善基体和增强颗粒间的界面完整性以及增强相在基体中的均匀分布,并且在挤压的过程中发生了动态再结晶,复合材料发生了明显的晶粒细化现象。

2.4半固态搅熔铸造法

半固态搅熔铸造法是指将增强颗粒加入由机械搅拌的半固态基体中,待混合均匀后升至熔点温度浇铸,凝固后得到镁基复合材料的方法。此方法可以避免全液态搅拌法易产生气孔和发生颗粒沉积及团聚的现象。该工艺较有利于大规模工业生产。

2.5喷射沉积法

此工艺首先用高压的惰性气体流将液态镁合金雾化,形成熔融状态的镁合金喷射流,同时将增强颗粒喷入镁合金喷射流中,使颗粒和基体的混合体沉积到衬底上,凝固后得到镁基复合材料:该工艺所制备的复合材料颗粒在基体中分布均匀、凝固快、界面反应较少。

3.镁基复合材料常用的基体镁合金和颗粒增强体

3.1常用的基体镁合金

镁基复合材料要求基体组织细小、均匀,基体合金使用性能良好.根据镁基复合材料的使用性能,对侧重铸造性能的镁基复合材料可选择不含Zr的铸造镁合金为基体;侧重挤压性能的则一般选用变形镁合金。这些基体镁合金主要有镁铝锌系(A731、AZ61、AZ91)、镁锌锆系、镁锂系、镁锌铜系(ZC71)镁锰系、镁稀土锆系、镁钍锆系和镁钕银系等。纯镁的强度较低,不适合作为基体,一般需要添加合金元素以合金化。主要合金元素有A1、Mn、Zn、Li、AS、Zr、Th、Ni和稀土元素等。这些合金元素在镁合金中具有固溶强化、沉淀强化和细晶强化等作用,添加少量AI、Mn、Zn、Zr、Be等可以提高强度;Mn可提高耐蚀性;Zr可细化晶粒和提高抗热裂倾向;稀土元素除具有类似zr的作用外,还可以改善铸造性能、焊接性能、耐热性以及消除应力腐蚀倾向;Li除可在很大程度上降低复合材料的密度外,还可以大大改善基体镁合金的塑性。

3.2常用的颗粒增强体

根据镁基复合材料的使用性能、基体镁合金的种类和成分来选择所需的颗粒增强体.要求增强体与基体物理、化学相容性好,应尽量避免增强体与基体合金之间的有害界面反应,并使其与基体润湿性良好,载荷承受能力强等.采取适当的工艺措施使颗粒在基体内分布均匀,减少颗粒间的团聚,以改善材料受载时内部的应力分布,是保证复合材料具有良好性能的关键之一。制备方法可分为外加颗粒和原位内生颗粒法两种。外加颗粒法制备镁基复合材料的优点是工艺简单,但易造成颗粒表面的污染,基体和颗粒表面润湿困难,导致界面强度的降低。原位内生法是增强颗粒在金属基体中通过原位反应形成的,因而热力学上稳定,颗粒表面无污染,增强体与基体润湿性良好故界面结合强度高。原位增强体颗粒细小(通常为亚微米至微米级),因而与外加颗粒(通常为几十个微米)法相比,原位颗粒增强作用更显著。但原位反应法的缺点是反应过程往往不彻底,反应过程中的中间相(亚稳相)有时会作为有害相残留在基体中(如Mg—Al—Ti—C体系中

会生成脆性相TiAl3)。

①碳化物

SiC颗粒

SiC的硬度高,耐磨性能好,并具有抗热冲击、抗氧化等性能。镁没有稳定的碳化物,SiC在镁中热力学上是稳定的,因此,SiC常用作镁基复合材料的增强相,并且来源广泛,价格便宜,用其作为增强颗粒制备镁基复合材料具有工业化生产前景。SiC具有α-SiC、β-SiC两种晶体结构,α-SiC为密排六方结构,但α-SiC有许多变体结构(即c值不同),β-SiC为面心立方结构。

SiC颗粒增强镁基复合材料是目前研究最多的镁基复合材料之一,其制备方式主要是外加方式。常用的制备方法除搅拌铸造法外,还有挤压铸造法、粉末冶金法、喷射沉积法、复合铸造法以及机械合金化法。其中搅拌铸造法是制备SiC 颗粒增强镁基复合材料的一种典型工艺,已有几家公司采用搅拌铸造法成功地开发出SiC颗粒增强镁基复合材料。1986年美国Dow Chemical公司采用搅拌铸造法制备出SiC P/AZ91,并制备出皮带轮等样品零件。其优异的性能引起人们的普遍关注。而挤压铸造法是目前制备颗粒增强镁基复合材料最成功的工艺之一。其中,预制块中增强体的分布,预制块和模具的预热温度,浸渗压力大小均对复合材料的微观结构和性能有重要影响。

表1给出的是采用搅拌铸造法制备的铸态AZ91和铸态AZ91+10 vo1.%SiC 颗粒增强镁基复合材料的常温力学性能。从表1可以看出与基体合金相比,复合材料的抗拉强度、延伸率下降,但弹性模量、屈服强度提高。复合材料抗拉强度减小是因为铸态复合材料颗粒团聚,并带有一定量的气孔。在拉应力作用下此处优先形成微裂纹,从而使强度降低。

表 1 铸态 AZ91、铸态 SiC/Mg复合材料的室温性能

表 2给出的是采用挤压铸造法制备的铸态AZ91和 AZ91+20 vo1.%SiC镁基复合材料的力学性能。由表2可以看出,小颗粒(15μm)增强的复合材料的屈服强度和抗拉强度均比大颗粒(52μm)增强的复合材料要好。这是因为当体积分数相同时,增强相颗粒越小,粒子间距就越小。

表 2 挤压铸造法制备的AZ91、SiC/Mg复合材料的室温性能

镁对 SiC具有良好的润湿性,并且SiC

/Mg复合材料界面光滑,无界面反应。

P

采用铸造法制备颗粒增强镁基复合材料时,凝固过程对界面微观结构有着很大的影响,进而影响到复合材料的性能。然而到目前为止,关于颗粒增强镁基复合材料的凝固过程,尤其是关于形核过程的研究较少。

镁不易形成稳定的碳化物,所以碳化物陶瓷颗粒在纯镁中是稳定的。然而,在含有铝的镁合金(如AZ91)中。如果接触时间足够长,则会在这镁合金中发生反应形成碳化物。如 SiC与Al会发生如下反应:

4Al+3SiC→Al

4C

3

+3Si

该反应生成的Al

4C

3

溶于水,因而降低镁基复合材料的耐蚀-性能。Al

4

C

3

的形

成同时伴随Si的析出(与镁反应生成 Mg

2

Si),这就改变了基体合金的化学成分。

尽管 SiC颗粒增强镁基复合材料的研究很多,但多集中于制备方法、组织和性能。关于基础理论的研究较少。应进一步开展对SiC颗粒增强镁基复合材料的凝固理论研究。

B

4

C颗粒

B

4

C为菱面体站构,高熔点、高硬度,硬度仅次于金刚石与立方氮化硼,是

密度最低的陶瓷材料,热膨胀系数相当低,价格也较便宜。B

4

C颗粒增强镁基复台材料的制备方法有挤压铸造法、粉末冶金法、压力浸渗法、和只适用于Mg

—Li基体台金的箔冶金扩散焊接法。B

4

C颗粒增强镁基复合材料具有很大的应用潜力。

TiC颗粒

TiC为面心立方晶格,具有高熔点、高硬度及高温稳定性好等优点。TiC与镁的润湿性好于与铝的润湿性。且不和镁发生界面反应。因此,TiC是作为镁的增强相的较佳选择。TiC颗粒增强镁基复合材料的制备方法有搅拌铸造法、机械合金化、中问台金法和高温自蔓延法等。

