文档视界 最新最全的文档下载
当前位置:文档视界 › 塑料产品结构设计通用规范

塑料产品结构设计通用规范

塑料产品结构设计通用规范
塑料产品结构设计通用规范

塑料产品设计规范

一、塑料及塑料模的基本概念

1.1 塑料的分类及性能

塑料的品种很多,可以按其组成、性质和用途等对它们进行分类。

1.1.1 依据其热性能分类

按照热性能塑料可以分为热塑性塑料和热固性塑料两类。

塑料受热熔融,冷却后凝固,再次加热又可软化熔融,重新制成产品,这一过程可以反复进行多次,而材料的化学结构基本上不起变化,称之为热塑性塑料。常用的热塑性塑料有:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。

在一定温度下能变成粘稠状态,但是经过一定时间加热塑制成形后,不会因再度加热而软化熔融。这是因为在成形过程中聚合物分子之间发生了化学反应,形成了交联网状结构,使之成为不熔的固态,所以只能塑制一次,称为热固性塑料。常用的热固性塑料有:酚醛树脂、环氧树脂、有机硅塑料等。

1.1.2 依据其用途分类

按用途不同塑料可以分为通用塑料、工程塑料和特种塑料。

一般把价格低、产量大、用途广而受力不大的,常用于制造日用品的塑料称为通用塑料。例如:聚乙烯、聚丙烯、聚氯乙烯、酚醛、聚苯乙烯等等。把机械强度高、刚性大的,常用于取代钢铁或有色金属材料制造机械零件或工程结构受力件的塑料称为工程塑料。例如:聚砜、聚酰胺、聚碳酸酯、聚醚酮等等。另外,将一些具有特殊功能的塑料,称为特种塑料。例如:导电的聚乙炔、耐高温的聚芳砜等。随着聚合物合成技术的发展,塑料可以通过采取各种措施来改进性能和增加强度,从而制成新颖的塑料品种。

1.2 塑料成形方法及塑料的种类

1.2.1 塑料的成形方法

1.注射成形:注射成形技术是据压铸原理发展起来的,是目前塑料加工中最普遍采用的方法之一。注射成形是间歇操作,成形周期短,生产效率高,产品种类繁多,生产灵活。其制品已占塑料制品总产量的30%以上。注射成形的工艺原理是将颗粒状塑料原料置于塑料注射成形机内并加热熔化,通过压力作用注射到模具内定型,经过一段时间冷却后取出制品。

2.吹塑成形:吹塑成形是目前塑料成形生产的主要方法,它包括挤出吹塑,如吹塑薄膜;中空吹塑,如吹塑中空的塑料容器等。

3.热成形:塑料的热成形是将热塑性塑料的片状材料加热至软化,使其处于热弹性状态,然后通过压力在模具中成为制品。塑料的热成形工艺主要有:差压成形、覆盖成形、柱塞助压成形等。

另外,塑料成形方法还有挤塑成形、压缩成形和压注成形等。

1.2.2 塑料的种类

常用的塑料有以下一些种类:

1.聚乙烯(PE)是目前国内外产量最大的塑料,优点是质轻、价廉和电绝缘性能好。

2.聚丙烯(PP)除了具有聚乙烯同样的质轻、价廉和电绝缘性能好的优点之外,其机械性能和耐热性比聚乙烯要好得多。缺点是耐寒和耐氧化性较差。

3.聚氯乙烯(PVC) 机械性能良好,耐化学腐蚀和耐候性较好,缺点是耐热性不好。适用于多种成形工艺,产量大而价廉,是重要的塑料品种。

4.聚苯乙烯(PS) 主要优点是质轻、透明、易染色,成形工艺性好,应用广泛。缺点是韧性较差、不耐寒、不耐热。

5.聚甲基丙烯酸甲酯(PMMA)俗称有机玻璃具有良好的综合性能,尤其是光学性能非常好。缺点是硬度小、耐磨性及耐热性差、吸湿性大、易脆裂。

6.聚碳酸酯(PC) 透光率与有机玻璃相近,而机械性能要好得多,尤其是韧性较突出,抗蠕变性能也较好。缺点是制品易开裂。

7.聚酰胺(PA) 就是尼龙或锦纶,大多为乳白色热塑性塑料。其机械性能优越,在弹性模量、强度等方面较突出。抗震性较好,震动时发出的噪声低。

8.氯化聚醚(CPT)又称盼通塑料。常用于注射和挤出成形,是优良的耐腐蚀性材料。

9.聚苯醚(PPO)抗拉强度高、韧性好。主要通过注射和挤出成形,应用于机械、化工、医药、电器、电子及国防工业等尖端技术上面。

10.聚甲醛(POM)机械性能较好,在机电、汽车、仪表、精密仪器等方面常用来代替有色金属和合金。

11.聚砜(PSF)有很高的机械性能和抗蠕变性能、其电性能、耐寒性和耐热性均较好。

12.聚四氟乙烯(PTFE)硬度、刚性等比其它塑料差,但耐热性和耐寒性均较好。化学稳定性好,很难被腐蚀,故又称塑料王。

13.聚氨酯(PU)主要制品是软、硬泡沫塑料。

14.丙烯腈-丁二烯-苯乙烯(ABS)具有良好的综合性能,特别是韧性、耐热耐寒性均较好。主要用于注射和挤出的制品。

15.酚醛树脂(PF) 是典型的热固性塑料,俗称电木。是第一种人工合成的树脂,其机械性能、尺寸稳定性较好。

此外,常用塑料还有脲醛树脂、环氧树脂、涤纶和不饱和聚酯等。

1.3 塑料的特性

塑料具有质轻、电绝缘性能好、耐蚀性好、易加工成形等特性。塑料的品种很多,不同品种的塑料具有不同的特性。当然,不是每一种塑料都同时具备上述所有的特性。现将塑料的主要特性分述如下:

1.质地较轻:塑料一般都比较轻,它的密度一般在(0.9~

2.3)×103kg/m3,约为铝的1/2,钢的1/3。塑料的密度与其中填料的种类和数量有关。而泡沫塑科由于其内部具有无数微小的气孔,所以其相对密度很低。塑料是有机材料,其吸水性较无机材料差,但优于木材。

2.机械性能优良:塑料品种不同,其机械性能差别很大,例如:有些品种是刚性材料,如聚苯乙烯、酚醛塑料等,有些品种则是柔性材料,如高压聚乙烯、软聚氯乙烯等。同一品种的塑料因分子结构的不同或是否加有增塑剂,可能形成刚性材料,也可能形成柔性材料。具有气孔的泡沫塑料强度远低于模具塑料的强度,因此其强度也与密度高低有关。塑料的强度高于其它非金属材料而低于金属材料,但是增强塑料的机械性能则可以与金属相比较。塑料的弹性模量和硬度低于金属。与玻璃、陶瓷等硅酸盐材料比较,塑料的硬度差,但它是韧性材料,而玻璃、陶瓷的脆性却很大。有些工程塑料具备优越的机械强度和耐磨性能,它们完全可以代替金属制造机械零件。

3.耐腐蚀性好:塑料的耐化学腐蚀性优于金属和木材。一般塑料对酸、碱等普通化学药品均有抗腐蚀能力。高聚物的化学结构、所含功能团的性质、填料的种类以及是否有增塑剂等因素对于塑料耐化学腐蚀性能具有重要影响。用无机物为填料时,可增加塑料的耐化学腐蚀性,如用石棉作填料制成石棉酚醛塑料可做盛装浓盐酸和硝酸的化工设备。

