文档视界 最新最全的文档下载
当前位置:文档视界 › 环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋
环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展

杨卫朋,郝

壮,明

(西北工业大学理学院应用化学系,陕西西安

710129)

要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹

性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。

关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5

文献标志码:A

文章编号:1004-2849(2011)10-0058-05

收稿日期:2011-05-26;修回日期:2011-06-24。

作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.docsj.com/doc/392170969.html,

0前言

环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。

1

增韧改性EP 及其胶粘剂

1.1

橡胶类弹性体增韧改性EP 1.1.1

有关橡胶类弹性体增韧EP 的理论

橡胶类弹性体是较早用于增韧EP 的方法之

一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应

力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。

1.1.2橡胶弹性体的类型

目前用于增韧EP 的反应性橡胶及弹性体主要包

括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、

22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。

中国胶粘剂

CHINA ADHESIVES

2011年10月第20卷第10期

Vol.20No .10,Oct.2011

58--642()

DOI:10.13416/j.ca.2011.10.015

齐鑫等[8]以吡啶基官能化的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBSVP )为基料,合成了环氧化

SBSVP (ESBSVP ),并以此作为EP 的增韧改性剂。研究结果表明:当w (ESBSVP )=3%时,改性体系的冲击强度最大,并且比未改性EP 体系提高了85%;

经ESBSVP 增韧后,改性EP 体系的断面呈明显的韧性断裂特征;EP 体系在改善韧性的同时,其T g 略有增加。Shukla 等[9]将不同浓度的液体CTPB 与EP 进行共混,然后用质量分数为40%的聚酰胺固化。研究结果表明:不同比例的CTPB 均可显著改善EP 体系的冲击强度;当w (CTPB )=15%时,改性EP 体系的冲击强度达到最大值;改性EP 体系具有微相分离结构,其分散相中橡胶颗粒能阻碍裂纹的传播路径,致使其拉伸强度、冲击强度等明显提高。Zeng 等[10]采用正电子湮没技术从微观凝聚态结构/自由体积角度研究了HTBN 增韧EP 的一般规律,证实了HTBN 含量与其增韧效果密切相关。研究结果表明:当w (HTBN )=5%时,改性体系的冲击强度比纯

EP 提高了50%左右,此时HTBN 在EP 基体中分散良好,并且增韧效果最佳;继续增加HTBN 含量,HTBN 分散相尺寸变大,相间粘接力变小,韧性呈下

降态势;当w (HTBN )=20%时,改性体系的冲击强度已降至纯EP 水平。Bakar 等[11]用端-NCO 基PU (聚氨酯)改性EP 。研究结果表明:-NCO 基含量越大改性体系的断裂韧性越佳;当w (PU )=20%时,改性体系的冲击强度相对最高,其拉伸强度和断裂伸长率均提高了15%左右;PU 的引入对改性体系的硬度影响不大,但弹性拉伸模量和T g 明显降低,具有软化效应;EP 基体中羟基与PU 中-NCO 基发生物理或化学交联反应,故PU 对EP 的改性效果最佳。

1.2互穿聚合物网络(IPN )增韧改性EP

IPN 是指由两种或两种以上聚合物相互贯穿、

互相缠结在一起的立体网状结构共混物。若构成

IPN 的两种聚合物都是交联型的,则称为完全IPN ;

若只有一种聚合物是交联型的,另一种是线性聚合物,则称为Semi-IPN 。就制备方法而言,IPN 接近于接枝共聚-共混;就相间有无化学结合而言,IPN 接近于机械共混。这种聚合物的特点是一种材料无规则贯穿至另一种材料,起到“强迫包容”和“协同效应”等作用。理想的IPN 是在分子水平上的均匀贯穿,但大部分聚合物在热力学上的相容性欠佳,故难以得到理想的IPN 。Chozhan 等[12]以DDM (4,4′-二氨基二苯基甲烷)为固化剂,用VEO (乙烯基酯IPN )

增韧EP/MMT (黏土)纳米复合材料。研究结果表明:

EP 中引入VEO 后,改性体系的稳定性和冲击强度显著提高;当w (VEO )=10%、w (MMT )=5%时,改性体系的冲击强度比未改性EP 体系提高了36.7%。

穆中国等[13]采用梯度IPN 法对EP 进行增韧改性,并采用逐层浇铸法制备了不同层数的EP/PU 梯度IPN 。研究结果表明:梯度层数越多增韧效果越好,当梯度层数超过7层时增韧效果变化不大;增韧效果最好的7层梯度IPN 使EP 的冲击强度提高了3倍左右(普通IPN 仅提高2倍左右)。Shinozaki 等[14]用聚(苯甲基丙烯酸酯)(PBzMA )增韧EP 。研究结果表明:原位聚合增加了改性剂与基体间的相容性;乙二醇二甲基丙烯酸酯作为交联剂引入到PBzMA 中,有效增加了PBzMA 和EP 之间的相容性;当

w (BzMA+EGDMA )=14%时,改性体系的断裂韧性增

加了70%,弯曲强度略有降低,但T g 降低了30℃左右;PBzMA 与EP 之间可形成IPN 结构,而影响IPN 性能的主要因素有网络的互穿顺序、互穿程度、组分比及其交联程度等。全互穿IPN 性能优于半互穿

IPN ,IPN 间的相互缠结能有效提高不同聚合物的相

容性,并使网络密度增大,故改性体系的综合性能得以明显提高。

1.3聚硅氧烷(PDMS )增韧改性EP

PDMS 的主链是由硅原子、氧原子交替组成的

稳定骨架,其侧链通过硅原子与有机基团(如甲基、苯基或乙烯基等)相连。由于PDMS 特殊的分子结构和组成,使其集无机物与有机物特性于一体,具有优良的热氧化稳定性、低T g (-123℃)、高疏水性和低应力等特点。有研究者认为[15]:PDMS 与EP 之间可形成“海岛结构”,即PDMS 相形成“岛屿”,并分散在EP 基体的“海洋”相之中;“海岛”的大小主要取决于PDMS 化合物的M r (相对分子质量),