②硼化物

TiB

2

颗粒

TiB

2

是一种新型的工业陶瓷原料。具有硬度大,耐磨损,耐酸碱,导电性与

稳定性好等优异特性,TiB

2

/Al复合材料得到了广泛的研究。镁的晶格常数为a

=0.320936nm,c=0.52112nm,c/a =1.6238;TiB

2

的晶格常数为a=0.303034nm,

c =0.322953nm,c/a =1.066。TiB

2

晶格排列方式与镁的排列方式极其相似,均

为密排六方结构。因此,作为增强相来说,TiB

2

在与镁的结合上有很大的有利之处。

TiB颗粒

TiB具有高硬度、高熔点、良好的导电性、抗熔融腐蚀性等,是作为镁基复合材料增强相的较佳选择。但是,遗憾的是对于TiB颗粒增强镁基复合材料的研究报道很少。有关TiB颗粒增强镁基复合材料的研究还应继续开展。

③氧化物颗粒

氧化物弥散强化机制日益受到研究者的重视,过去研究者只限于制备小体积分数的MgO增强镁基复台材料现在已有研究者制备出大体积分数MgO增强镁基复

台材料。采用熔体浸渗法制备出30vo1%Y

2O

3

/Mg复合材料,微观组织分析表明:

Y 2O

3

在基体中分布均匀,颗粒细小(约0.88μm),并且力学性能得到很大的提高。

④金属间化合物

Mg

2

Si具有低的密度(1.99cm )、高的硬度、高的屈服强度、低的热膨胀系数

和相对较高的熔点一般采用原位内生法制备Mg

2

Si颗粒增强镁基复合材料。制备方法包括机械合金化法(MA)、快速凝固法(RS)、铸造法和热挤压法等。

与镁合金相比,Mg

2Si具有较高的熔点和较好的抗高温氧化能力。Mg

2

Si颗粒

增强镁基复合材料可能替代镁台金作耐热结构材料,但由于Mg

2

Si较脆,因而又

限制了该复合材料的应用。采用MA法制备的镁基复合材料,Mg

2

Si颗粒尺寸最大

为22nm,并且Mg

2

Si在 390℃时也处于稳定态。具有良好的高温性能,克服了一

般纳米材料不稳定的缺点,但该方法的制备工艺复杂。Rs法制备的Mg

2

Si颗粒增强镁基复合材料具有良好的室温强度和高温超塑性。采用铸造法制备的镁基复合

材料Mg

2Si颗粒粗大,力学性能较差,而经过热挤压的镁基复合材料Mg

2

Si晶粒

细小,力学性能得到很大的提高。

4.组织和性能

4.1基体和增强颗粒的选择

纯镁不适于直接作为镁基复合材料的基体,一般需要添加合金元素。常用的合金元素依次有铝锌、硅、锂、银、锆、锰和稀土元素等,通常根据镁基复合材料的使用性能选择基体合金。用作镁基复合材料的增强颗粒主要是各种碳化物

(如SiC)、氧化物(如Al

2O

3

)、硼化物(如TiB

2

)以及石墨等。选择时主要考虑颗粒

的形状与尺寸、颗粒与基体的物理、化学相容性等因素,尽量避免增强颗粒与基体合金之间的界面反应,同时还要考虑增强颗粒的各项力学性能、物理性能以及制备成本。

近几年有研究者尝试采用金属或合金颗粒作为镁基复合材料的增强体,取得了很好的效果。一些金属颗粒(如钛、镍和铜等)具有较高的模量和强度,且塑性较好,用作镁基复合材料的增强体,不仅可以提高材料的强度等指标,而且能够保持与基体镁相当的塑性。

4.2增强颗粒对基体组织结构的影响

颗粒增强镁基复合材料的晶粒与基体相比发生了明显的细化现象。颗粒对基体的细化机制可能是初生α-Mg相在颗粒表面非匀质形核及颗粒阻止α-Mg相生长共同作用的结果。在相同的体积分数的颗粒下,颗粒越细,则能满足α-Mg相非匀质形核所要求的界面特征、错配度和温度条件,可成为初生α-Mg相形核衬底的颗粒数量就越多,从而对基体的细化作用也越强。由于增强颗粒与基体在力学和热力学上的不匹配,将会在界面及近界面处产生热错配残余应力,引起基体发生塑性流变,在基体中形成了高密度的位错。

4.3颗粒增强镁合金的力学性能

目前,对于颗粒增强金属基包括镁基复合材料的强化机制还没有一个统一而完善的理论。普遍认为,颗粒增强复合材料强化机制主要有以下几点:由于基体与增强体热膨胀系数不同导致材料内产生热残余应力以及由于热残余应力释放导致基体中产生高密度位错;增强体的加入对基体变形的约束以及对基体中位错运动的阻碍产生了强化;基体向增强体的载荷传递以及晶粒细化强化等。然而由于材料的强度、韧性和断裂等力学性能与材料的原位特性有关,对材料中的界面、缺陷等局部缺陷很敏感,属高阶性能,往往出现协同效应,即当几个因素同时在材料中起作用时,材料的某些特性可能发生急剧变化。因此,不能简单认为复合材料的高强度是上述强化因素简单的叠加效应。

由于在制备工艺、增强相种类、参数和体积分数以及基体合金等方面的不同,镁基复合材料的力学性能有一定的差异。一般来说,加入增强颗粒后材料的硬度、屈服强度和抗拉强度提高,而伸长率则有所下降。如以陶瓷颗粒作为增强体,可以获得更高的硬度、屈服强度和抗拉强度,但伸长率下降较快;而以金属颗粒作为增强体的复合材料,可获得较好的塑性,这主要是因为金属颗粒本身具有较好的塑性,而且与基体镁的相容性良好。

与强度等力学性能相比,弹性模量属于低阶性能,对材料中的界面、缺陷等不敏感。按照简单的混合定律,由于所加入的陶瓷或金属颗粒增强体的弹性模量都远高于镁基体,因此所得到的镁基复合材料的弹性模量均高于基体镁或镁合金。增强体的弹性模量越大,复合材料的弹性模量也越大,而且伴随着增强体体积分数的增大,上述趋势愈加明显。

4.4颗粒增强镁合金的阻尼性能

阻尼性能通常又称为减振性能,是一个由时间决定的与弹性相关的物理性能,通常用内耗值 Q 来表征。在所有的金属结构材料中,镁的阻尼性能最好,其 Q 值约为 0.01~0.02,而铝合金、钛合金、钢等的阻尼值远远小于 0.01。因此,采用高阻尼镁合金为基体,选择合适的增强体,通过合理的设计,可望使复合材料最大 Q 值达到 0.01以上,获得高阻尼、高强度和低密度的减振材料。

当温度在 75℃以下,纯镁的阻尼性能要优于 SiCp增强的镁基复合材料;而高于75℃时,复合材料的阻尼性能要好于纯镁。认为在温度较低时,镁和 SiC 的本征阻尼在起作用,镁和SiC颗粒的阻尼为 0.02和0.002,根据混合定律,复合材料的阻能性能将小于纯镁基体;而当温度高于75℃,界面阻尼机制起主导作用,使复合材料的阻尼性能高于纯镁。

4.5耐磨性

镁合金基体中分布着强度、硬度都较高的陶瓷增强体时,增强颗粒在磨损过程中将起到支撑载荷的作用,减少镁合金基体的粘着磨损,使镁基复合材料具有优良的耐磨性。

5.颗粒增强镁基复合材料的发展趋势

5.1由于在金属基体内原位生成的高硬度高弹性模量的陶瓷颗粒增强相具有表面无污染与基体相容性良好,界面结合强度高等传统复合工艺无法比拟的优点,因此,借鉴目前原位内生颗粒增强铝基复合材料较成熟的制备技术,探索高性能、低成本、容易大规模生产的原位颗粒内生半固态镁基复合材料制备技术将成为研究热点之一;

5.2颗粒增强镁基复合材料热力学及动力学的计算机模拟技术将成为研究热点之一;

5.3控制陶瓷颗粒增强相与镁合金基体的界面行为以获得界面结合良好的镁基复合材料;

5.4开发镁基复合材料再生与回用技术;