4.优良的电绝缘性能:一般的塑料是不良导体,因此其重要用途之一是用作绝缘材料,因为塑料具有优良的电绝缘性能。塑料可以制成电线包被层和薄膜,由于塑料的介质常数较低,介质损耗较小,因此电能的损耗也小,适合用作高频或超高频绝缘材料,广泛用于电力工业、发电机、电动机、变压器和各种电气开关等设备。对近代高频技术,如雷达和电视技术的发展也起了重大作用。

5.良好的消声和隔热作用:塑料具有良好的消声和隔热作用。在机器上使用塑料齿轮和轴承,可以减少噪音,提高运转速度。泡沫塑料可用作隔音、隔热或保温材料,有些强度高的塑料如酚醛、有机树脂等制成的硬质泡沫塑料,可用于超音速飞机及火箭中的雷达罩和隔热夹心结构等。

6.优良的耐磨性能和良好的自润滑性能:塑料的摩擦系数很小,用它制造的摩擦零件能在无润滑剂的情况下有效地工作,耐磨性很好。

7.某些塑料还具有一些特殊性能:有机玻璃的透光性超过了普通无机玻璃,而且质轻、耐冲击、不易碎;离子变换树脂可以使矿物水净化、海水淡化、提取有色金属、稀有金属和放射性元素等;另外,感光树脂还可代替一般卤化银做感光材料;有些塑料加入导电性填料可做成导电塑料。

塑料的优点是许多材料所不能比拟的,但它也有一些缺点,主要是耐热性差,温度升高后,强度很快下降;导热性也比较差,受热时膨胀系数较大,容易变形;热塑性塑料在载荷作用下会发生蠕变;在日光、大气、高温等的作用下会发生老化等。

在设计制件时必须考虑以下几个方面的因素:

⒈塑料的物理机械性能,比如强度、刚性、韧性、弹性、吸水性、对应力的敏感性。

⒉塑料的成型工艺性,比如流动性。

⒊塑料形状应当有利于充模流动、排气、补缩,同时能适应热塑性塑料制品的高效冷却硬化或者热固性塑料制品的快速受热固化。

⒋塑料制件在成型后的收缩情况和各向收缩率差异。

⒌模具的总体结构,特别是抽芯和脱出制件的复杂程度。

⒍模具零件的形状及其制造工艺。

上面前四条主要是针对塑料的性能特点,后两条主要是考虑模具的结构特点。

塑料制件设计的主要内容包括制件的形状、尺寸、精度、表面光洁度、壁厚、斜度,以及制件上加强筋、支撑面、孔、圆角、螺纹、嵌件等的设计。另外,制件的美术造型设计也不可忽视。

1.注塑件设计的一般原则

a.充分考虑塑料件的成型工艺性,如流动性:

b.塑料件的形状在保证使用要求的前提下,应有利于充模,排气,补缩,同时能适应高效冷却硬化;

c.塑料设计应考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程度,同时应充分考虑到模具零件的形状及制造工艺,以便使制品具有较好的经济性;

d.塑料件设计主要是零件的形状、尺寸、壁厚、孔、圆角、加强筋、螺纹、嵌件、表面粗糙度的设计。

2、塑胶件设计一般步骤

塑料件是在工业造型的基础上进行的结构设计,首先看有无相似的产品借鉴,再对产品及零件进行详尽的功能分解,确定零件的折分、壁厚、脱模斜度、零件间的过渡处理、连接处理、零件的强度处理等主要工艺问题。

⑴、相似借鉴

在设计前,首先应查找公司和同行类似的产品,原有的产品发生过那些问题,有那些不足,参考现有的成熟结构,避免有问题的结构形式。

⑵、确定零件折分、零件间的过渡、连接、间隙处理

从造型图和效果图理解造型风格,配合产品的功能分解,确定零件折分的数目(不同的表面状态要么分为不同的零件,要么在不同的表面之间须有过度处理),确定零件表面间的过度处理,决定零件之间的连接方式,零件之间的配合间隙。

⑶、零件强度与连接强度的确定

根据产品大小,确定零件主体壁厚。零件本身的强度,由壁厚塑料件、结构形式(平板形状的的塑料件强度最差)、加强筋与加强骨共同决定。在决定零件的单个强度的同时,须确定零件之间的连接强度,改变连接强度的方法有:加螺钉柱,加止口,加扣位,加上下顶住的加强骨。

⑷、脱模斜度的确定

脱模斜度要根据材料(PP,PE硅胶,橡胶能强行脱模)、表面状态(饰纹的斜度要比光面的大,蚀纹面的斜度尽可能比样板要求的大0.5度,保证蚀纹表面不被损伤,提高产品的良品率)、透明与否决定零件应有的脱模斜度(透明的斜度要大)等因素综合确定。

㈠、塑料制件的形状设计

塑料制件的内外表面形状应设计得易于模塑成型,即在开模取出制件时,尽可能不采用复杂的瓣合分型与侧抽芯;因此制件的设计要尽量避免有旁侧凹陷部分。

侧抽芯或者瓣合(可折式)阳模与阴模不仅提高模具制造的成本,降低生产效率,且还会在分型面上留下毛边,增加后加工的困难。

通常只需适当改变塑料制件的结构即可改变这种情况,使模具结构大大简化。

评价塑件表面质量的主要技术指标是表面粗糙度。塑件的表面质量要求越高,其表面粗糙度数值就越低。在成形时从工艺上要尽量避免出现云纹、冷疤等瑕疵,除此之外塑件的表面质量主要是由模具型腔表面粗糙度决定。模具型腔粗糙度在数值上一般要比塑件的要求低1~2级,即模具型腔表面精度要高于塑件。模具在使用过程中,由于型腔磨损而使表面粗糙度不断加大,所以应随时进行抛磨修理。

一般模具的表面光洁度要比塑料制品的高一级。

某些塑料制品的表面要求▽8~▽12级的光洁度,而模具在使用中由于型腔磨损而降低了表面光洁度,应随时对模具进行抛光复原。

透明塑料制品要求型腔和型芯的光洁度相同,而不透明的制品则根据使用情况可以不一样。

另外,制件的光亮程度还和塑料的品种有关。

表面晒纹出模斜度

塑料可分为第一类硬质如(PC、ABS、PS、K胶或加纤等)、第二类一般如(PP、NY、PE等)、第三类软

由于塑料在冷却时的收缩,塑件的尺寸往往小于模具型腔对其的约束尺寸。所用塑料的种类不同,其收缩率大小不同,而由于塑件的结构形状等一些因素的影响,在塑件各个方向上的收缩率也可能不同,这样收缩率对塑件最终尺寸的影响复杂多变,这样就要求我们在实际工作中要综合考虑收缩率,用加大模具

5 PE(聚乙烯)(低密度) 1.2~2

6 PE(聚乙烯)(高密度) 1.5~3.6

7 POM(聚甲醛) 1.2~3.0

8 PMMA(改性聚甲基丙烯酸甲酯)0.5~0.7

9 PVC(聚氯乙烯)0.6~1.5

10 PA6(尼龙6)0.5~2

塑料件壁厚设计与零件尺寸大小、几何形状和塑料性质有关。

塑料件的壁厚决定于塑料件的使用要求,即强度、结构、尺寸稳定性以及装配等各项要求,壁厚应尽可能均匀。壁厚过小,成形时熔体流动阻力大,充模困难,脱模时易造成塑件损坏;而壁厚过大,不但耗费材料,而且充模及冷却时间也长,生产效率低,塑件易产生气泡、缩孔、凹痕、变形等缺陷。塑件的壁厚一般推荐在1~5mm之间选取,热塑性塑料塑件壁厚可适当减小,但不应小于0.25mm。小制品可取偏小值,大制品应取偏大值。壁厚如果不均匀,会因冷却或固化速度不均导致收缩不匀,使塑件产生缩孔或凹痕,同时由于内应力的存在,使产品翘曲,严重的会产生开裂。