0.1μm 程度的大小从物理性质角度来看是最合适

的。用此类PDMS 增韧EP ,改性体系的弹性率、内应力和膨胀系数等明显降低,但PDMS 与EP 间相容性较差阻碍了该技术的进一步发展。李宏静等[16]采用端环氧基硅油及其聚醚胺预反应物、聚醚胺(D-230)等增韧EP 。研究结果表明:当w (预反应物)=5%时,改性体系的拉伸强度略有增加,但韧性明显提高(这是由于有机硅与聚醚柔性链段通过EP 主链或固化剂键合到致密的EP 交联网络中,有利于提高材料的韧性)。端环氧基硅油与聚醚胺之间可以共混或共聚形式改性EP 体系,但两者均含有“海岛

杨卫朋等环氧树脂及其胶粘剂的增韧改性研究进展

第20卷第10期59--

643()

结构”微米尺寸的弹性橡胶球;共聚改性体系的弹性橡胶球更多且呈圆形,并且其分布更均匀,增韧改性效果更显著。

Liu等[17]合成了一种用于改性双酚A型二缩水甘油醚的高度环氧化PDMS(HEPSO)。研究结果表明:引入HEPSO后,改性体系的T g增加了约8℃;当w(HEPSO)=4%时,改性体系的冲击强度、拉伸强度和断裂韧性等明显提高;PDMS与EP的相容性随着HEPSO中环氧基团含量增加而增大。HEPSO中环氧基团能在固化过程中参与化学交联网络的形成,从而能显著提高改性体系的韧性和热稳定性;改性体系的断面形态更加粗糙,并出现更多的微裂纹,这也进一步说明了增韧后的EP体系具有良好的韧性。Fu等[18]合成了一种含巯基的PDMS(MPOSS),并以此作为EP的增韧剂。研究结果表明:当MPOSS 含量增至体系呈纳米复合结构时,MPOSS与EP间相容性较好;MPOSS可显著改善EP体系的冲击强度,其断面结构从脆性过渡到韧性阶段,同时断口处出现纤维屈服现象,符合原位增强增韧机制;体系的T g有所降低。

1.4纳米粒子增韧改性EP

通常将粒径介于1~100nm之间并具有明显表面效应的颗粒称为纳米颗粒或纳米粒子。由于纳米粒子具有表面缺陷多、非配对原子多和比表面积大等特点,故其与聚合物发生物理或化学结合的可能性增大,而纳米粒子与基体间的界面粘接可承受、传递更大的应力,从而达到增强增韧的目的。然而,纳米粒子之间易发生团聚,致使复合材料的性能严重受损。因此,如何解决纳米粒子团聚问题已成为该研究领域的重要课题之一。无机纳米粒子增韧EP 的机制比较复杂,目前较认同的理论主要有“银纹-钉锚”机制、“银纹-剪切带”机制等。

Hsieh等[19]利用不同含量的纳米SiO2改性EP。研究结果表明:随着SiO2体积分数的不断增加,改性体系模量升高;SiO2的引入能明显改善体系的韧性,其增韧机制为局部塑性剪切变形。AI-Turaif[20]用两种不用尺寸的纳米TiO2颗粒按不同比例增韧改性EP。研究结果表明:少量纳米颗粒的加入能明显改善体系的拉伸应力、断裂伸长率、韧性、弹性模量和弯曲应力等力学性能;但纳米TiO2添加过多时,改性体系的力学性能会明显降低。这表明纳米粒子的尺寸对基体力学性能影响很大。Auad等[21]用纳米黏土改性EP-酚醛树脂。结果表明:改性体系的断裂韧性和杨氏模量分别增加了70%和20%,弯曲强度变化不大;其增韧机制主要包括微裂纹、裂纹偏转和基体剪切等。王蕊欣等[22]利用聚甲基丙烯酸缩水甘油酯(PGMA)接枝改性纳米Al2O3,并以PGMA/Al2O3作为EP灌封料的增韧改性剂。研究结果表明:接枝PGMA/Al2O3的最佳含量为0.7%,此时粒子表面的GMA能与基体环氧键进行化学键合,致使两者界面粘接牢固,并能有效分散体系中的残余应力,而无机粒子因吸收了大量冲击能而同时增强增韧了改性EP。姚兴芳等[23]采用CTBN-纳米SiO2增韧EP,并采用正交试验法制备了室温固化型双组分EP胶粘剂。研究结果表明:当m(EP)∶m(双增韧剂)=8∶1、m(CTBN)∶m(纳米SiO2)=2∶1以及甲组分于180℃反应2.5h时,相应胶粘剂的剪切强度为33.85MPa、剥离强度为5.92kN/m和冲击强度为18.24kJ/m2;双增韧剂(CTBN和纳米SiO2)都与EP发生了反应,并且双增韧剂增韧EP固化物的热稳定性较好;CTBN、纳米SiO2和双增韧剂增韧EP的机制分别为颗粒铆钉所诱发的剪切变形机制、银纹钝化机制和剪切变形/银纹钝化相结合形成的韧窝机制。

1.5超支化聚合物(HBP)增韧改性EP

HBP是以低分子为生长点,通过逐步控制重复反应而得到的一系列M r不断增长的结构相似的化合物。传统的线性大分子在无外力作用时易以卷曲态形式存在于体系中;高度支化大分子因末端存在大量官能团而使其分子构型呈三维球形结构,由于其分子链不会像线性大分子那样无规则缠结在一起,故HBP表现出许多线性聚合物所不具备的特殊性能(如分子链缠结少、结晶困难、溶解性好、黏度低且具有大量可供改性的活性端基等)。HBP能有效增韧EP,其增韧机制一般认为是化学诱导相分离和粒子空穴化。将HBP应用于增韧改性EP还具有下列优点:①HBP的球状三维结构能有效降低EP 固化物的收缩率;②HBP的活性端基能直接参与固化反应,并形成立体网状结构,而众多末端官能团能加快体系的固化速率;③HBP的特殊尺寸和球状结构杜绝了在传统增韧体系中所观察到的有害粒子的过滤效应,具有内增韧作用。