5.5在汽车工业中,镁压铸件的加工、循环再生和铸造方面较铝有很大的技术优势,而且用镁可以代替汽车上的特种塑料,因此,原位颗粒增强镁基复合材料在汽车工业具有潜在的应用前景和广阔的市场。

酶学性质研究

1.6 酶学性质研究 (1)pH 的影响:分别测定粗酶液在pH3.0、4.0、5.0、6.0、7.0、8.0下的酶活力,确定其最适反应pH 值;将粗酶液用上述pH 缓冲液稀释后,45℃水浴保温4小时后,测定其剩余酶活力。 (2)温度的影响:分别在40~95℃下测定酶活力,确定其最适反应温度;将酶液在40~90℃范围内的不同温度下保温60 min 后,测定其剩余酶活力。 (3)金属离子的影响:在酶液中分别添加各种金属离子,使其浓度为4 mmol /L ,然后测定酶活力。 2.5 纤维素酶粗酶液酶学性质 2.5.1酶反应的最适pH 值和酶的pH 稳定性 粗酶液在不同pH 值下测得的酶活及在不同pH 值下处理4小时后测得的相对酶活示于图11。结果表明,CMCase 在pH 3.5~4.5有较高的酶活力,最适反应pH 值为4.0;β-Gluase 在pH 4.5~5.5酶活力较高,最适反应pH 值为5.0,同样方法测得FPA 最适反应pH 为5.0。可见,该菌株所产的各组分纤维素酶是酸性酶。 图11表明,该菌产CMCase 在pH3.0~6.0的范围内,β-Gluase 在pH3.5~5.5的范围内,酶活力均可保持在80%以上,说明该菌株所产酸性纤维素酶可在较宽的pH 值范围内保持其酶活力的稳定性。2.5.2 酶反应的最适温度和酶的热稳定性 在不同温度下直接进行酶促反应测得的酶活及在不同温度下热处理60 min 后于最适反应温度和最适pH 下测得的相对酶活(以4℃保存的酶液活力为100%)示于图12。结果表明,CMCase 、β-Gluase 及FPA 最适反应温度均为65℃。 c e l l u l a s e a c t i v i t y ( U .m l -1) pH r e l a t i v e y a c t i v i t y (%) c e l l u l a s e a c t i v i t y ( U .m l -1) temperature ( o C ) r e l a t i v e y a c t i v i t y (%) 图11 pH 值对酶活力及酶稳定性的影响 Fig.10 Effects of pH value on Cellulase activity and stability 图12 温度对酶活力及酶稳定性的影响 Fig.11 Effects of temperature on activity and stability of cellulase

人工湿地的国内外现状

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 人工湿地的国内外现状 人工湿地的国内外现状人工湿地(Constructed Wetlands) 是20 世纪70 年代末发展起来的一种污水处理技术, 兴起于荷兰、丹麦、英国等国家,80年代从欧洲到美洲、澳洲等地区和国家都广泛开展了这方面的研究工作。 目前,在美国有600 多处人工湿地工程用于处理市政、工业和农业废水, 400多处人工湿地被用于处理煤矿废水, 50多处人工湿地用于处理生物污泥,近40处人工湿地用来处理暴雨径流,超过30处人工湿地系统用于处理奶产品加工废水 ;在丹麦、德国、英国各国至少有200处人工湿地系统在运行 ,新西兰也有80多处人工湿地系统被投入使用。 其特点是: 出水水质好, 具有较强的氮磷处理能力, 运行维护方便, 管理简单, 投资及运行费用低。 据有关资料显示, 人工湿地投资和运行费用仅占传统二级生化处理技术的10%~50%。 比较适合于资金少、能源短缺和技术人才缺乏的中小城镇和乡村。 人工湿地是一种为处理污水而利用工程手段模拟自然湿地系统建造的构筑物, 在构筑物的底部按一定的坡度填充选定级配的填料( 如碎石、砂子、泥炭等),池底坡降及填料表面坡降往往受水力坡降及填料级配的影响, 一般选值范围为1%~8%。 1 / 6

在填料表层土壤中种植一些处理性能良好, 成活率高, 生长周期长, 美观及具有经济价值的水生植物( 如芦苇) 。 人工湿地类型人工湿地因水流方式的差异大致可分为 3 类: 表面流湿地、潜流湿地和垂直流湿地。 表面流湿地( Surface FlowConstructed Wetland) ,是一种污水从湿地表面漫流而过的长方形构筑物, 结构简单, 工程造价低; 但由于污水在填料表面漫流, 易滋生蚊蝇, 对周围环境会产生不良影响, 而且其处理效率较低。 潜流湿地( Subsurface Constructed FlowWetland) ,污水在填料缝隙之间渗流, 可充分利用填料表面及植物根系上生物膜及其他作用处理污水, 出水水质好。 由于水平面在覆盖土层或细砂层以下, 卫生条件较好, 故被广泛采用。 潜流湿地一般设计成有一定底面坡降的、长宽比大于3 且长大于20 m 的构筑物, 污水流程较长, 有利于硝化和反硝化作用的发生, 脱氮效果较好。 或方形构筑物, 污水的流程较短, 反硝化作用较弱, 且工程技术要求较高。 由于垂直流湿地可方便地采用工程手段来改善系统的供氧状况, 提高布水均匀性, 营造更加有利于硝化和反硝化发生的系统环境, 故越来越受到人们的重视。 垂直流湿地(Vertical Flow Constructed Wetland),污水沿垂

中国能源结构现状及发展趋势

中国能源结构现状及发展趋势 摘要:我国目前的能源消费结构仍以煤炭为主,对进口石油依存度过高,能源安全和环保问题日益严峻。本文通过对各种可再生性能源的利用状况进行比较,认为我国发展生物质资源产能潜力巨大,如麻风树、油桐等陆生植物制备的生物柴油在近期会有较大的发展,特别以微藻为主的水生植物制备生物柴油,将有可能成为最有竞争力的替代性能源,在我国未来能源结构中占有举足轻重的比重。 关键词:能源安全;温室气体;可再生性能源;微藻;生物柴油1. 中国能源构成的现状 随着经济的飞速发展,中国的能源消费总量连续多年都位居世界前列。统计数据表明2001~2006年间,我国每年一次性能源的消费比重均在90%以上(见表1),而风能,太阳能,生物质能等新能源的利用率仍然很低。我国能源消费构成的特点:(1)煤炭的生产和消费比重偏高。近五年来煤炭年产量占能源总产量的比重呈逐年递增趋势,2006年这一比重上升至76.7%。(2)石油的生产量低,消费量高,供需缺口需依赖进口石油满足。与煤炭资源相反,石油在能源总产量的比重逐年递减,2006年仅为11.9%,而其消费量的比重五年来均超过20%。(3)新能源利用率低,发展潜力大。目前对新能源的利用率不足10%,而我国地域辽阔,太阳能,风能,生物质等能源蕴藏丰富,开发潜力巨大。 2. 能源消费结构存在的主要问题 2.1 石油短缺与能源安全

我国石油储量占世界总量的2%,人均占有量仅为世界平均水平的十分之一,自1993年成为原油净进口国以来,到2002年已经成为世界第二大石油消费国、第七大石油进口国。中国统计年鉴数据显示(见表2),1995之后的十年间,随着经济飞速发展,中国对进口石油的依存度也基本呈逐年递增趋势,2006年,全国48.2%的石油消耗量需从国外进口。而2008年4月中国社科院发布的《中国能源发展报告(2008)》蓝皮书预计,2010年和2020年中国石油消费量将达4.07亿吨和5.63亿吨,分别比2006年提高17.42%和62.47%。BP世界能源统计(2008)的数据表明,全球石油探明储量约1.24万亿桶,以目前的开采速度仅够开采40多年。 石油资源的日益匮乏和中国对进口石油的过度依赖使我们不得不面 对能源安全问题,特别是全球已进入高油价时代,能源安全更成为一个关系到国计民生和影响到中国整体经济可持续增长的关键性问题。 2.2 煤炭消耗与环境恶化 中国是世界第一产煤大国,煤炭产量占全世界的37%。作为中国的主要能源,在1995~2006十年间,煤炭在全国能源消费总量中所占比例均在65%以上,并且在未来相当长的时期内,中国能源消费结构仍将保持煤炭占据主导地位的状况。大量煤炭的燃烧导致二氧化碳、氮氧化物、粉尘等环境污染物的排放量逐年增大。据美国EIA(Energy Information Administration)统计,1990年世界二氧化碳的排放量约为215.6亿吨,预计2010年将为277.2亿吨,2025年达到371.2亿吨,年均增长1.85%。目前,我国二氧化碳的排放总量仅次于美国