4.1、塑料件相邻两壁厚应尽量相等,若厚胶的地方变成薄胶的无可避免,应尽量设计成渐次改变。相邻的壁厚比应满足以下要求:热塑性塑料:注塑t :t1≤1.5 ~2。热固性塑料:压制t :t1≤3,挤塑t :t1≤5。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。

4.2、塑料凸肩H与壁厚t之间关系如图,图a中H>t,则造成塑料件的厚度不均匀,应改图b所示,H≤t可使塑料件壁厚不均匀程度减少。

4.3、各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构;一般长度和厚度比不得大于100。

热固性塑料的小型制件,壁厚一般取1.6~2.5mm,大型制件取3.2~8mm。布基酚醛塑料等流动性较差的品种应取较大值,但一般不宜大于10mm。脆性塑料(比如矿粉填充的酚醛塑料)制件壁厚不应小于3.2mm。

热塑性塑料比较容易成型薄壁制件,壁厚可以设计为0.25mm;但一般不宜小于0.6~0.9mm。常选取2~4mm。

同一个塑料零件的壁厚设计时应尽可能一致,否则会因冷却或者固化速度不均而产生附加内应力。热塑性塑料会在壁厚较大处产生缩孔,热固性塑料则会发生翘曲变形。

另外,壁厚还能影响充模顺序和型腔内气体的排出。

产品外形尽量采用流线外形,避免突然的变化,以免在成形时因塑料在此处流动不顺引起气泡等缺陷;并且此处模具易产生磨损。

决定肉厚的主要因素:结构强度是否足够;能否抵脱模力;能否均匀分散所受的冲击力;有埋入件时。能否防止破裂。如产生熔合线是否会影响强度;成形孔部位的熔合线是否会影响强度;尽可能肉厚均匀。以防止产生缩水;棱角及肉厚较薄部分是否会阻碍材料流动。从而引起充填不足。

肉厚不均对成形性的影响:成形品之冷却时间取决于肉厚较厚的部分,使成形周期延长,生产性能降低;肉厚不均则成品冷却后收缩不均、造成缩水、产生内应力、变形、破裂等。

塑料制件的壁厚对其质量影响很大。壁厚过小时,流动阻力大,大型复杂的制品就难以充满型腔。制件壁厚的最小尺寸应当满足以下几个方面的要求:

⒈具有足够的强度和刚度;

⒉脱模时能经受脱模机构的冲击和震动;

⒊装配时能承受紧固力。

5.分模线之选定

⑴、不得位于明显影响外观的位置;

⑵、开模时不形成死角的位置;

⑶、位于模具易加工的位置;

⑷、位于成品后加工容易的位置;

⑸、位于不影响尺寸精度的位置(尺寸关系重要的部分尽量放在模具的同一边)。

6.脱模斜度

一般情况下,如果斜度不妨碍制品的使用,可以将斜度值取大一些。压制成型较大深度的制品时,不但要求阴阳模都要有足够的斜度,还应尽量让阳模的斜度大于阴模的斜度,这样制件下部的侧壁厚度就比上部的厚度大。在压模闭合时,由于尖劈作用会使制件上部的密度得到保证。

脱模斜度一采用1~2度,最小不小于0.5度。具体数值视成品形状、成形材料的类别、模具结构、表面精度、以及加工方等会有所不同。在不影响产品质量的前提下,脱模斜度愈大愈好。

在立体图的构建中,凡影响外观,影响装配的地方需要画出斜度,加强筋一般不画斜度。

塑胶零件的脱模斜度由材料,表面饰纹状态,零件透明与否决定。硬质塑料比软质塑料的脱模斜度大,零件越高,孔越深,斜度越小。

在塑料制件的内外表面沿脱模方向,都应设计足够的脱模斜度以利于脱模,否则会发生脱模困难或顶出时拉坏、擦伤塑料制件。脱模斜度的大小可在0.2°至数度间变化,视周围条件而定,一般以0.5°至1°间比较理想。具体选择脱模斜度时应注意以下几点:

⑴、凡塑件精度要求高,应选用较小的脱模斜度。

⑵、凡较高、较大的尺寸,应选用较小的脱模斜度。

⑶、塑件的收缩率大,应选用较大的斜度值。

⑷、塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。

⑸、一般情况下,脱模斜度不包括在塑件公差范围内。

⑹、透明件脱模斜度应加大,以免引起划伤。一般情况下,PS料脱模斜度应大于3°,ABS及PC料脱模斜度应大于2°。

⑺、带皮纹、喷砂等外观处理的塑件侧壁应加3°~5°的脱模斜度,视具体的皮纹深度而定。皮纹深度越深,脱模斜度应越大。

⑻、插穿面斜度一般为1°~3°。

⑼、常用的斜度值为1~1.5°,也可小到0.5°。当使用上有特殊要求时,斜度可以采用外表面5',内表面10'~20'。当塑件高度不大时,可允许不设计斜度。

⑽、制件上的凸起或加强筋单边应该有4~5°的斜度;制件沿脱模方向有几个孔或呈矩形格子状而使脱模阻力加大时,宜用4~5°的斜度;侧壁带有皮革花纹时应有4~6°的脱模斜度。

塑料制件设计成圆角,也使模具型腔对应部位呈圆角,这样也增加了模具的坚固性,使模具在淬火或使用时不会因应力集中而开裂。

另外,圆角还增加了制件的美观性。

对于内外表面的拐角处,外圆角应为内圆角加壁厚,可减少内应力,并能保证壁厚均匀一致。

注意:在塑料制件的某些部位(如分型面、型芯与型腔配合处等)不便做成圆角,而只能采用尖角。

8、加强筋

加强筋的主要作用是增加制品强度和避免制品变形翘曲。

1

.

0 >4t

<

3

t

<0.6t

1

.

1

.

1

.

t t

θ=2°~ 4°

当a≤2mm时,可选择a=b。

8.1.1

1.5 1.5~3 3~5

9、支柱

⑴、支柱的长度一般不超过本身直径的两倍﹐否则必须加加强筋。(长度太长时会引起气孔,烧焦,充填不足等)。

⑵、支柱的位置不能太接近转角或侧壁。

⑶、支柱的形状以圆形为主(其它形状则加工不易,且流动性也不好)。

制品之间的连接常采用螺钉的连接方式,在螺钉柱的设计过程中应注意以下几点:

⑴、在允许的情况下,螺钉柱应尽量矮。应加一字形或十字形斜筋保证螺钉柱的强度,并考虑防缩,

⑶、螺钉柱内侧应加倒角,利于螺钉的安装。倒角大小一般为1~1.5×45°。

9.1塑料件常用自攻螺钉预留底孔直径选择

注: 1.