董杰等[24]研究了超支化聚膦酸酯含量对EP固化体系力学性能和阻燃性等影响。研究结果表明:当w(超支化聚膦酸酯)=15%时,改性EP固化体系的拉伸强度和冲击强度分别提高了11.26%和306%,氧指数从22升至33,说明超支化聚膦酸酯

中国胶粘剂第20卷第10期60

--644

()

具有良好的阻燃性。Zhou 等[25]通过3-(三甲氧基硅烷)丙基甲基丙烯酸甲酯的水解,合成了HBPSi (超支化PDMS ),然后制成韧性显著增强的HBPSi-EP 共混物。Lv 等[26]研究了超支化聚酯(HBP )和双金属氢氧化物(O-LDH )对EP 热力学性能的影响。研究结果表明:HBP 的引入能显著改善体系的冲击强度;当w (环氧超支化聚酯)=10%时,改性体系的冲击强度(9.5kJ/m )增加了30%;O-LDH 能明显增加体系的刚度,HBP/O-LDH 双重改性能同时改善体系的韧性、模量及刚度等性能。Parzuchowski 等[27]

成了环状碳酸酯端基超支化聚醚(HBPG ),并以此作为EP 的增韧改性剂。研究结果表明:HBPG 能显著改善基体的冲击韧性;当w (HBPG )=20%、固化剂稍过量时,改性EP 体系的冲击强度最高;其韧性增加的主要原因是出现了微观相分离结构,而改性剂和固化剂的用量能影响第二相的结构形态,进而影响体系的最终力学性能。Yang 等[28]用端羟基HBP 增韧

EP 。研究结果表明:改性EP 体系中存在着微观相分

离结构,HBP 颗粒作为第二相能均匀分布在EP 基体中;少量纳米HBP 第二相的引入有利于体系增强增韧,表现为改性EP 体系的拉伸强度和冲击强度均明显增大,但T g 略有降低;当w (HBP )=2.5%时,改性EP 体系的冲击强度增加了50%。

1.6其他增韧技术

王德波等[29]使用硫酸钙晶须对PU-EP 进行改

性。研究结果表明:硫酸钙晶须对PU-EP 的改性机制为裂纹在晶须/基体界面处发生偏转,从而阻碍了裂纹的扩展;长度较短的晶须经有机化处理后,能有效改善PU-EP 体系的粘接性能,表现为LY12铝合金胶接件的室温剥离强度提高了27%,100℃或

-70℃时剪切强度分别提高了39%和10%,说明晶

须对PU-EP 高温性能的改善尤为明显。Rai 等[30]用不同比例的ABS (丙烯腈-丁二烯-苯乙烯共聚物)树脂改性EP 。研究结果表明:当w (ABS )=4%时,EP 基体的力学强度最佳;将不同比例的丝绸织物与

EP-ABS 进行共混改性,体系的力学性能显著增强。

2结语

目前,对EP 增韧改性技术虽成果显著,但随着科学技术的快速发展,人们对EP 的性能要求也会越来越高。因此,多种增韧方法并用、改性EP 体系韧性提高的同时固有性能得以保留等,将是今后EP 增韧改性的研究热点。

参考文献

[1]Merz E H ,Claver G C ,Baer M.Studies on heterogeneous polymeric systems[J].Journal of Polymer Science ,1956,22(101):325-341.

[2]Newman S ,Strella S.Stress -strain behavior of rubber -reinforced glassy polymers[J].Journal of Applied Polymer Science ,1965,9(6):2297-2310.

[3]Bucknall C B ,Clayton D ,Keast W E.Rubber-toughening of plastics (Part II ):Creep mechanisms in HIPS /PPO blends[J].Journal of Materials Science ,1972,7(12):1443-1453.

[4]Bucknall C B.Fracture and failure of multiphase polymers and polymer composites[J].Advances in Polymer Science ,1978,27:121-148.

[5]Kinloch A J ,Shaw S J ,Tod D A ,et al.Deformation and fracture behaviour of a rubber -toughened epoxy (I ):Microstructure and fracture studies [J].Polymer ,1983,24(10):1341-1354.

[6]Chikhi N ,Fellahi S ,Bakar M.Modification of epoxy resin using reactive liquid (ATBN )rubber[J].European Polymer Journal ,2002,38(2):251-264.

[7]赵祺,廖宏,马玉珍.聚硫橡胶对环氧胶粘剂的增韧作用研究[J].化学研究与应用,2009,21(3):432-434.[8]齐鑫,吕新颖,王辉,等.SBSVP 的环氧化改性及其增韧环氧树脂的研究[J].高分子通报,2010(7):87-90.

[9]

Shukla S K ,Srivastava D.Studies on the blends of modi -fied epoxy resin and carboxyl -terminated polybutadi -ene (CTPB )-II :Thermal and mechanical characteristics[J].Journal of Materials Science ,2007,42(9):3215-3222.

[10]

Zeng M F ,Sun X D ,Xiao H Q ,et al.Investigation of free volume and the interfacial ,and toughening behavior for epoxy resin/rubber composites by positron annihilation[J].Radiation Physics and Chemistry ,2008,77(3):245-251.

[11]Bakar M ,Duk R ,Przybylek M ,et al.Mechanical and ther -mal properties of epoxy resin modified with polyurethane [J].Journal of Reinforced Plastics and Composies ,2009,28(17):2107-2117.

[12]

Chozhan C K ,Rajasekaran R ,Alagar M ,et al.Thermo -mechanical behavior of vinyl ester oligomer -toughened epoxy-clay hybrid nanocomposites[J].International Journal of Polymeric Materials ,2008,57(4):319-337.

[13]穆中国,王源升.梯度互穿网络聚合物增韧环氧树脂的研究[J].武汉理工大学学报,2006,28(12):45-47.

[14]Shinozaki H ,Oyama T ,Takahashi A.Toughening of amine-cured epoxy resins by in situ generated poly (benzyl methacrylate )[J].Kobunshi Ronbunshu ,2009,66(6):217-224.[15]

孙勤良.环氧树脂最新进展[J].热固性树脂,1990(4):

48-61.