灌浆材料的发展现状与展望模板

灌浆材料的发展现状与展望 摘要:灌浆工法作为防渗补强加固的一种重要手段,其灌浆材料起着至关重要的作用。本文对灌浆材料的种类及其使用性能作了详细的描述,同时对今后浆材的发展方向提出了展望。 关键词:灌浆灌浆材料 注浆法出现于19世纪初,注浆工法在水利水电工程中多称灌浆法。采用灌浆技术以解决土建工程的有关技术难题,至今已有一个世纪的历史。浆液注入到地层中去的方式是该工法的关键。随着注浆技术的广泛应用,注浆材料得到了较大的发展。注浆材料从最早的石灰和黏土、水泥,发展到今天的水泥--水玻璃浆液、各种化学浆液。而注浆材料的开发与应用,又反过来推动了注浆工法在更广泛的领域内的应用。通常说的注浆材料是指浆液中的主剂。注浆材料必须是能固化的材料。习惯上把注浆原材料分为粒状材料和化学材料两个系统。而浆液是同主剂、固化剂,以及溶剂、助剂经混合后所配成的液体,分为溶液型和悬浊液型两大类。 1 灌浆材料的种类及其特点 1.1 溶液型浆材 溶液型浆材又叫化学浆材,可分为水玻璃类、木质素类灌浆材料、丙烯酰胺类灌浆材料、丙烯酸盐类灌浆材料、聚氨酯类灌浆材料、环氧树脂灌浆材料、甲基丙烯酸酯类灌浆材料、脲醛树脂类、其它类化学灌浆材料。1.1.1 水玻璃类灌浆材料 水玻璃(硅酸钠)是化学灌浆中最早使用的一种材料,水玻璃类浆液是由水玻璃溶液和相应的胶凝剂组成。其无机胶凝剂有氯化钙、铝酸钠、氟硅酸、磷酸、草酸、硫酸铝、混合钠剂等,有机胶凝剂有醋酸、酸性有机盐、有机酸酯、醛类(乙二醛类)、聚乙烯醇等。二氧化碳亦可与水玻璃溶液在被灌体内生成硅酸凝胶。 灌浆用水玻璃模数在2.4~3.4之间为宜,水玻璃溶液的浓度在35~45°Be'为宜。 水玻璃类浆材主要特点及性能: (1) 胶凝时间从瞬间~24小时不等; (2) 固砂体强度可达6MPa; (3) 粘度从1.2~200×10-3Pa·s; (4) 可灌性好,渗透系数可达10-5~10-6cm/s,可灌入 0.1mm以上的土层。 (5) 毒副作用小,造价低。 1.1.2 木质素类浆液 木质素类浆液由纸浆废液、胶凝剂和促凝剂等组成。木质素类浆液包括铬木素和硫木素浆液两种。铬木素浆液的固化剂是重铬酸钠。但重铬酸钠毒性大,难以大规模使用。硫木素浆液是在铬木素浆液的基础上发展起来的,是采用过硫酸铵完全代替重铬酸钠,使之成为低毒、无毒木质素浆液,是一种很有发展前途的注浆材料。

镁电池介绍

镁电池介绍 随着世界各国能源资源的日益短缺,而面对能源的需求量日益增加,寻求一种新能源的课题就摆在我们面前。同时,由于人们对环保的要求越来越高,因而这种新能源必须是无污染、高能量、体积小、重量轻,而价格低廉的一种新产品电池。 为适应上述要求,近年来世界各国的科学家都对镁系列电池开始进行研究,并有一些研究文章发表,我国也不例外。但真正是因民用、再大范围、宽领域使用的电池尚未面世。我们经过十多年的研究,已成功地开发出Mg-Cu系列电池。并已供国防、气象、火箭等领域使用;现在已开发出Mg-MnO2系列电池。拟建厂投入批量生产;目前在Mg可充二次电池的研究方面也取得了一些成效。我们的总体思路是:尽快建厂大批量生产Mg-MnO2电池;首先提供军方和国家气象、航空火箭等领域使用,同时集中力量进行Mg二次电池的研究开发,以尽快应用在军方高尖端武器装备和民用矿灯、电动汽车等更宽的领域上。 在造价同等的情况下与目前的高倍电能电池相比较使用时间超过了10倍。除了电能以外还在几个方面有着独特的优势: A 无污染目前市场上使用的普通干电池和碱性锌锰电池大都使用了金属汞。电池用完废弃后,每年将有近百吨汞被遗弃在大气、江河和土地中。造成环境的污染。所以人们纷纷要求回收废电池。然后回收来的废

电池目前又没有很好的处理方案,因而人们一直是电池为“公害”。而Mg-MnO2电池从原材料(所有的原材料)到生产过程直至电池使用完后变成废弃物对环境无任何污染,可以称作为绿色电池。 B 贮存寿命长根据国家标准,碱性Zn-Mgo2电池贮存为12个月,而Mg-MnO2贮存三年后容量保存在95%以上。 C 电池的重量比能量和体积比能量高也就是说放出相同的能量,镁电池的体积小,重量轻。详见下表: 一次电池性能对比(以54cm3电池为例) D 工作温度范围宽 Mg电池能在高温度和低温度下工作。一般的干电池推荐使用温度范围为-5℃--45℃,而Mg-MnO2电池的推荐温度为 -20℃--+60℃,我们的产品经试验可以在-60℃--+80℃下正常工作。 E 性价比优势大相比价格低廉做出想同型号的电池,虽然Mg-MnO2电池的成本是碱性电池的1.1倍,但性能却优异的多。还有许多其它优点,诸如大电流放电性能好,放电电压平稳等特点。

新型二次电池

新型二次电池认识及发展 摘要:科技的发展、人类生活质量的提高,石油资源面临危机、地球生态环境日益恶化,形成了新型二次电池及相关材料领域的科技和产业快速发展的双重社会背景。一方面,是信息科技和信息产业的日新月异,移动电话、笔记本电脑、形形色色的便携式电器层出不穷;另一方面,大气污染、地球石油储量不足百年的警示,使得人类针对不同用途寻找新型绿色能源的需求已迫在眉睫。电动助力车、电动汽车正悄然地改变着人类生存条件"衣、食、住、行"中"行"的内容。上述移动型高科技器件的开发和产业化,高度依赖着比能量高、可移动、资源节约型、能反复充放电使用、不污染环境的小型绿色能源,市场的迫切需求,使新型二次电池应运而生。其中,高能镍镉电池、镍金属氢化物电池、镍锌电池、免维护铅酸电池、铅布电池、锂离子电池、锂聚合物电池等新型二次电池备受青睐。在我国得到广泛应用,形成产业并迅猛发展。 关键字:新型二次电池

一、新型二次电池简介 电池中,有一类电池的充放电反应是可逆的,放电时通过化学反应可以产生电能,通以反向电流(充电)时则可使体系回复到原来状态,即将电能以化学能形式重新储存起来。这种电池称为二次电池或蓄电池。表l—1列出一些典型的二次电池体系。 表中列出的铅酸电池和镉镍电池是早巳广泛应用的二次次电池。但理论比能量都很低,其商品电池一般只能达到30Wh/kg一40Wh/kg,同时,铅和镉都是有毒金属,对环境污染的问题已引起世界环境保护界的关注。因此发展高比能量、无污染的新型二次次电池体系一