2

10、扣位

11、孔及凹陷

孔的形状和位置的选择,必须避免造成产品的脆弱性以及生产上的复杂性。在成形孔的一般方法中,塑料被射出模穴,然后沿着心梢的周边流动而形成孔,因此,当塑料在心梢一端会合时,会形成接合线,这些接合线位置就成为成品本身的潜在脆弱性。

⑴、孔与孔之间距离为孔径2倍以上;

⑵、孔与成品边缘之间距离为孔径3倍以上;

⑶、孔与侧壁之间距离为孔径3/4倍以上;

倍。孔口间的距离b不宜小于孔径0.75倍,并不小于3mm。

⑷、孔周边的肉厚宜加强(尤其针对有装配性﹐受力的孔),切开的孔周边也宜加强;

⑸、垂直于材料流动方向的盲孔,孔径在1.5mm以下时,孔深不得超过孔径的2倍(只有一端支撑的模仁梢比起两端都有支撑的模仁梢会高出48倍的变形量);

⑹、孔径不同的通孔不宜设计为两边对合成形,会产生偏心,可将任一边的孔径加大,或设计为不用对合成形的孔。

孔的形状设计比较:

塑料制件上常见的孔有通孔、盲孔、螺纹孔、形状复杂的孔等多种形式,这些孔都应设置在不易削弱制件强度的地方。在孔与孔、孔与边壁之间都应留有足够的距离。孔与孔边缘之间的距离应当大于孔径,制件上固定用孔和其它受力孔的周围可以设计一个凸边来加强。

11.1.通孔

在塑料制件上加工成型通孔用的型芯有以下几种安装方法,见图1:

⑴a图是一端固定的型芯:这样成型的通孔,未固定一端会有不易修整的飞边;而且由于型芯是靠一端来支撑,当孔较深时,型芯容易弯曲。

⑵b图是由两个一端固定的型芯连接拼合而成,此时在型芯接合缝会有飞边产生;由于不易保证两根型芯的同心度,应将其中一根型芯设计成比另一根直径粗1.5~1mm,这样就算稍有一点不同心,也不会引起安装和使用上的困难。这种设计的优点是型芯长度缩短了一半,增加了型芯的稳定性。

⑶c图是一端固定,另一端靠导向支撑的型芯:这种结构有较好的强度与刚性,又能保证同心型。此法较为常用,但导向部分容易因误差而磨损,以致产生圆角而有溢料。

无论用哪种方法固定型芯,孔的深度都不能太大,否则型芯会弯曲;压制成型时尤其要注意。

11.⒉盲孔

盲孔只能用一端固定的型芯来成型,深度比通孔浅。注塑或压铸成型时,孔深应小于4d;压制成型时孔深应更浅,平行于压制方向的孔深一般不超过2.5d,垂直方向的孔深为2d。

直径过小(<1.5mm)或深度太大的孔,最好采用后期机械加工的方法;如果能在模塑成型时在钻孔位置压出定位浅孔,就有利于后加工。

11.⒊复杂孔

有的斜孔或形状复杂的孔,可以采用拼合的型芯来成型,以避免侧抽芯。

11.4孔的设计

11.4.1 孔的周壁厚H和突起部分的壁厚c和高度h、h与c之比不能超过3,如图

12.1成形螺纹设计

塑件上的螺纹可以在模塑时直接成形,也可以成形后再用机械加工的办法。在经常拆卸和受力较大的地方还应该采用金属螺纹嵌件。塑件上的螺纹一般选用较大尺寸的螺牙,否则将影响螺纹部分的使用强度。

⑴、避免使用32牙/螺距0.75mm以下的螺纹,最大螺距可采用5mm;

⑵、长螺纹会因收缩的关系使螺距失真,应避免使用,如结构需要时可采用自攻螺丝锁紧;

⑶、螺纹公差小于成形材料收缩量时应避免使用;

⑷、螺纹不得延长至成品末端,因如此产生的尖锐部会使模具及螺纹的端面崩裂、寿命降低,所以至少要留0.8mm的平坦部分;

⑸、螺纹需有2~4度的拔模角。

塑料制件上的螺纹可在模塑时直接成型,也可用后加工的方法机械切削,在经常装拆和受力较大的地方应采用金属的螺纹嵌件。制件上的螺纹应选用螺牙尺寸较大的,螺纹直径较小时不宜采用细牙螺纹(参看表);特别是用纤维或布基作填料的塑料成型的螺纹,其螺牙尖端部分常常为强度不高的纯树脂填充,

螺纹的1/10~1/5,且螺牙的正确性较差。两个互相配合的带螺纹塑件,如材料、成形方法相同,则一般问题不大。如模具的螺纹螺距未加上收缩率,则塑料螺纹与金属螺纹的旋合长度就不能太长,一般不大于螺纹直径的1.5倍,否则会因收缩率不同而产生互相干涉,造成附加内应力,使联结强度降低。螺纹的成形方法有以下几种:

(1)采用成形杆或成形环在成形后从制品上拧下来;

(2)外螺纹采用瓣合模成形,此法工作效率高,但精度低,还有可能带来难以除掉的飞边;

(3)要求不高的内螺纹(如瓶盖上的螺纹)用软塑料成形时,可强制脱模,而不必从型芯上拧下,这时螺牙断面最好设计得浅一些,且呈圆形或梯形断面。

在同一螺纹型芯(或型环)上有前后两段螺纹时,应使两段螺纹旋向相同,螺距相等,否则将无法把塑件从螺纹型芯(或型环)上拧下来。当螺距不等或旋向不同时,就要采用两段型芯(或型环)组合在一起,成形后分段拧下来。

为了防止螺孔最外圈的螺纹崩裂或变形,应使内螺纹开始端有一台阶孔,孔深0.2~0.8mm,并且螺纹牙应逐渐凸起。同样塑件的外螺纹开始端也应下降0.2mm以上,末端不宜延长到与垂直底面相接触,否则易使脆性塑料发生断裂。另外,螺纹的始端和末端均不应突然开始和结束,而应设计有过渡部分。其具体

件从螺纹型芯或型环上拧下来。当螺距不等或旋转方向不同时,就要采用两段型芯或型环组合在一起,成型后分段拧下。

内螺纹直径不能小于2mm,外螺纹直径不能小于4mm。螺距不小与0.5mm。螺纹的拧合长度一般不大于螺纹直径的1.5倍,为了防止塑料螺纹的第一扣牙崩裂,并保证拧入,必须在螺纹的始端和末端留有0.2~0.8mm的圆柱形。并注意:塑料件螺纹不能有退刀槽,否则无法脱模。

12.2滚花设计

滚花通常是平行于脱模方向的沟槽,滚花间距通常为3.0mm,最小为1.5mm。为防模具崩裂及使后加工容易,滚花与分模面间至少留0.8mm的平坦部分。

塑料件的周围上滚花,也可以压制。

直径D ≤18 >18~50 >50~80 >80~120 ≤18 >18~50 >50~80 >80~120

齿距t 1.2~1.5 1.5~2.5 2.5~3.5 3.5~4.5 4R

半径R 0.2~0.3 0.3~0.5 0.5~0.7 0.7~1 0.3~1 0.5~4 1.5~5 2~6

齿高h ≈0.86t 0.8R

13、支承面

塑胶易变形,在定位上应当归为毛胚的定位一类,在定位面积上要小,如平面的支承,应当改为小凸点,凸环。

以塑料制件的整个底部作为支承面,这样的设计是不合理的,因为制件稍稍翘曲或者变形就会使底面不平。设计时常常用凸出的三四点底脚或者凸边来作为支承面。

当塑料制件底部有加强筋时,应当使加强筋与支承面相差0.5mm的高度。

紧固用的凸耳或台阶应该有足够的强度来承受紧固时的作用力,设计时应当避免台阶突然过渡、尺寸过小。

14、嵌件的设计

塑件中镶嵌的金属或其它材料制作的零件称为嵌件,如图所示为几种金属嵌件的示例。为了使嵌件在塑件内牢固嵌定而不致被拔掉,其表面必须加工成沟槽、滚花或制成特殊形状。嵌件周围的塑件壁厚取决于塑件的种类、塑料的收缩率、塑料与嵌件的膨胀系数之差以及嵌件的形状等因素,但嵌件周围的塑件壁厚越厚,则塑件破裂的可能性就越小。

多数嵌件是由各种有色或者黑色金属制成的,也有用玻璃、木材、或已经成型的塑料件等非金属材料作为嵌件。其它特种用途的嵌件,式样很多,比如冲制的薄壁嵌件,薄壁管状嵌件等,还有非金属嵌件,是用ABS黑色塑料作为嵌件的改性压克力PMMA仪表壳。