杨卫朋等环氧树脂及其胶粘剂的增韧改性研究进展

第20卷第10期61--645()

[16]李宏静,刘伟区,魏振杰.有机硅聚醚胺增韧改性环氧

树脂的研究[J].涂料工业,2011,41(1):9-12.

[17]Liu W Q,Ma S Q,Wang Z F,et al.Morphologies and

mechanical and thermal properties of highly epoxidized

polysiloxane toughened epoxy resin composites[J].Macro-

molecular Research,2010,18(9):853-861.

[18]Fu J F,Shi L Y,Chen Y,et al.Epoxy nanocomposites

containing mercaptopropyl polyhedral oligomeric silses-

quioxane:Morphology,thermal properties,and toughening

mechanism[J].Journal of Applied Polymer Science,2008,

109(1):340-349.

[19]Hsieh T H,Kinloch A J,Masania K,et al.The mechanisms

and mechanics of the toughening of epoxy polymers modified

with silica nanoparticles[J].Polymer,2010,51(26):6284-

6294.

[20]Al-Turaif H A.Effect of nano TiO2particle size on

mechanical properties of cured epoxy resin[J].Progress in

Organic Coatings,2010,69(3):241-246.

[21]Auad M L,Nutt S R,Pettarin V,et al.Synthesis and

properties of epoxy-phenolic clay nanocomposites[J].Express

Polymer Letters,2007,1(9):629-639.

[22]王蕊欣,高保娇.接枝微粒PGMA/Al2O3对环氧树脂电

子灌封材料的增强增韧作用[J].高分子材料科学与工程,

2009,25(3):53-56.

[23]姚兴芳,高宇,李健,等.CTBN结合纳米SiO2改性环氧

树脂及增韧机理[J].热固性树脂,2011,26(1):16-20.[24]董杰,陈晓婷,李艳青,等.超支化聚膦酸酯改性环氧树

脂的研究[J].天津科技大学学报,2010,25(6):30-32,38.

[25]Zhou C,Gu A J,Liang G Z,et al.Novel toughened cyanate

ester resin with good dielectric properties and thermal

stability by copolymerizing with hyperbranched polysiloxane

and epoxy resin[J].Polymers for Advanced Technologies,

2011,22(5):710-717.

[26]Lv S C,Yuan Y,Shi W F.Strengthening and toughening

effects of layered double hydroxide and hyperbranched

polymer on epoxy resin[J].Progress in Organic Coatings,

2009,65(4):425-430.

[27]Parzuchowski P G,Kizlinska M,Rokicki Gabriel.New

hyperbranched polyether containing cyclic carbonate

groups as a toughening agent for epoxy resin[J].Polymer,

2007,48(7):1857-1865.

[28]Yang J P,Feng Q P,Chen Z K,et al.Superiority of nano-

sized over microsized hyperbranched polymer second

phase in modifying brittle epoxy resin[J].Journal of Applied

Polymer Science,2011,119(2):863-870.

[29]王德波,杨继萍,黄鹏程.硫酸钙晶须改性聚氨酯环氧

树脂的粘接性能[J].复合材料学报,2008,25(4):1-6. [30]Rai S K,Padma P S.Utilization of waste silk fabric as reinfor-

cement for acrylonitrile butadiene styrene toughened epoxy

matrix[J].Journal of Reinforced Plastics and Composites,

2006,25(6):565-574.

(责任编辑:刘芳)

Research progress of epoxy resin and adhesives modified by tougheners

Yang Weipeng,Hao Zhuang,Ming Lu

(Department of Applied Chemistry,College of Science,Northwestern Polytechnical University,Xi’an710129,China)Abstract:The research progress of epoxy resin(EP)and EP adhesives modified by tougheners was summarized. The EP’s toughening methods[including EP modified by rubber-elastomer toughener,IPN(interpenetrating polymer network)toughener,PDMS(polydimethylsiloxane)toughener,nano-particles toughener,HBP(hyperbranched polymer)toughener and other tougheners]and corresponding toughening mechanisms were introduced.The furtur development directions of EP and EP adhesives modified by tougheners were expected.

Keywords:epoxy resin;adhesive;toughening;modification

中国胶粘剂第20卷第10期

德国汉高新推环保节能型胶粘剂

近日汉高新推牌号为Purmelt MicroEmission Cool3400的环保节能型胶粘剂。该产品是首款能应用于100℃以下且性能不受影响的聚氨酯热熔胶,其在环保和成本方面具有显著优势,并且在节能降耗、加快设备运作效率等方面功效显著。机器零部件和应用设备的负荷降低、废物排量减少,均导致停产检修次数和设备故障概率明显降低,生产设备的使用寿命得以延长;另外,产品生产效率的加快缩短了冷却工序,废物排量降低保证了用户的健康和安全。(汉高集团)陶氏化学推出风电叶片用新型EP胶粘剂陶氏化学近日推出专为风电叶片制造行业研制的EP(环氧树脂)胶粘剂产品系列。其中AIRSTONE77-T3胶粘剂可直接将风机叶片的两片外壳粘接在一起,形成完整的叶片结构。与传统风电叶片胶粘剂相比,新型EP胶粘剂能进一步延长操作时间,帮助制造商成功施涂更长的黏合线,以满足大型复合构件的生产工艺要求。

(陶氏化学)

62

--646

()