直受到科技界和产业界的重视。表l—1中列出的几种新型二次电池体系,有采用储氢合金负极的金属氢化物镍电池(表示为Ni/MH电池)和锂离厂电池(表示为LIB电池)。它们是9()年代初刚刚问世便取得异常迅猛发展的新型二次电池体系,由于它们不含有毒物质,所以又被称为绿色电池。 二、新型二次电池在国民经济中的地位、作用及发展前景 中国已经成为世界新型二次电池的生产、贸易中心,产能达16.17亿只, 产值逾15亿美元,是世界重要的电池市场。二次电池国产新材料在电池产业的发展中起到了重要的开拓和相互支撑的作用。世界一流的著名电池公司将新型二次电池的生产基地纷纷迁往中国,进一步刺激了我国电池材料产业的发展和电池高质量。 目前,世界各国都投人极大的人力和物力釆发展新型二次电池技

人工湿地技术研究现状

人工湿地系统是将污水引到人工建造的类似于沼泽的湿地上,在一定的填料上种植特选的植物,形成一个独特的动植物生态环境,利用植物的根脉和其周围土壤微生物来联合对污水进行处理,污水流经湿地时大量的污染物被填料和植物根系阻挡截留而被除去。芦苇和香蒲在人工湿地中被广泛使用,它们既是中国北方与南方的常见物种,也是国际公认的最佳湿地植物。 作为20世纪70年代发展起来的一种新型污水处理生态系统,人工湿地以其建设运营成本低、去污能力强、使用寿命长、工艺简单、组合多样化等优势,近年来在世界各地得到了广泛的应用,其应用范围主要集中在褐煤热解、油砂废水、矿山废水、奶品加工、食品工业、造纸废水、烃类废水和垃圾场渗滤液净化处理等方面。 国外对人工湿地污水处理技术研究开展较早,最早可以追溯到1903 年建在英国约克郡Earby的湿地系统,它持续运行到1992 年;1953年,德国Seidel 在研究中发现,芦苇通过其根区产生微生物活性的区域作为生化反应器来转化、降解有机物,可以去除污染物。1972年Kickuth提出了根区法(The Root-Zone-Method)理论,强调高等植物在湿地污水处理系统中的作用。1996年Kathe Seidel提出利用高等植物的生化作用去除污染物的思想,通过芦苇等植物的根区产生微生物活性区域作为生化反应器来转化降解以至最终去除污染物。 人工湿地技术在欧美一些发达国家十分受到人们青睐,美国已应用人工湿地技术处理市政、工业和农业废水。丹麦、德国开始利用河砾和河砂作为植物生长基质,构建了高分散度的废水处理设施并获得成功。人工湿地技术目前已被英国用于小城镇污废水处理,成为其污水处理的重要组成部分 1990年7月,在中国深圳成功建立了第一个人工湿地污水处理工程——白泥坑人工湿地污水处理系统,运行状况良好,除了氨氮效果不明显外,其他指标均能达到国家二级排放标准。内蒙古自治区赤峰市宁城污水处理厂对于人工湿地污水处理技术的研究项目,在1997年6月通过国家建设部科技司主持的技术鉴定,在1998年6月开始推广。 根据污水在湿地床中流动的方式,可将人工湿地分为3种类型:垂直流人工湿地、潜流式人工湿地和表面流人工湿地。 垂直流人工湿地主要用于处理氨氮含量高的污水,污水从湿地表面纵向流向

中国能源现状与展望

中国能源现状与展望 从类别上来讲,能源分成常规能源与新能源。已能大规模生产和广泛利 用的一次能源。又称传统能源。如煤炭、石油、天然气、水,是促进社会进步 和文明的主要能源。在讨论能源问题时,主要指的是常规能源。新能源是在新 技术基础上系统地开发利用的能源,如太阳能、风能、海洋能、地热能等。常 规能源与新能源的划分是相对的。以核裂变能为例,20世纪50年代初开始把 它用来生产电力和作为动力使用时,被认为是一种新能源。到80年代世界上不 少国家已把它列为常规能源。太阳能和风能被利用的历史比核裂变能要早许多 世纪,由于还需要通过系统研究和开发才能提高利用效率,扩大使用范围,所以 还是把它们列入新能源,常规能源的储藏是有限的. 2016 年全部类型发电中,火电、水电、风电、核电占比分别为 74。4%、17.8%、4.1%、3.6%。火电同比增速由 2011 年 13。9%下降至 2016 年 2。6%,同比增速放缓。水电受天气因素影响波动较大。2012、2014 年来水较好,水 电发电量同比增长超过 20%。2015、2016 年来水较少,水电发电量同比分别 同降 6.4%、同增 5.6%.2016 年风电、核电同比增速分别为 30.1%、24。4%且近几年都保持两位数增长.由于国家鼓励清洁能源、限制火电发展,因此在四种发电类型中火电增速最为缓慢,火电在总发电量中占比呈下降趋势。 煤炭一直作为我们的主要利用资源,与生活息息相关,而丰富的煤炭资 源也正好提供了我们的开发利用,所以我们直到现在,无论多少新型能源的开发,也离不开煤炭对我们的帮助,在今后相当长的一段时间内,科学技术的飞速 发展,煤炭仍旧是人类生产生活中的必不可少的能源。 中国煤炭资源丰富,除上海以外其它各省区均有分布,但分布极不均衡。在中国北方的大兴安岭—太行山、贺兰山之间的地区,地理范围包括煤炭资源 量大于1000亿吨以上的内蒙古、山西、陕西、宁夏、甘肃、河南6省区的全部或大部,是中国煤炭资源集中分布的地区,其资源量占全国煤炭资源量的50% 左右,占中国北方地区煤炭资源量的55%以上。在中国南方,煤炭资源量主要 集中于贵州、云南、四川三省,这三省煤炭资源量之和为3525.74亿吨,占中国南方煤炭资源量的91。47%;探明保有资源量也占中国南方探明保有资源量的90%以上.我国煤炭从储量相当丰富,仅次于俄罗斯、美国,所以在能源结构中以煤为主将持续很长一段时间。 中国也蕴藏着丰富的太阳能资源,太阳能利用前景广阔。目前,我国太阳能产业规模已位居世界第一,是全球太阳能热水器生产量和使用量最大的国家 和重要的太阳能光伏电池生产国。我国比较成熟太阳能产品有两项:太阳能光 伏发电系统和太阳能热水系统.不过光伏发电占中国发电量的占比并不高。 水力发电始终是中国的强项,其占总发电比也比较高。三峡大坝,葛洲 坝我想无人不知。在水电的开发,设备,施工方面,中国与其他国家相比起步并 不算早,但巨大的开发市场与倾向性较强的招标模式,使得中国与水电相关的 企业短短几十年的时间内积累了大量宝贵的经验.在全世界前十五大水电站中,中国占了七个,前十大水电站中占了四个,如果算上即将开工投产的乌东德和

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

(完整word版)《发展镁离子电池技术和产业的建议》

《“十二五”建议--发展镁离子电池技术和产业的建议》 【引言】 随着全球环境的日益恶化,人们对绿色环保+低碳的呼声日益高涨,人类对于移动电源的发展需求变得越来越迫切。随着手机、笔记本、多媒体终端技术发展和产品普及,便携式设备功能日益强大和完善,电池技术发展是制约便携式设备发展的瓶颈。目前锂离子电池因为成本较高,Li和Co资源相对比较缺乏,提炼困难难度大,易造成环境污染;不能大电流放电等缺点。环保廉价、环保、能量密度比高的二次可循环镁离子电池将是一个重要的替代能源载体。 【镁离子电池的原理】 近十年来,锂离子电池的发展可以说是一支独秀,据元素周期表对角线规则,Mg与Li有许多相似性质。有研究成果表明,二次镁离子电池是锂离子电池的最佳替代品。 【镁离子电池的优点】 和锂离子电池比较,镁离子电池优点如下: 1,Mg蕴藏丰富,价格低廉,海水和土壤中含有丰富的氯化镁和氧化镁。提炼方便,节能,。 2,Mg安全无污染且加工处理比锂方便;Mg的化合物无毒或