在设计嵌件时要遵循以下一些基本原则:

1.嵌件嵌入部分的周围应有倒角,以减少周围塑料冷却时产生的应力集中;

2.嵌件设在塑件上的突起位置时,嵌入深度应大于突起位置的高度,以保证足够的连接强度;

3.嵌件在模具内的固定部分应采用一定精度的间隙配合,以保证定位准确,防止熔融物料溢出;

4.外螺纹嵌件应在无螺纹的部分与塑件配合,不然熔融的塑料会进入螺纹牙底部分,在使用时则将造成螺纹旋合困难;

5.内、外螺纹嵌件的高度应低于型腔的成形高度,以避免压坏嵌件和模具;

6.嵌件高度不能超过其直径的二倍,高度应给出公差。

为防止嵌件受力时在制件内转动或者被拔出,嵌件表面必须设计有适当的伏陷物:

①菱形滚花是最常用的,无论从抗拉或抗扭来看,其固定力都是令人满意的。在受力大的场合,还可以在嵌件上开环状沟槽。小型嵌件上的沟槽宽度不应小于2mm,深度为1~2mm。

②也有采用直纹滚花的,在嵌件较长时可以允许塑料作少许的轴向潜伸,以降低此方向的内应力;但这种嵌件必须开环形沟槽,以免在受力时被拔出。

③六角形嵌件较少使用,因为尖角处容易产生应力集中。

④片状嵌件可以用孔眼、切口、局部折弯的方法来固定。

⑤薄壁管状嵌件可以把边缘全部折弯,或凸耳局部折弯来固定。

⑥针状嵌件可以用压扁其中一段或者折弯等方法来固定。

在嵌件的设计过程中应注意以下几点:

⑴、嵌件周围塑料层厚度不宜太薄,否则会因收缩而破裂。

⑵、嵌件各尖角部位应倒圆角,这样可减少内应力。

⑶、嵌件在塑件中应固定牢固,可采用开槽、加支柱,或滚花结构。

⑷、在设计中应考虑嵌件在模具中便于安装,正确和牢固定位,成型时有利于塑料流动,模具制造

方便。

14.1嵌件外塑料层最小厚度

通常金属嵌件与塑胶制件一起使用,形成高质量,耐久的机械组装。适用于有耐用要求的产品。(如多次组装/拆卸操作)。也适用于减小摩擦的改良设计。如图实例所示:

这种结构工艺的注意事项及其优劣点:

一,埋塑嵌件

埋塑就是指将嵌件预先放入模具中,利用塑胶熔体将其浸埋,当塑胶熔体冷却后,将嵌件固化,锁定在适当的位置。

常见的嵌件种类:螺纹紧固件,加强筋,轴承,提供导电性连接点,或是其它的特殊作用,如像很多面板上的防刮伤用的铝合金等等……最常见的就是螺母或双头螺栓类的嵌件。埋塑嵌件会明显的增加产品的成本,只有当功能需要或成本合算时才使用。

埋塑嵌件的常用材质:铝镀黄铜,不锈钢镀黄铜或是直接用黄铜来车加工制造,因为黄铜的耐腐蚀性和易加工性非常好。制造嵌件最好选用有一点韧性的材质,从材料工程的专业角度来讲,因为嵌件必须提供熔体流动截流作用时提供一点韧性。当嵌件的形状很复杂时,无法用车加工时,通常用粉末冶金来制作嵌件零件。

但是埋塑嵌件存下这几个值得注意的事项,如下:

1:循环时间:使用埋塑嵌件会增加零件成型的周期,且模具的保养费也会明显增高。

2:报废制件:各种原因,如注塑不良,或是嵌件遗漏,位置不良等等,会造成整个零件报废。

3:模具损伤:如果嵌件尺寸不对,或是嵌件设计不良,会造成模仁的损伤。(如图示)

4:熔合线:很容易产生熔合线,也没有什么很有效的方法来控制。要靠经验老道的模具设计师设计出好的模具可能会减小熔合线的程度。其实也不是没有解决方法,关于熔合线一直是塑胶产品的痛。

5:残余应力:塑胶会缩水,但金属却不会。当注塑成形完成后,塑胶继续收缩。而嵌件保持其体积,所以在嵌件周围会有一定的裂纹产生,这个就是残余应力造成的。像这种情况,只能选用弹性较好的塑胶材料来防止。如选用ABS,PC等等。而选用较脆的塑胶材料则是大忌。如用PS等脆性材料。

埋塑嵌件的结构设计误区:

1:塑胶件的设计需要注意的是它的底部的厚度不要过薄,否则会有缺胶的情况产生(如图)

2:嵌件的设计在嵌件上做一些增大摩擦的结构,如滚花,及切口等等。如图所示:

压入嵌件的设计工艺

压入嵌件就是简单的将嵌件用外力压入紧固件中。

常见的有普通冷压,普通热压,自攻线嵌件,超声波嵌件,还有使用伸缩嵌件。

1:普通冷压,就是使用蛮力,或是借助工具,将嵌件强行压入。如图。

2:普通热压。如图:

3:自攻线嵌件,就是将嵌件外表做成自攻螺纹,像锁螺丝样锁入塑胶件中紧固。

4.:超声波嵌件,和普通冷压一样,只是选用超声波工具来代替蛮力。

5:伸缩嵌件,伸缩嵌件和膨涨螺丝一个原理。

嵌件需注意点﹕

⑴由于流动性的关系,会在埋入件的周围产生熔接痕;由于塑料与金属的收缩率不一样,成形后易产生开裂。

⑵使用埋入件成形时,会使周期延长。

⑶埋入件高出成形品少许,可避免在装配时被拉动而松脱。

15、塑料齿轮

塑料齿轮由于质轻、价廉,传动噪声小,不需后加工,生产工序少,强度和刚度接近于金属材料,可以代替有色金属和合金,因此,它在工业上的应用正在逐步扩大,现已广泛应用于机械、仪表、电讯、家用电器、玩具产品和各种记时装置中。由于成形塑料齿轮的模具有其特殊性,因而塑料齿轮形成了一种特殊类型的注射模。

⑴.材料的选用

齿轮材料的选用应综合考虑其使用性能、工艺性能和经济性能,常用的是聚甲醛(POM),该材料具有优异的综合性能,强度、刚性高,抗冲击、耐疲劳、抗蠕变性能较好,自润滑性能优良,摩擦系数小且耐磨性能好,吸水倾向小,产品尺寸稳定,适用于制造各种齿轮、传动零件或减摩零件等。

⑵.工艺要求

(1)温度注射过程中的温度主要是指熔化温度和模具温度,因为两者都对整个注射过程有重要影响。要想同时有较高的充模速度,又能保持塑件的特性,就需要有适当的熔化温度。模温控制塑料的充填

速度、塑件冷却时间和塑件的结晶度。模温越高,充模速度越快。模具温度是对齿轮成形周期及塑件质量有决定性影响的参数,对POM材料而言,成形齿轮的模温控制在90℃~120℃。

注射压力也是对塑料充填起决定性作用的因素,而注射压力与塑料温度、模具温度又是相互制约的,在生产中要找到它们的最佳组合点。

(2)模具结构及制造目前,大多数注射成形齿轮的模数在1mm以下,为防止齿轮变形和收缩,齿轮宽度在2~3mm左右。模具结构上,成形齿轮注射模采用均匀分布的3点浇口,这样一方面可以保证齿轮的精度,另一方面可以去除浇口废料。齿轮采用顶杆顶出,型芯采用镶件结构。在设计齿轮模具型腔时,要正确掌握齿轮各参数的收缩状况,如果计算收缩率和实际收缩率有较大差距,则需重新制造型腔。型腔的加工精度是保证塑料齿轮精度的主要手段,可采用加工精度较高的精密线切割加工。对单个零件的加工精度,要注意检测零件的尺寸公差和形位公差。