环氧树脂增韧改性新技术

Vol 134No 18 ?14?化工新型材料 N EW CH EMICAL MA TERIAL S 第34卷第8期2006年8月 作者简介:宣兆龙,男,博士,从事兵器防护材料与技术的教学与科研工作,已发表论文40余篇。 环氧树脂增韧改性新技术 宣兆龙 易建政 (军械工程学院三系,石家庄050003) 摘 要 综述了环氧树脂的增韧改性研究,着重讨论了热塑性树脂、热致液晶聚合物和互穿网络结构等环氧树脂增韧改性新技术。 关键词 环氧树脂,增韧,改性 N e w technology of modif ication toughening epoxy resin Xuan Zhaolong Yi Jianzheng (Depart ment 3of Ordnance Engineering College ,Shijiazhuang 050003) Abstract Study of modification methods and mechanism for epoxy toughened is reviewed with 46references. More effective technologies ,such as toughening modification with thermoplastics ,thermotropic liquid crystalline poly 2mer (TL CP )and interpenetrating polymer network (IPN )are also discussed in briefly. K ey w ords epoxy resin ,toughening ,modification 环氧树脂(EP )具有高强度和优良的粘接性能。但因其固化物质脆,易产生裂纹等缺陷,在材料的耐 疲劳性能和抗横向开裂性能方面难以满足工程技术的要求,使其应用受到了一定的限制。为此国内外学者对EP 进行了大量的改性研究工作,以改善其韧性。 目前EP 的增韧途径主要有3种:①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于EP 网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。本文主要综述了热塑性树脂、液晶聚合物、互穿聚合物网络改性EP 的研究进展。 1 热塑性树脂增韧EP 在EP 基体中加入一定量的高性能热塑性树脂,不仅能改进EP 的韧性,而且不降低其刚度和耐热性。热塑性树脂增韧EP 一般采用剪切屈服理论或颗粒撕裂吸收能量及分散相颗粒引发裂纹钉铆机 理来解释[1,2]。用于增韧EP 的热塑性树脂主要有聚酰亚胺(PI )、聚醚酰亚胺(PEI )、聚醚砜(PES )、聚砜(PSF )等。 1.1 聚酰亚胺(PI)增韧EP EP 与PI 共混是通过PI 与环氧预聚体混合然 后反应而得到的。这类树脂最初制备时是均相的,在一定转化率时树脂发生液2液相分离,从而在最终固化的材料内部产生一系列形态结构,这些主要依赖于热塑性塑料的原始质量和临界组成的对比关系[3,4]。 Biolley 等[5]用具有相当高T g 的二苯酮四酸二 酐(B TDA )和4,4’2(9氢292亚芴基)二苯胺(FBPA )合成的可溶性PI 改性四缩水甘油基二苯甲烷2二氨基二苯砜EP 体系(T GDDM /DDS/PEI )。固化后的树脂用扫描电镜观察没有发现相分离,并且动态力学分析表明共混组分间能完全相容。Li 等[6]通过用4种不同的二氢化物和2种不同二元胺[1,32二(32氨基苯氧基)苯,即A PB ;2,2’2(42(42氨基苯氧基)苯基)丙烷,即BA PP ]合成一系列有机溶性的芳香族聚亚胺酯来增韧EP (Epon828),DSC 发现

浅谈环氧树脂胶粘剂的发展前景

浅谈环氧树脂胶粘剂的发展前景 摘要:作为一种具有良好粘结力及耐腐蚀性能的高分子材料,环氧树脂以其优良的机械强度和绝缘性能领先于其他热固性高分子材料,成为现阶段漆类产品发展的趋势和代表,并在国民经济产业构成中起到了相当重要的作用,其技术水平及推广应用的范围已成为衡量国家工业化水平的一个重要指标。本文从对环氧树脂特性与用途的分析入手,综述了国内外环氧树脂胶粘剂消费市场及其应用的现状,并重点对环氧树脂胶粘剂的技术应用进展情况加以阐述和说明关键词:环氧树脂胶粘剂应用进展 一、引言 环氧树脂是指分子中含有环氧基团的高分子化合物的统称,在各类环氧树脂中,产量最大,应用最广的是由环氧氯丙烷与二酚基丙烷在碱的作用下缩聚而成的具有线型结构的热塑性的高聚物。作为胶黏剂使用时,一般为低分子量液体环氧树脂,其分子量一般在340-700之间。环氧树脂有极强的粘结力,它对大部分材料如:木材、金属、玻璃、塑料、皮革、陶瓷、纤维等都有良好的粘结性能,只对少数材料如聚苯乙烯、聚氯乙烯等粘结力较差。近年来,环氧树脂总的发展趋势是寻找高耐热性、高强度、高韧性,以及能在低温或其他特殊环境下固化的、操作简便的新颖树脂体系。通常情况下,工程上应用的环氧树脂胶粘剂主要是由基料、稀释剂、固化剂等原料配置而成的,由于其低廉的成本,良好的粘接性能和简便的粘结工艺已在汽车制造、电子电器及航天工业领域得到了广泛的推广和应用。现阶段,随着对环氧树脂特性的深入研究,新工艺、新配方得到了不断的使用,具有高性能的环氧树脂胶粘剂陆续出现。因而对于近年来环氧树脂胶粘剂发展状况及相关技术应用的研究具有非常重要的现实意义。 二、环氧树脂胶粘剂特性与应用分析 环氧树脂具有许多独特的优良性能,主要表现在以下几个方面: 1.良好的加工工艺性; 2.高度的粘结力; 3.收缩性小; 4.稳定性好; 5.具有优良的电绝缘性能; 6.由于结构中含有环氧基、醚键等,同时结构很紧密,所有有良好的机械性能; 7.因含有稳定的苯环及醚键,因而热稳定性也很好; 8.吸水率低,室温下的吸水率在0.5%以下。 由于环氧树脂具有优良的粘结性、绝缘性以及耐化学腐蚀性等优异的特点,所以在许多工业部门,包括造船、化工、电器直至国防、航天飞船等方面都得到极为广泛的应用,它可以作胶粘剂、作层压材料、作浇筑等磨具,并可以用作涂料等,特别是近年来,许多性能优异的新品种相继问世,使环氧树脂的用途越来越广。环氧树脂对金属与金属,金属与非金属等材料都有很强的粘结力,故而用途广泛的胶粘剂,熟称“万能胶”。用它粘合拖拉机及起重机上的吊件可以承受12吨的载荷。由于环氧树脂可以在室温固化,固化后又可经受高低温作用,这就对一些不能经受高温的精密部件的紧固极为适用,光学仪器,蜂巢结构材料等的的胶粘剂已广泛使用环氧树脂。