者低毒,可循环性能好,具有生物和环境友好性,属于绿 色能源。 3,电极电位较低,能量密度高。 4,循环寿命性能好,(在-20~80°C条件下)循环2000次后容量仅损失15%。 5,安全性能高,熔点高达649°C。 【技术难点】 镁电池的研究还处于初级阶段,对电极材料及电解质材料合成机器电化学性能的研究都不够完善。镁干电池早已作为军用电源,但是直到1990年才首次组装完整的镁二次电池进行试验。该电池充放电库仑效率可达99%,存在开路电压低、高级化等不足、无足够的稳定性等问题而不成功,但说明了二次镁电池从技术上是可行的。影响镁离子电池发展因素主要有三个方面: 一、合适的负极材料:由于镁的化学活性高,在绝大多数溶液 中极易形成不传导的钝化膜,二价镁离子难以通过这种钝 化膜,使得镁离子难以溶解或者沉淀,限制了镁的化学活 性,至今未找到合适的二次镁电池的镁负极材料及与其适

镁基复合材料的研究发展现状与展望

——颗粒增强镁基复合材料 课程名称:金属基复合材料 学生姓名: 学号: 班级: 日期:2010/12/26

——颗粒增强镁基复合材料 摘要:镁基复合材料具有很高的比强度、比刚度以及优良的阻尼减震性能,是汽车制造、航空航天等领域的理想材料之一。本文综述了颗粒增强镁基复合材料的研究概况,镁基复合材料常用的基体合金和常用的增强相。着重介绍了其制备方法、力学以及阻尼性能,并对它的发展趋势进行了展望。 关键词:镁基复合材料;制备方法;基体镁合金;颗粒增强体;性能 1.前言 与传统的金属材料相比,金属基复合材料具有高的比强度、比刚度、耐高温、耐磨损耐疲劳、热膨胀系数小、化学稳定性和尺寸稳定性好等优异性能。金属基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;由于镁的密度更低(1.74 g/cm3),仅为铝的2/3,具有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空、航天、汽车、机械及电子等高技术领域的重视.自20世纪8O年代至现在,镁基复合材料已成为金属基复合材料的研究热点之一。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易近终成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。 2.制备方法 2.1粉末冶金法 粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。 2.2熔体浸渗法 包括压力浸渗、无压浸渗和负压浸渗。压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。

新材料产业发展现状及趋势

新材料产业发展现状及趋势 “十五”期间,在我国新材料产业发展过程中,国家给予了大力支持,初步形成了比较完整的新材料产业体系。“十五”期间发布的《国家计委关于组织实施新材料高技术产业化专项公告》,通过100多个产业化专项的实施.有力地推动了我国具有自主知识产权的新材料产业的发展,在电子信息材料、先进金属材料、电池材料、磁性材料、新型高分子材料、商性能陶瓷材料和复合材料等方面形成了一批高技术新材料核心产业。“十一五”期间又进一步加大了支持力度。按我国目前经济发展趋势预计,新材料需求增长速度将高于经济增长速度,按10%的增长速度计算,到2010年我国新材料市场可达6500亿元。新材料产业也已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志。 我国新材料产业的发展现状 当前,我国的新材料产业在国际产业布局中正处于由低级向高级发展的阶段,随着对外开放和与全球业界的广泛交流合作,我国新材料产业正呈现快速健康发展的良好状态,在一些重点、关键新材料的制备技术、工艺技术、新产品开发及节能、环保和资源综合利用等方面取得了明显成效,促进了一批新材料产业的形成与发展。 1.新一代钢铁结构材料 迄今为止,钢铁结构材料依然是国民经济各支柱产业和国防工业的重要支撑材料和应用范围最宽、使用量最大的材料,其生产和应用过程对全球资源、能源和人类生存环境有着不可忽视的影响,以去年为例: 2007年生产钢材46719.3万吨,比去年增长16.2%。同时,高技术含量、高附加值品种钢材产量大幅度增长。全年生产冷轧薄宽钢带1740.27万吨,同比增长31.8%;冷轧薄板1563.83万吨,同比增长25.2%;镀层板(带)1754.58万吨,同比增长37.9%;涂层板(带)317.21万吨,同比增长36.1%;电工钢板(带)415.57万吨。同比增长23.5%。以上5个品种钢材合计生产5791.487吨,比上年增长31.28%,高于钢材生产总量增幅8.59个百分点。全年生产不锈钢720.6万吨,比上年增加190.6万吨,增长35.96%,居世界第一位。其中,世界一流工艺装备的生产量达到70%,国内市场占有率达到75%,实现了重大的突破。全行业已基本形成以企业为主体、市场为导向、产学研相结合的技术创新和新产品研发体系,形成了科研基础设施建设加强、科技投入增加的良好格局。全行业在高效采选技术、钢铁冶炼技术、轧钢新技术、高端产品开发、大型冶金成套装备技术集成、节能节水和废弃物综合利用新技术等方面,都取得了新的成果和进步。 2007年宝钢试制成功X120管线钢,实现电镀锌机组全面无铬化生产,年产150万吨生铁的COREX3000熔融还原工艺装置投产;鞍钢继续完善冷连轧自主集成成套工艺技术,开发成功一批具有自主知识产权的核心技术,并在相关企业投入使用;武钢新一代取向硅钢、高效电机硅钢的研发和装备技术集成,高强度桥梁钢生产技术提高;太钢建成世界一流的现代化不锈钢生产基地;攀钢转炉铁水提钒和半钢炼钢连续工业性试生产成品钒渣等均取得了工艺技术的新突破。 2007年在研发和扩大生产市场需求的短缺产品方面,船用高强度宽厚板、高强度海洋结构用钢板、高档汽车用板和汽车零部件用钢、工程机械和高层建筑用高强度厚钢板、X80以上高等级管线钢板、百米在线热处理钢轨和时速350公里高速铁路钢轨、高速动车组用钢、高端压

高中化学二轮复习试题镁电池(解析强化版)

2020届届届届届届届届届届届届届 ——届届届届届届届届届届 1.如图是新型镁-锂双离子二次电池,下列关于该电池的说法不正确的是() A. 放电时,Li+由左向右移动 B. 放电时,正极的电极反应式为Li1?x FePO4+xLi++xe?=LiFePO4 C. 充电时,外加电源的正极与Y相连 D. 充电时,导线上每通过1mole?,左室溶液质量减轻12g 2.金属(M)-空气电池的工作原理如图所示,下列说法不.正.确.的是 A. 金属M作电池负极 B. 电解质是熔融的MO C. 正极的电极反应:O2+2H2O+4e?=4OH? D. 电池反应:2M+O2+2H2O=2M(OH)2

3.已知:电池的理论比能量指单位质量的电极材料理论 上能释放出的最大电能。镁一空气电池的总反应方程 式为2Mg+O2+2H2O=2Mg(OH)2,其工作原理如下图所 示,下列说法不正确是 A. 该电池的放电过程的正极反应为O2+4e?+2H2O=4OH? B. 为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜 C. 采用多孔电极的目的是提高电极与电解质溶液的接触面积,并有利于氧气扩散 至电极 D. 与铝一空气电池相比,镁一空气电池的比能量更高 4.镁-过氧化氢燃料电池具有比能量高。安全方便等优点。其结构示意图如图所示、 关于该电池的叙述正确的是() A. 该电池能在高温下正常工作 B. 电流工作时, H+向Mg电极移动 C. 电池工作时,正极周围溶液的pH将不断变小 D. 该电池的总反应式为:该电池的总反应式为Mg+H2O2+H2SO4=MgSO4+ 2H2O 5.采用双极膜电渗析技术,以NaBr为原料,用镁二次电池(有机卤代铝酸镁的THF溶液 为电解液)电解制备NaOH和HBr的实验装置如下图所示。下列说法正确的是()