⑶.成形齿轮的主要缺陷及对策

生产实践表明,成形齿轮的缺陷主要在于模具的设计、制造精度和磨损程度等方面,成形齿轮的缺陷容易导致齿轮传动的噪声、磨损加剧、效率降低甚至传动系统的卡死现象。下面就注射成形齿轮过程中产生的主要缺陷及其原因与对策简述如下:

(1)塑件不满

塑件不满就是制品没有完全成形,导致这种缺陷的主要原因有:

注射温度不合适。一是塑料温度低,塑料流动性差;二是模具的温度低,流过的塑料很快冷却到失去流动性,以致不能完全填满模具型腔的各个角落;三是注射压力不够;四是生产周期过短,料温来不及跟上,影响充模成形。

模具设计不合理。一是模具本身结构复杂,浇口数目不足或形式不当;二是型腔内排气措施不力,这种原因导致制件不满的现象是常见的,消除这种缺陷应开设有效的排气孔道,选择合理的浇口位置使空气容易排出,必要时将型腔的某个局部制成镶配件,使空气从镶配件缝隙逸出。

模具浇注系统有缺陷。一是流道太小、太簿或太长,增加了流体的阻力;二是流道、浇口有杂质、异物、塑料碳化物堵塞所致;三是流道、浇口粗糙有伤痕,光洁度不足,影响物料流动。

(2)产生飞边

飞边又称溢边、毛刺、披锋等,大多发生在模具的分型面上,导致该缺陷的主要原因有:

模具分型面精度差。模具分型面上粘有凸出异物、活动模板变形等;模具设计和流道设置不合理。一是在不影响塑件完整性前提下,流道应设置在质量对称中心上,避免出现偏向性流动;二是塑料在熔融状态下具有很高的流动性和贯穿能力,容易进入活动的或固定的缝隙,要求模具的设计制造精度较高;注射机的锁模力不足。注射成形时,由于机械上的缺陷,致使锁模力不足或不恒定,也会产生飞边;另一方面由于模具本身平行度不好,也会导致锁模不紧密而产生飞边;注射工艺条件差。一是塑料充模时过分剧烈;二是加料量调得不准确。

16、制件上的标记、符号和文字

塑料制件上的文字和符号可以做成三种不同的形式:

容易被破坏。

17

塑胶产品结构设计常识

塑胶产品结构设计小常识目录: 第一章塑胶结构设计规范 1、材料及厚度 1.1、材料选择 1.2、壳体厚度 1.3、零件厚度设计实例 2、脱模斜度 2.1、脱模斜度要点 3、加强筋 3.1、加强筋及壁厚的关系 3.2、加强筋设计实例 4、柱和孔的问题 4.1、柱子的问题 4.2、孔的问题 4.3、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1、止口的作用 6.2、壳体止口的设计需要注意的事项

6.3、面壳及底壳断差的要求 7、卡扣的设计 7.1、卡扣设计的关键点 7.2、常见卡扣设计 8、装饰件的设计 8.1、装饰件的设计注意事项 8.2、电镀件装饰斜边角度的选取 8.3、电镀塑胶件的设计 9、按键的设计 9.1 按键(Button)大小及相对距离要求 10、旋钮的设计 10.1 旋钮(Knob)大小尺寸要求 10.2 两旋钮(Knob)之间的距离 10.3 旋钮(Knob)及对应装配件的设计间隙 11、胶塞的设计 12、镜片的设计 12.1 镜片(LENS)的通用材料 12.2 镜片(LENS)及面壳的设计间隙 13、触摸屏及塑胶面壳配合位置的设计 13.1、触摸屏相对应位置塑胶面壳的设计注意事项

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支 架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、 导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、 PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸 水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳 光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐 寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有 一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号 如:三菱VH001。

塑胶产品结构设计准则--加强筋篇

产品结构设计准则--加强筋篇 基本设计守则 加强筋在塑胶部件上是不可或缺的功能部份。加强筋有效地如『工』字铁般增加产品的刚性和强度而无需大幅增加产品切面面积,但没有如『工』字铁般出现倒扣难於成型的形状问题,对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道,有助模腔充填,对帮助塑料流入部件的支节部份很大的作用。 加强筋一般被放在塑胶产品的非接触面,其伸展方向应跟随产品最大应力和最大偏移量的方向,选择加强筋的位置亦受制於一些生产上的考虑,如模腔充填、缩水及脱模等。加强筋的长度可与产品的长度一致,两端相接产品的外壁,或只占据产品部份的长度,用以局部增加产品某部份的刚性。要是加强筋没有接上产品外壁的话,末端部份亦不应突然终止,应该渐次地将高度减低,直至完结,从而减少出现困气、填充不满及烧焦痕等问题,这些问题经常发生在排气不足或封闭的位置上。 加强筋一般的设计 加强筋最简单的形状是一条长方形的柱体附在产品的表面上,不过为了满足一些生产上或结构上的考虑,加强筋的形状及尺寸须要改变成如以下的图一般。

长方形的加强筋必须改变形状使生产更容易 加强筋的两边必须加上出模角以减低脱模顶出时的摩擦力,底部相接产品的位置必须加上圆角以消除应力集过份中的现象,圆角的设计亦给与流道渐变的形状使模腔充填更为流畅。此外,底部的宽度须较相连外壁的厚度为小,产品厚度与加强筋尺寸的关系图a说明这个要求。图中加强筋尺寸的设计虽然已按合理的比例,但当从加强筋底部与外壁相连的位置作一圆圈R1时,图中可见此部份相对外壁的厚度增加大约50%,因此,此部份出现缩水纹的机会相当大。如果将加强筋底部的宽度相对产品厚度减少一半(产品厚度与加强筋尺寸的关系图b),相对位置厚度的增幅即减至大约20%,缩水纹出现的机会亦大为减少。由此引伸出使用两条或多条矮的加强筋比使用单一条高的加强筋较为优胜,但当使用多条加强筋时,加强筋之间的距离必须较相接外壁的厚度大。加强筋的形状一般是细而长,加强筋一般的设计图说明设计加强筋的基本原则。留意过厚的加强筋设计容易产生缩水纹、空穴、变形挠曲及夹水纹等问题,亦会加长生产周期,增加生产成本。 产品厚度与加强筋尺寸的关系 除了以上的要求,加强筋的设计亦与使用的塑胶材料有关。从生产的角度看,材料的物理特性如熔胶的黏度和缩水率对加强筋设计的影响非常大。此外,塑料的蠕动(creep)特性从结构方面来看亦是一个重要的考虑因数。例如,从生产的角度看,加强筋的高度是受制於熔胶的流动及脱模顶出的特性(缩水率、摩擦系数及稳定性),较深的加强筋要求胶料有较低的熔胶黏度、较低的摩擦系数、较高的缩水率。另外,增加长的加强筋的出模角一般有助产品顶出,不过,当出模角不断增加而底部的阔度维持不变时,产品的刚性、强度,与及可顶出的面积即随着减少。顶出面积减少

塑料产品结构设计准则~壁厚

产品结构设计准则--壁厚篇 基本设计守则 壁厚的大小取决于产品需要承受的外力、是否作为其它零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为上限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低于 0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高于 0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料于过薄的位置往往形成不够填充物的情况发生。不过,一些容易流

动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固后出现收缩痕。更甚者引致产生缩水印、热应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。