环氧树脂增韧研究进展_史孝群

收稿日期:2001-12-25 作者简介:史孝群(1949-),男,高工,主要从事材料力学性能、结构及压力容器的安全测试;材料的残余应力测试与研究;材料组织与力学损伤及高分子纳米材料合成与力学性能等领域的研究。(Tel :010-********) 环氧树脂增韧研究进展 史孝群,肖久梅,龚春秀,马文江,刘建林 (北京科技大学应用科学学院,北京100083) 摘要:增韧环氧树脂是环氧树脂领域的研究热点,本文就环氧树脂增韧研究进行了概述,介绍了近年来环氧树脂增韧方法及相应的增韧机理研究进展,力求为环氧树脂在增韧领域的进一步研究提供新的思路和方法,以进一步扩展环氧树脂的应用领域。 关键词:环氧树脂;增韧;增韧机理 中图分类号:T M 216.3;T Q323.5 文献标识码:A 文章编号:1009-9239(2002)06-0031-04 Development of Research on Toughening Epoxy Resin Shi Xiao -Qun ,Xiao J iu -M ei ,Go ng Chun -Xiu ,Ma Wen -J ang ,Liu Jian -Lin (Department of Applied Science ,University of Science and Technology Beijing ,Beijing ,100083)Abstract :To ug hening epo xy is v ery important in the field of epox y .Study o n toughening epox y resin a re rev iew ed,methods o f to ughening epox y recently a nd to ughening mechanism a re indroduced in this paper,which provides new ideas a nd rules fo r further study on toug hening epox y resin,in o rder to ex panding th e use of epo xy . Keywords :epox y resin;toughening;to ughening mechanism 1 前 言 环氧树脂具有良好的介电性能、化学稳定性、粘接性、加工性,使其在胶粘剂、涂料、电子、电器和航空航天等领域发挥重要的作用。环氧树脂为交联度很高的热固性材料,裂纹扩展属于典型的脆性扩展,固化后存在韧性不足、耐冲击性较差和容易开裂等缺点,所以增韧环氧树脂是环氧树脂领域的研究热点。最初,用加入增塑剂、柔韧剂(增柔剂)的方法来提高韧性,但却降低了材料的耐热性、硬度、模量、介电性能。从六十年代中期开始,国内外相继开展了用反应性液态聚合物增韧环氧树脂的研究工作,在热性能、模量、介电性能等降低不太大的情况下提高了环氧树脂的韧性,改善了材料的综合性能,使得增韧环氧树脂的应用有了较大的进展。近年来,由于弹性体合金化技术、互穿网络材料、液晶及纳米材料等制备技术的成熟,在橡胶类弹性体,热塑性树脂,热致性液晶,纳米 材料增韧方面也获得了长足的进展。本文就环氧树脂的增韧及增韧机理进行了探讨。 2 弹性体增韧环氧树脂 用于增韧环氧树脂的橡胶需具备两个基本条件,其一为橡胶与环氧树脂在固化前具有相容性,并且分散性好;其二为环氧树脂固化时,橡胶能够顺利析出,呈两相结构。丁腈橡胶、丙烯酸酯橡胶、聚氨酯橡胶、聚硅氧烷等是增韧环氧树脂的首选弹性体材料,并且这些弹性体通常具有可以与环氧树脂中的环氧基反应形成嵌段的活性端基(如羟基、烃基、氨基等)。在环氧树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,以分散相的形式分散于连续的环氧树脂体系中,形成“海岛”结构。在橡胶增韧环氧体系中,橡胶的第二种作用在于诱发基体的耗能过程,而其本身在被拉伸断裂过程中的耗能一般占次要地位。材料的断裂过程发生在基体树脂中,因此增韧的最根本潜力在于提高基体的屈服变形能力[1]。 有关弹性体增韧环氧树脂的研究很多 [2,3] 。常用 的增韧剂是液体端羟基丁腈橡胶(C TBN ),环氧树脂

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.docsj.com/doc/392170969.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法 摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。 关键词:环氧树脂增韧改性 1环氧树脂的增韧改性 1.1橡胶弹性体改性 利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。 近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。 韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。 范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液

环氧树脂E51改性增韧研究

龙源期刊网 https://www.docsj.com/doc/392170969.html, 环氧树脂E51改性增韧研究 作者:袁涛 来源:《山东工业技术》2017年第05期 摘要:以双酚改性环氧树脂E51(EP),达到改性增韧的目的。进行了一系列实验,对 比了用单一环氧树脂、混合树脂与自制混合胺,在相同和不同环氧当量下所得固化物的粘结强度、韧性和硬度。实验表明,混合树脂固化产物硬度96.6HSD,拉伸强度16.053MP,断裂拉力5114.97N,变形量5.63mm,韧性增加16%。 关键词:环氧树脂;增韧;韧性;硬度;粘结强度 DOI:10.16640/https://www.docsj.com/doc/392170969.html,ki.37-1222/t.2017.05.160 0 引言 E51型环氧树脂粘度低,环氧值高,固化效果,不足之处在于脆性大,韧性低;E20和 E12型环氧树脂粘结度高,韧性好的优点,不足之处在于硬度低。把三种环氧树脂按比例混合,新得到的混合树脂既有E51树脂活性高,固化效果好及高硬度的特点,又有E20和E12 中长分子链韧性好的优点,与自制混胺固化后,提高固化物性能,克服了使用单一环氧树脂固化后综合性能差的弊端。 1 实验部分 (1)主要试剂。环氧树脂E12、E20、E51,聚醚胺、聚醚二胺、固化剂促进剂,江苏三木化工;二甲苯,上海泰正化工有限公司;正丁醇,扬州市华香化工有限公司。 (2)主要仪器。环氧树脂高速分散机,上海机电设备有限公司;电子秤,上海信衡电子有限公司,深圳盛美仪器有限公司; UTM4000系列微机控制电子万能试验机;热重差热分析仪EXSTAR6300,精工盈司电子科技(上海)有限公司。 (3)实验测试。1)配制溶剂:在二甲苯中加入正丁醇,搅拌均匀。2)配制树脂:按比例在溶剂中加入环氧树脂E12、E20,高速搅拌二十分钟,待树脂溶解后加入环氧树脂E51,高速搅拌混合均匀,按三种环氧树脂的不同比例制作4种混合液,编号为树脂A、B、C、D。配制三种单一环氧树脂的溶液。3)样品测试:以环氧当量:胺当量=1:0.6、1:0.7、1: 0.8、1:0.9分别将树脂与固化剂混合,在室温下实干后,涂抹于马口铁片上进行弯折观察, 粘结20mm圆柱用拉力试验机进行测试,用邵氏硬度计进行硬度测量,用差热分析仪进行差热分析。 2 结果与讨论