人工湿地 存在的问题及发展趋势

人工湿地研究面临的问题和发展前景 问题: (1)人工湿地曾经被作为对湿地因各种原因退化的一种补偿手段而提出来的,但人工湿地的 研究现状是植物的单一性及对自然调控机制方面的缺乏与保护湿地的生物多样性初衷相去甚远。因此,人工湿地的研究方向之一是在努力提高去污能力的同时要尽可能地模仿自然湿地。 (2)以去除百分率的形式来表示人工湿地的处理效率时容易引起误导,因为在处理低含量污 水时,虽然处理效率较低,但出水水质很好。而且现已有数据表明随进水浓度升高处理效率也升高;同时由于蒸发作用,使得测得处理效率比实际结果偏低。因而,人工湿地处理效率模型的研究逐渐成为一个热点。 (3)现在还没有学者对湿地系统去除水源性病源体进行优化及深入研究。尽管研究发现人工 湿地对大肠杆菌及粪大肠杆菌类的处理效果“非常好”(有时甚至达到99%),但是应当注意到出水大肠杆菌类的平均数量还是超标的。因此仅仅利用人工湿地现有水平作为污水唯一处理系统时,特别是对高负荷生活污水,可能是不够。 (4)人工湿地中的堵塞问题近年来也引起了很多人的注意。 因为总悬浮颗粒物负荷过高时会造成基质淤积,管道堵塞,使得水流通不畅,(对潜流而言则会形成表面流致使水停留时间缩短;相反,对复合垂直流来讲,堵塞后由于填料渗透系数减少,水渗透速度下降,会延长水停留时间,造成在下行流池表面形成积水层阻碍了空气中的氧气进入基质层,使得复合垂直流中的好氧微生物活性下降,并且由于积水层的存在,使得蚊蝇更容易滋生,卫生条件恶化,功能下降。 (1)湿地基质堵塞的问题。随着人工湿地的运行有机质会逐渐积累于基质中而造成基质阻塞。根据美国多个人工湿地的调查有将近一半的湿地在投入运行后年内形成了堵塞造成了表面水流降低了处理效率。 (2)湿地植物的退化。如在欧洲国家应用广泛的芦苇床技术目前普遍存在着衰退现象。 (3)氮去除效果差。如美国多个湿地处理系统大多不能处理达到一定的氮标准原因可能是由于在湿地中缺少硝化所需的氧。 (4)水力负荷小,占地面积大。人工湿地是在自然湿地的基础上发展起来的,其净化机理的实质主要还是基于土壤对污染物的自然净化功能。由于土壤自身对污染物的降解能力差,水力负荷低,使得人工湿地需要较多的土地面积,这就制约了它的发展,尤其是在土地资源紧缺的地区。所以能否提高人工湿地的水力负荷是影响人工湿地未来发展的至关重要的问题。 (5)冬季运行问题。气温的降低会影响人工湿地的正常运行,使污染物的去除率降低,因此,在冬季湿地需要覆盖隔离这样的保温措施;或增加人工湿地的构筑深度来达到保温的效果。这是人工湿地在北方地区运行所必需要解决的问题。 发展趋势: 国外人工湿地发展趋势: 目前世界上都投入了大量精力来改进人工湿地技术。通过间歇进水、选择合适的填料和引入一些传统污水处理技术来提高潜流湿地的工作效率。如北美湿地工程公司N(AWE)借鉴污泥回流技术和鼓风曝气开发了循环湿地流湿地工艺和通风强化床工艺。这些工艺目前已被成

世界能源现状分析及应对措施

大连财经学院 “形势与政策”课程论文(2013-2014学年第一学期) 题目世界能源现状分析及应对措施姓名郭莉峰 专业 年级、班级 学号 成绩

世界能源现状分析及应对措施 关键词:石油核能天然气可持续发展低碳 摘要:进入21世纪后的绝大部分时间里,能源供应趋紧。在这期间,尽管在世界范围内石油供需总体上保持平衡,供略大于求,但这一平衡十分脆弱。往往由于自然灾害、气候变化、局部战争、社会动乱、恐怖活动等原因,在某些国家和地区、某些季节或某一时间段、某些石油品种出现断档,致使某些国家和地区不时发生油荒、电荒等能源供应紧张局面。只有实现可持续发展的能源战略,才能保证在“能源消耗最少,环境污染最小”的基础上,实现经济社会快速发展和人民,水平的提高。我国必须汲取西方发达国家的成功经验,学习其他发展中国家根据具体国情发展的经验,建立符合中国特色的、能源效率不断提高和环境保护日益加强的中、长期可持续发展能源战略。 正文 在经济、科技高速发展的今天,使得世界能源需求不断增长,而能源的存储和可再生性的问题导致了供需矛盾不断显现。以石油为核心的世界能源形势一直为世界各国尤其是大国所关注。正确把握世界石油市场形势,对一国调整石油战略,确保石油安全,其战略意义绝非一般。石油价格仍然面临上涨的压力,正是如此,为天然气产业带来了发展的新的机遇。核能不会退出历史舞台,但是重拾发展信心需要相当长的时间。相关国家针对南海、北极等潜在能源的重要产地的争夺也将进一步加剧。中国能源安全和产业发展也受到了上述热点问题的困扰。中国依赖西亚北非地区的能源供应,动荡引发的油价高涨也使中国面临严重的输入性通货膨胀。 进入21世纪后的绝大部分时间里,能源供应趋紧。在这期间,尽管在世界范围内石油供需总体上保持平衡,供略大于求,但这一平衡十分脆弱。往往由于自然灾害、气候变化、局部战争、社会动乱、恐怖活动等原因,在某些国家和地区、某些季节或某一时间段、某些石油品种出现断档,致使某些国家和地区不时发生油荒、电荒等能源供应紧张局面。 当前,非洲成为重要的石油生产地,其已探明石油储存量仅次于中东和南美洲。且非洲石油油质好,开采成本低,运输管道相对安全,多数产油国为非OPEC

镁电池优缺点简介

镁电池优缺点简介 随着全球能源消耗高速增长,环境日益恶化,以化学电池代替交通行业中的石油成为竞相研究的热点,特别在电动汽车领域中的应用。现在使用的二次电池主要是Pb酸、Ni-Cd、Ni-MH及Li离子电池,它们在应用于电动汽车方面显然都不太理想。前两种电池含有害元素Pb和Cd,严重污染环境。锂离子二次电池则更适用于小容量,大容量储电时,由于Li的特别活泼,会遇到安全问题;另外,锂离子电池因为成本较高,Li和Co资源相对比较缺乏,提炼难度大,易造成环境污染。环保廉价、能量密度比高的二次可循环镁离子电池将是一个重要的替代能源载体。 在元素周期表中,Mg与Li处于对角线位置,两者有相似的化学性质(表1)。与锂离子电池相比较(表2),镁离子电池的优点主要有以下几点:(一)Mg蕴藏丰富,价格低廉,海水和土壤中含有丰富的氯化镁和氧化镁提炼方便,节能。 (二)Mg安全无污染且加工处理比锂方便;Mg的化合物无毒或者低毒,可循环性能好,具有生物和环境友好性,属于绿色能源。 (三)电极电位较低,能量密度高。 (四)循环寿命性能好,(-20~80 °C条件下)循环2000次后容量仅损失15%。 (五)安全性能高,熔点高达649 °C。 表1 镁和锂的性质对比