塑料制品的结构设计规范

塑料制品的结构设 计规范 1

双林汽车部件股份有限公司 企业技术规范 塑料制品的结构设计规范 -10-20发布 -10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。§1 塑料制品设计的一般程序和原则 1.1 塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案, 绘制制品草图( 形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件, 包括塑料制品设计说明书和技术条件等。 1.2 塑料制品设计的一般原则 1、在选料方面需考虑: (1) 塑料的物理机械性能, 如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等; (2) 塑料的成型工艺性, 如流动性、结晶速率, 对成型温度、压力的敏感性等; (3) 塑料制品在成型后的收缩情况, 及各向收缩率的差异。 2、在制品形状方面: 能满足使用要求, 有利于充模、排气、补缩, 同时能适应高效冷却硬化( 热塑性塑料制品) 或快速受热固化( 热固性塑料制品) 等。 3、在模具方面: 应考虑它的总体结构, 特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺, 以便使制品具有较好的经济性。 4、在成本方面: 要考虑注射制品的利润率、年产量、原料价格、使用寿

命和更换期限, 尽可能降低成本。 §2 塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象, 收缩的大小用收缩率表示。 %1000 0?-= L L L S 式中S ——收缩率; L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1) 成型压力。型腔内的压力越大, 成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高, 塑料的膨胀系数增大, 塑料制品的收缩率增大。但温度升高熔料的密度增大, 收缩率反又减小。两者同时作用的结果一般是, 收缩率随温度的升高而减小。 (3) 模具温度。一般情况是, 模具温度越高, 收缩率增大的趋势越明显。 (4) 成型时间。成型时保压时间一长, 补料充分, 收缩率便小。与此同时, 塑料的冻结取向要加大, 制品的内应力亦大, 收缩率也就增大。成型的冷却时间一长, 塑料的固化便充分, 收缩率亦小。 (5) 制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加, 而非结晶型塑料中, 收缩率的变化又分下面几种情况: ABS 和聚碳酸酯等的收缩率不受壁厚的影响; 聚乙烯、 丙烯腈—苯乙烯、 丙烯酸类等塑料的收缩率随壁厚的增加而增加; 硬质聚氯乙烯的收缩率随壁厚的增加而减小。

塑料制品的结构设计规范

双林汽车部件股份有限公司 企业技术规范 塑料制品的结构设计规范 2008-10-20发布2008-10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1 1.1 塑料制品设计的一般程序和原则塑料制品设计的一般程序 1.21、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 塑料制品设计的一般原则 1、在选料方面需考虑:(1) 塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏 感性等;(2) 塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3) 塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性 塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件 的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。 §2塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 S L0 L L0 100% 式中S——收缩率; L0——室温时的模具尺寸; L——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1)成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。

塑胶产品结构设计要点

塑胶产品结构设计要点 1.胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,小的产品取薄一点,一般产品取1.0-2.0为多。而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。 2.加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品尤其有用,同时还能防止产品变形。加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。加强筋的高度较大时则要做0.5-1的斜度(因其出模阻力大),高度较矮时可不做斜度。 3.脱模斜度:塑料产品都要做脱模斜度,但

高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。产品的前模斜度通常要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。 4.圆角(R角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。最小R通常大于0.3,因太小的R模具上很难做到。 5.孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。孔与产品外边缘的距离最好要大于1.5倍孔径,孔与孔之间的距离最好要大于2倍的孔径,以便产

产品结构设计准则壁厚篇

产品结构设计准则壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於 0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm 时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。

此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。 转角准则

塑胶件结构设计规范

塑胶零件结构设计规范
摘要 随着公司的不断发展和产品的增加,为了造型的需要产品结构件中塑料零件用 的越来越多。那么在具体设计塑料零件的结构时需要考虑哪些方面的问题?怎样合理地设计 塑料零件的结构?如何选择塑料零件的材料?壁厚选择多少合适?等等。 本文对这些具体问 题进行了详细的总结。希望对大家在今后的设计中有所帮助并希望大家一起来补充完善。 关键词 塑料零件、壁厚、脱模斜度、加强筋、材料选择 1、零件的形状应尽量简单、合理、便于成型 1.1 在保证使用要求前提下,力求简单、便于脱模,尽量避免或减少抽芯机构,如采用下 图例中(b)的结构,不仅可大大简化模具结构,便于成型,且能提高生产效率。
1.2 利用转换区的方法来防止突然的递变。

1.3 利用肋及浮凸物和铸空法使设计更合理。
1.4 转角处用圆弧过渡。

1.5 尽量让浮凸物与外壁或肋相连。
1.6 如果肋本身即与外壁间隔相当远,则最好加上角板。
2、零件的壁厚确定应合理 塑料零件的壁厚取决于塑件的使用要求, 太薄会造成制品的强度和刚度不足, 受力后容 易产生翘曲变形 , 成型时流动阻力大 , 大型复杂的零件就难以充满型腔。 反之, 壁厚过大, 不但浪费材料,而且加长成型周期,降低生产率,还容易产生气泡、缩孔、翘曲等疵病。因 此制件设计时确定零件壁厚应注意以下几点: 2.1 在满足使用要求的前提下,尽量减小壁厚; 2.2 零件的各部位壁厚尽量均匀, 以减小内应力和变形。 不均匀的壁厚会造成严重的翘曲 及尺寸控制的问题; 2.3 承受紧固力部位必须保证压缩强度; 2.4 避免过厚部位产生缩孔和凹陷; 2.5 成型顶出时能承受冲击力的冲击。

塑胶产品结构设计基本规则

塑胶产品结构设计基本规则 设计基本规则 壁厚的大小取决于产品需要承受的外力、是否作为其它零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低于0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高于0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料于过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的 压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则

在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固后出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。 转角准则 壁厚均一的要诀在转角的地方也同样需要,以免冷却时间不一致。冷却时间长的地方就会有收缩现象,因而发生部件变形和挠曲。 此外,尖锐的圆角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电镀过程后引起不希望的物料聚积。集中应力的地方会在受负载或撞击的时候破裂。较大的圆角提供了这种缺点的解决方法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。下图可供叁考之用。

海信塑料件通用设计规范

塑料件通用设计规范 (发布日期:2008-03-24) 1范围 本规范适用于空调器产品中使用的塑料件,其他产品可参考使用。 2相关标准 2.1塑料材料标准 见企业标准05原材料 2.2塑料件公差标准 QJ/T 10628-1995 塑料制件尺寸公差 3常用塑料件的材料特性及选用 3.1常用塑料件的材料名称及主要特性 a)ABS:为丙烯腈(A)、丁二烯(B)和苯乙烯(S)共聚物,具有良好的综合机械性能,易于成型, 使用温度-40℃~100℃,广泛用作外观件和一般结构件。有耐候ABS、阻燃ABS、增强ABS、抗静电ABS,ABS/PC合金等; b)HIPS:改性聚苯乙烯,目前已部分取代ABS材料,对放射线的抵抗力在所有塑料中最强,使用温度 -30℃~80℃,HIPS表面硬度、冲击强度、弯曲强度较ABS有轻微的降低,脆性易裂,设计时应特别注意防止开裂。有阻燃HIPS、增强HIPS、高光HIPS; c)PP:聚丙烯,机械性能好,特别是刚性及延展率好,耐高温,可在120℃下长期使用,耐磨性稍差, 收缩率大,易产生缩孔、凹痕、变形等缺陷,注塑件尺寸精度难保证。有改性PP、耐候PP,PP+波纤; d)PC:聚碳酸酯,综合性能良好,透光率高,耐高温,可在130℃下长期使用,但耐疲劳强度低, 容易开裂,常用作透明件或装饰件。有阻燃PC、增强PC; e)PA:聚酰胺(尼龙),机械性能优良,是一种自润滑材料,长期使用温度不超过80℃,注塑件尺寸 精度难保证,易产生缩孔、凹痕、变形等缺陷,常用作传动件和耐磨件如轴承、齿轮、凸轮、滑轮、衬套、铰链等。 f)POM:聚甲醛,机械性能优异,长期使用温度为100℃,注塑件尺寸稳定性较好,可制造较精密的 零件,能替代钢、铜、铝、铸铁等金属材料制件。 3.2材料选用: a)外观件:选用机械性能良好、尺寸稳定性及外观质量好的塑料,有ABS、HIPS; b)内部一般结构件:选用机械性能良好、尺寸稳定性的塑料,有ABS、PS、PP; c)透光及装饰件:要求塑料具有较高的透光度及透明度,有ABS、PC、PVC、AS; d)耐磨擦件:选用机械性能优良的塑料,有POM、PA; e)电控电器结构件:要求阻燃,并具有一定的强度,有阻燃ABS、阻燃PP;