缩水甘油封端聚氨酯的合成及其改性环氧树脂的粘合性能

第18卷第3期 青 岛 化 工 学 院 学 报 Journal of Q ingdao Institute of Chem ical T echno logy V o l.18 N o.3 1997缩水甘油封端聚氨酯的合成及其 改性环氧树脂的粘合性能 α姚 微 牟润强 邢 政 马宏利 于艳君 张志俊 (青岛化工学院橡胶新技术研究所,青岛266042) 摘 要:详细介绍了用缩水甘油将端异氰酸酯预聚物转变为环氧封端聚氨 酯的合成方法,考察了温度对反应速度的影响,并利用付利叶变换红外光谱仪 快速跟踪技术,证实了反应主要发生在预聚物的异氰酸酯基与缩水甘油的羟基 上;在80℃反应前期环氧峰略有降低,说明有少量环氧基发生反应。环氧封端聚 氨酯加热到100℃发现有凝胶出现,在贮存中粘度略有增加。另外还考察了缩 水甘油封端聚氨酯与E251环氧树脂及三乙烯四胺固化体系的粘合性能。当软段 含量<25%时,剪切强度和剥离强度均提高;当软段含量>30时,剥离强度提高 而剪切强度降低;当软段含量在25%~30%之间时,强度变化较复杂。 关键词:缩水甘油封端聚氨酯;改性环氧树脂;粘合性能 中图法分类号:TQ323.8 众所周知,环氧树脂对许多材料具有很好的粘合性,但它的玻璃化温度高,是一种硬而脆,冲击强度低的材料[1],为了克服这一缺点曾做了大量的研究工作,主要集中在将橡胶相引入到环氧树脂中,从而形成微相分离体系[2,3]。聚氨酯具有高抗冲强度和优异的低温性能,曾有人将聚氨酯引入环氧树脂中,以弥补环氧树脂材料韧性差的缺陷。 尽管聚氨酯具有优异的性能,但端异氰酸酯基(-N CO)活性过高,不便直接使用[4];另一种办法是将异氰酸酯用活泼氢化合物封端[5,6],它们在室温下是稳定的,其缺点是需要高温下解封,并难于除去封端试剂。 缩水甘油封端聚氨酯将克服上述缺点,储存稳定,因其端基为环氧基能与环氧树脂同步固化,形成链段分布为无规分布的环氧树脂改性结构,能有效地提高环氧树脂的冲击强度和低温下的粘合性能[7]。 本研究考察了对缩水甘油封端聚氨酯合成中的几个关键问题,以及缩水甘油封端聚氨酯-环氧树脂-三乙烯四胺固化体系粘合性能,扩大了聚氨酯加入量范围,综合考察了剪切强度和剥离强度的变化规律。 1 实验部分 1.1 原料 甲苯二异氰酸酯(TD I),2,4-和2,6-异构体比为80 20,意大利进口工业品。 聚醚为端羟基聚环氧丙烷,平均官能度为2,平均分子量为1000。 α收稿日期:1996205224

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

改性环氧树脂胶粘剂标准

备案号:173826S-2016 有效期至:2020年12月31日 Q/WHKS 武汉开思新材料有限公司企业标准 Q/WHKS015T-2016 改性环氧树脂胶粘剂标准 武汉开思新材料有限公司发布

前言 改性环氧树脂胶粘剂是近年来薄层铺装路面与透水路面等工程中采用的新型建筑材料,为严格控制胶粘剂产品质量,确保薄层铺装路面与透水路面等工程的工程安全,特制定本标准。 本标准确立的试验项目和试验方法主要参照我国胶粘剂、树脂等材料的国家标准和行业标准,同时考虑到改性环氧树脂胶粘剂与钢桥面、混凝土路面、沥青路面的粘接性能。根据相关标准,结合验证试验结果对胶粘剂的物理力学性能指标给与具体规定。 本标准负责起草单位:武汉开思新材料有限公司 本标准主要起草人:许奇王少波贾军 1

1、范围 本标准规定了改性环氧树脂胶粘剂的分类、技术要求、试验方法、检验规则及标志、保证、运输和贮存。 本标准适用于改性环氧树脂薄层铺装工程、透水胶粘石、环氧砂浆、改性环氧防水涂料用双组分改性环氧胶粘剂。 2、引用标准 JC 887-2001 干挂石材幕墙用环氧胶粘剂 GB/T 1630-1989 环氧树脂命名 GB/T 13657-2011 双酚A型环氧树脂 GB/T 4612-1984 环氧化合物环氧当量的测定 GB/T 2570-1995 树脂浇铸体弯曲性能试验方法 GB/T 2571-1995 树脂浇铸体冲击试验方法 GB 7124-2008 胶粘剂拉伸剪切强度的测(刚性材料对刚性材料) GB/T9966.1-2001 天然饰面石材试验方法第1部分:干燥、水饱和、冻融循环后压缩强度试验方法 GB/T 12954.1-2008 建筑胶粘剂试验方法第1部分陶瓷砖胶粘剂试验方法 JC/T 547-2005 陶瓷墙地砖胶粘剂 JC 830.2-2005 干挂饰面石材及其金属挂件第二部分 3、分类 3.1 品种 改性环氧树脂胶粘剂为双组分环氧型,按使用地点不同分为非机动车道薄层铺装型(KS-HY1)、机动车道薄层铺装型(KS-HY2)、透水铺装型(KS-HY3)、环氧砂浆型(KS-HY4)、防水涂料型(KS-HY5)。 3.2 产品标记 胶粘剂按下列顺序标记:名称、品种、分类号。 标记示例: 名称品种分类号 2