表 2 镁离子电池与锂离子电池的相关参数比较 基于以上优点,1990年,Gregory等人首次报道了较完整的镁二次电池系统进行试验。该电池充放电的库仑效率可达99% ,虽然存在低的开路电压、高极化等不足、无足够稳定性等问题而不成功,但却说明了二次镁电池从技术上是可行的。其后,由Aurbach等人组装的镁二次电池在性能上明显提高,该电池在电流密度0.2~0.3 mA/cm2下,放电平台达到了1.1~1.2 V 左右,循环近600次,向实用迈出一大步。还有很多其他类似报道,其质量比容量从几十到410 mAh/g 不等,实用性和稳定性均不佳。 理论上,镁离子电池比锂离子电池具有更大的研究空间。因为从充电电池容量角度考虑,镁离子电池为3.8 Ah/g,锂离子电池为3.86 Ah/g,两者差距不大。而从储蓄能量密度角度考虑,镁离子电池有两个正电荷,而锂离子只有一个,因此镁离子电池比锂离子电池具有更大的储能能力。但是目前镁电池的研究还处于初级阶段,主要是因为对电极材料及电解质材料合成及其电化学性能的研究都不够完善。镁电池主要面临的技术难题和挑战主要有三点: (一)合适的负极材料:由于镁的化学活性高,在绝大多数溶液中极易形成不传导的钝化膜,这种钝化膜致密,二价镁离子难以通过,使得镁离子难以溶解或者沉淀,限制了镁的化学活性。镁电池负极目前多为镁金属或合金,其它报道

人工湿地处理农药废水:现状和展望

人工湿地处理农药废水:现状和展望 发表时间:2017-09-29T11:00:54.437Z 来源:《基层建设》2017年第14期作者:范闯 [导读] 摘要:自从20世纪70年代人们尝试用湿地植物处理速灭磷开始,到近十年湿地处理农药技术迅速发展。总结出农药进入水体的形式分为两种情况:点源和面源两种形式,其中以面源为主。 长安大学陕西省西安市 710064 摘要:自从20世纪70年代人们尝试用湿地植物处理速灭磷开始,到近十年湿地处理农药技术迅速发展。总结出农药进入水体的形式分为两种情况:点源和面源两种形式,其中以面源为主。去除机理有:填料和沉积物的吸附、水解作用、光解作用、微生物分解、植物吸收等。在影响湿地去除农药的因素:植物的有无、水力停留时间、农药的理化性质、温度、pH等。 关键词:人工湿地;农药; 0前言 农药在人类历史中已经有几千年的使用历史,主要用来控制或者去除杂草,害虫,真菌等。农药在防治农业杂草害虫发挥着积极地作用,但是当农药脱离农业系统,特别是进入水环境中,将会给其带来巨大的威胁0。美国环境保护局(EPA)调查结果显示美国的污染水体中有将近1300个是由于农药超标造成的。命名除草剂莠去津(ATZ)为潜质致癌物质和环境内分泌干扰物0-0。见于这种结果,一方面有些人提倡完全禁止杀虫剂的使用;另外大量的研究指出这种办法是不可取的。 1.人工湿地处理农药废水的研究现状 人工湿地处理各种有机废水已经有将近70年,但是用人工湿地去除农药废水的时间就很少了,在20世纪70年代早期,开展的微观实验的证明了植物对水体中速灭磷去除是有影响的,从此开始了人工湿地对水中农药去除的研究0。相比国内,国外的研究就成熟十分活跃,在20世纪90年代,Kadlec和Alvord等人建立了四块湿地研究莠去津(ATZ)的去除机理0。20世纪末,英国的McKinlay等人也研究一个垂直流湿地对莠去津的去除0。不同种农药由于不同的理化性质而在不同介质(比如水、土壤、植物等)中的分布规律是不同的, 2 人工湿地去除农药的影响因素 水生植物和藻类对某些农药也有一定的吸收作用,植物在生长过程中不断通过根系吸收,光合作用和呼吸作用等代谢过程为其提供物质和能量,植物对污染物的吸收也正是伴随这些过程的发生而发生的0。在一个早期的人工湿地研究中,Wolverton发现在光照以及微型植物藻类存在的情况下,两个星期后速灭磷被完全去除,在没有植物和土颗粒的情况下去除率只有26%,在只存在土颗粒的情况下去除率在94%0。人工湿地的水力停留时间与处理效果有着密切的关系,停留时间短的话水流速度快容易将吸附在基质表面的截留物质冲掉,进而导致SS和COD去除率的下降,当停留时间太大的时候会导致环境中厌氧部分变大,微生物进入内源呼吸,还会影响硝化作用的进行。大量结果显示得非常清楚有一部分农药去除率远高于另一部分。这些农药大部分都有很低的水溶性但是有很高的土壤水分配系数(Koc)和辛醇水分配系数(Kow)。另一方面,三嗪酮类(苯甲嗪、草克净)去除率仅有24%。Wu等人指出如果农药的土壤水分配系数(Koc)比较高大于1000mg/L时,他们会被吸附在土壤表面,进而在人工湿地中的去除效果会比较好0。污水的pH影响农药的稳定性,并且决定其水解反应的速率大小。在实验室条件下(25℃和pH为5~9),土壤中阿特拉津(除草剂)可以稳定30d,而pH为4时阿特拉津(除草剂)半衰期为244d0。Bailey等也发现,在酸性条件下二嗪磷(杀虫剂)的水解速率将急剧下降0。温度通过调节微生物的活性来影响农药的微生物降解速率,通常温度较高时,适于微生物生长,农药降解速率快。水温在20~25℃左右时生物去除污染物的效果最好,在低于10℃时,处理效率会明显下降,所以一般夏天的处理效果要好过冬天0。温度升高还能加快农药的水解速率,在水溶液中,当温度从10℃升高到21℃时,其降解速度加快2到4倍0。植物能够直接从水体中吸收农药,当土壤作为填料的时候,将会给这个过程提够便利条件。表面流人工湿地往往采用沉积岩破碎后的清洁的卵石作为填料,这些填料并没有含有有机质所以对有机质的吸附是极其有限的,即使发生吸附也是一些运行时间比较久的系统,在填料表面形成了一层生物膜,这层生物膜会对有机物产生吸附作用0。 3 结语 人工湿地在处理农药废水时是可行的,并且具有很好的使用价值,人工湿地操作简单,在应对农药污染时展现出很好的效果。 参考文献 [1]Oliver D P, Kookana R S, Anderson J S, et al. Off-site transport of pesticides in dissolved and particulate forms from two land uses in the Mt. Lofty Ranges, South Australia[J]. Agricultural Water Management, 2012, 106(2):78-85. [2]Denton D L, Wheelock C E, Murray S A, et al. Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas).[J]. Environmental Toxicology and Chemistry, 2003, 22(2):336-341. [3]Rusiecki J A, Roos A D, Lee W J, et al. Cancer incidence among pesticide applicators exposed to Atrazine in the agricultural health study [J]. Journal of the National Cancer Institute, 2004(18):1375-1382. [4]Wolverton B C, Harrison D D. Aquatic plants for removal of mevinphos from the aquatic environment[J]. Journal of the Mississippi Academy of Sciences, 1975. [5]Kadlec R H, Hey D L. Constructed wetlands for river water quality improvement[J]. Water Science & Technology, 1994, 29(4):159-168. [6]Mckinlay R G, Kasperek K. Observations on decontamination of herbicide-polluted water by marsh plant systems[J]. Water Research, 1999, 33(2):505-511. [7]Rose M T, Sanchez-Bayo F, Crossan A N, et al. Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland.[J]. Chemosphere, 2006, 63(11):1849-1858. [8]Wolverton B C, Harrison D D. Aquatic plants for removal of mevinphos from the aquatic environment[J]. Journal of the Mississippi Academy of Sciences, 1975. [9]Wu Q, Riise G, Lundekvam H, et al. Influences of Suspended Particles on the Runoff of Pesticides from an Agricultural Field at Askim, SE-Norway[J]. Environmental Geochemistry and Health, 2004, 26(2):295-302. [10]Ciba-Geige Corporation. Environmental fate reference data source book for https://www.docsj.com/doc/464862614.html,A : Greensboro N C , 1994 [11]Bailey H C, Digiorgio C, Kroll K, et al. Development of procedures for identifying pesticide toxicity in ambient waters: Carbofuran, diazinon, chlorpyrifos[J].Environmental Toxicology and Chemistry, 1996, 15(6):837-845. [12]林涛, 蒋玲燕, 谭学军,等. 人工湿地处理农业径流中的阿特拉津研究[J]. 哈尔滨商业大学学报(自然科学版), 2008, 24(3):324-327.

相关文档
相关文档 最新文档