环 氧 树 脂 应 用 转载

[应用技术] 环氧树脂在模具上的应用 一、概况 环氧树脂模具又称树脂模具,它具有制造周期短、成本低、特别适合形状复杂的制品和产品更新换代快速的工业领域;因此,在国外先进国家已得到广泛的应用,特别在汽车制造业、玩具制造业、家电制造业、五金行业和塑料制品等工业系统使用得更为普及。环氧树脂模具按不同的结构和用途,采用各种性能的环氧树脂、固化剂、增韧剂和填料(铁粉、铝粉、硅微粉、重晶石粉等)等配制成模具树脂,同时以玻璃纤维布和碳纤维布作增强材料而制成的。 环氧树脂模具按不同用途和技术要求,能设计出不同的环氧模具树脂配方组份。从国内、外环氧树脂模具实际应用统计,环氧树脂适合于制作以下几种类型的模具,在冷压模具方面有:弯曲模、拉延模、落锤模、铸造模等;在热压模具方面有:塑料注射模、注腊模、吹塑模、吸塑模、泡沫成型模、皮塑制品成型模等。环氧树脂模具的制造特点,是制造简易,快速,成本低;例如一些外形复杂、难成形的金属模具,用环氧树脂制造,采用浇注法或低压成形法,就能一次成形,无需大型精密切削机床,也可不用高级钳工。有些金属模具制造的周期要几个月至半年,采用环氧树脂模具一般只要3~5天就可完成,其成本仅仅是钢模的15~20%左右,而且树脂模具使用寿命很长,磨损了还可以很快修补好,继续使用。因此,环氧树脂模具的制造是一项打破传统机械加工工艺的新技术、新材料和新工艺。环氧树脂模具,在国外都是大型工厂设立的专门研制中心制造的,而在国内仅在于国防工业单位研制了一些,一般工厂企业都缺乏这方面的制造工艺技术和配方,所以在我国环树脂模具的应用、普及和发展的速度很缓慢。今后随着新材料、新技术的发展,环氧树脂应用技术的推广,环氧树脂模具的综合性能和制造技术被广泛了介和认识,环氧树脂复合材料性能的提高,树脂模具的制作工艺和应用工艺的简化,环氧树脂模具必然会得到飞跃的发展,成为新的高效率的低成本的先进模具。 二、环氧树脂模具的种类 1、环氧树脂冷压类型的模具 (1)弯曲模、成形模、拉延模、切口模等。 环氧树脂的复合材科主要用来制造凹凸模,可以浇注成形,也可以低压模压法成形,它可以冲压或拉延0.8毫米钢板2毫米以下的铝板,寿命在万次以上不磨损。对于大型拉延模具,如汽车驾驶室顶盖件,用环氧树脂制造模具显示出更大的优越性,无需大型切削机床。切口模用来制造结构复杂的大型零件,在凹凸模刃口部嵌以钢带。用环氧树脂制造的弯曲成形模具,冲压的另件有吊扇的风叶等,风叶型面尺寸要求很高,因关系到风量和使用效果等,环氧树脂模具固定在l O O吨冲床上冲压成形,冲压次数巳达三十余万次,树脂模具还在使用。 (2)落锤模

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

国外环氧树脂应用研究技术进展_6

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国外环氧树脂应用研究技术进展 国外环氧树脂应用研究技术进展吴良义陈德萍近年来,环氧树脂新产品开发和应用技术进展迅速,特别是复合材料、涂料、粘合剂、固化剂、韧性环氧树脂、液体环氧树脂以及催化剂、促进剂等产品,这是新型材料发展的需要,我们应予以重视。 一、复合材料 1、玻璃微珠环氧树脂复合材料用硅烷偶联剂(SA)处理玻璃微珠(GB)表面,以双酚 A 型环氧树脂(E828)和乙烯二胺(EDA)固化剂作为复合材料基体,胺丙基三甲氧基硅烷(APS)、胺丙基三乙氧基硅烷(AES)和 2氢基乙基苯硅烷(AAPS)用作处理剂,对其处理条件与机械性能关系进行了研究。 结果表明: ①复合材料的玻璃化温度(Tg)、弯曲模量和弯曲强度达到最大值的 SA 水溶液的最佳浓度序列是 AASAESAAPS。 ②复合材料机械性能达到最大值时, SA 水溶液的水解时间依赖于 SA 的无机基团,乙氧基比甲氧基需要更长的时间。 ③在基体固化程度确立的工艺条件下,对 SA 和 E828 的反应性进行研究。 表面处理后的 LB 在80150℃ 下与 E828 混合后,再加 EDA 固化剂,以增加 SA 和 E828 反应程度。 结果为150℃ 比80℃ 混料的复合材料 Tg高。 2、硅充填环氧树脂复合材料使用环氧树脂作为基 1 / 12

体树脂的复合材料,具有优良的机械性能,但在高温下长时间使用就会出现时间和温度的特性。 用静态抗弯和疲劳试验检验时间、温度对抗弯强度的影响。 结果表明,时间温度叠加原理适用于静态弯曲强度。 与纯基体树脂和复合材料相比,纯树脂是影响复合材料静态强度和温度特性的主要因素。 疲劳测试表明,时间、温度叠加原理适用于最初的基体树脂的弹性强度,当温度、应力 LLt 助 D 时,塑性形变影响存在,抗弯强度和模量也有所增加。 3、镶嵌减振材料的石墨环氧树脂复合层压板复合材料中共固化弹性减震材料的减振性能有效的提高了材料的减振性能,然而,当减振材料没有达到层压固化的周期时,减振性能常常不如二次粘接的复合材料高。 共固化和二次粘接样品之间,减振性不同的原因是树脂渗入到减振材料所至。 在减振材料和环氧树脂之间有隔层的样品的比没有隔层共固化FasTapell25 有效的损失系数(视频率而定)要高 15.7%92. 3%,而比没有隔层的共固化 ISDll2 样品至少要高 168%。 这样的减振值,接近于二次粘接所达到的值。 研究结果表明,对减振材料粘弹性大多数都受固化期温度的影响。 4、炭纤维环氧树脂复合材料研究表明,杂质对碳

相关文档