塑胶件设计规范

塑胶件设计规范 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

塑胶件设计规范:(限于目前常用的热塑性塑料件设计)1.壁厚设计 根据零件功能及形状大小而定。注塑成型壁厚一般不大于4mm。常用材料壁厚如下,特殊要求的壁厚另行考虑。 单位:mm 热塑性塑料名称厚度范 围 典型厚 度 备注 ABS~拐角内圆角最小半径25%壁 厚 PC~一般设计壁厚不超过3.1mm PP~一般设计壁厚不超过2.5mm PS~50%壁厚 PA~0.5mm POM~ PMMA~ PPO~ SAN~ PU~38 LDPE~ HDPE~ LCP~ 平面准则:尽量壁厚均匀一致。 因故不能做到,需做渐变过度, 过度的部分长高比例大于等于3:1 转角准则:壁厚均匀原则在 拐角处同样适用。

2.BOSS柱设计:(常用塑料) 设计原则,首先考虑连接强度。下表是对于一般结构件连接情况;对于重要外观件,BOSS柱外径,在连接强度不高情况下,可以适当做小。 当连接有强度要求,又有外观要求时,需按下面参数设计,同时设计出火山口。 BOSS柱要求使用司筒顶出,斜度不大于度。 单位:mm 说明:外径根据强度要求可以适当变化,以上值为要求

说明:PC柱比ABS更容易打爆,若出现此现象,外径可适当加大

度 PA6,PA66,SAN /POM ±4 ST ±5 ±6 ST ± ST 3±7 ST ±8 ST ± ST 4±9 ST ±1011 ST ± ST 8±16 说明:PA6,PA66螺钉有效深度可以比上表值缩短15%。 火山口设计: 壁厚<2mm, A尺寸做0.75mm 2mm≤壁厚, A尺寸做60~70%壁厚 3.加强筋设计 加强筋厚度 一般设计,加强筋厚度不超过壁厚倍。 有外观要求时,加强筋厚度的不超过倍壁厚。

塑胶产品结构设计准则--洞孔

塑胶产品结构设计准则--洞孔 (Hole) 在塑胶件上开孔使其和其它部件相接合或增加产品功能上的组合是常用的手法,洞孔的大小及位置应尽量不会对产品的强度构成影响或增加生产的复杂性,以下是在设计洞孔时须要考虑的几个因素。 相连洞孔的距离或洞孔与相邻产品直边之间的距离不可少於洞孔的直径,如孔离边位或内壁边之要点图。与此同时,洞孔的壁厚理应尽量大,否则穿孔位置容易产生断裂的情况。要是洞孔内附有螺纹,设计上的要求即变得复杂,因为螺纹的位置容易形成应力集中的地方。从经验所得,要使螺孔边缘的应力集中系数减低至一安全的水平,螺孔边缘与产品边缘的距离必须大於螺孔直径的三倍。 孔离边位或内壁边之要点 穿孔

从装配的角度来看,穿孔的应用远较盲孔为多,而且较盲孔容易生产。从模具设计的角度来看,穿孔的设计在结构上亦较为优胜,因为用来穿孔成型的边钉的两端均可受到支撑。穿孔的做法可以是靠单一边钉两端同时固定在模具上、或两枝边钉相接而各有一端固定在模具上。一般来说,第一种方法被认为是较好的;应用第二种方法时,两条边钉的直径应稍有不同以避免因为两条边钉轴心稍有偏差而引致产品出现倒扣的情况,而且相接的两个端面必须磨平。 盲孔 盲孔是靠模具上的哥针形成,而哥针的设计只能单边支撑在模具上,因此很容易被溶融的塑料使其弯曲变形,形成盲孔出现椭圆的形状,所以哥针的长度不能过长。一般来说,盲孔的深度只限於直径的两倍。要是盲孔的直径只有或於1.5mm,盲孔的深度更不应大於直径的尺寸。 盲孔的设计要点 钻孔

大部份情况下,额外的钻孔工序应尽量被免,应尽量考虑设计孔穴可单从模具一次成型,减低生产成本。但当需要成型的孔穴是长而窄时”即孔穴的长度比深度为大〔,因更换折断或弯曲的哥针构成的额外成本可能较辅助的後钻孔工序为高,此时,应考虑加上後钻孔工序。钻孔工序应配合使用钻孔夹具加快生产及提高品质,亦可减少因断钻咀或经常番磨钻咀的额外成本及时间;另一做法是在塑胶成品上加上细而浅的定位孔以代替使用钻孔夹具。 侧孔 侧孔往往增加模具设计上的困难,特别是当侧孔的方向与开模的方向成一直角时,因为侧孔容易形成塑胶产品上的倒扣部份。一般的方法是使用角针”Angle Pin〔及活动侧模”Split Mould〔,或使用油压抽哥。留意哥针在胶料填充时会否受压变形或折断,此情况常见於长而直径小的哥针上。因模具的结构较为复杂,模具的制造成本比教高,此外,生产时间亦因模具必须抽走哥针才可脱模而相应增加。 其他设计考虑 有关孔穴在产品设计上的考虑,尚有下列各点: 1. 多级”多个不同直径但相连的孔〔的孔可容许的深度比单一直径的孔长;此外,将模具件部份孔位偷空,亦可将孔的深度缩短,下图说明这两种方法的应用。

【塑料橡胶制品】塑料结构件设计规范

(塑料橡胶材料)塑料结构 件设计规范

塑料制品的结构设计 塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1.1塑料制品设计的一般程序和原则 1.1.1塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.1.2塑料制品设计的一般原则 1、在选料方面需考虑:(1)塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2)塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3)塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。

§1.2塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 式中S——收缩率; L0——室温时的模具尺寸; L——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1)成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2)注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3)模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。 (4)成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。 (5)制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。 (6)进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。 (7)玻璃纤维等的填充量。收缩率随填充量的增加而减小。 表2-1、表2-2、表2-3为常用塑料的成型收缩率。

塑料产品结构设计通用规范

塑料产品设计规范 一、塑料及塑料模的基本概念 1.1 塑料的分类及性能 塑料的品种很多,可以按其组成、性质和用途等对它们进行分类。 1.1.1 依据其热性能分类 按照热性能塑料可以分为热塑性塑料和热固性塑料两类。 塑料受热熔融,冷却后凝固,再次加热又可软化熔融,重新制成产品,这一过程可以反复进行多次,而材料的化学结构基本上不起变化,称之为热塑性塑料。常用的热塑性塑料有:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。 在一定温度下能变成粘稠状态,但是经过一定时间加热塑制成形后,不会因再度加热而软化熔融。这是因为在成形过程中聚合物分子之间发生了化学反应,形成了交联网状结构,使之成为不熔的固态,所以只能塑制一次,称为热固性塑料。常用的热固性塑料有:酚醛树脂、环氧树脂、有机硅塑料等。 1.1.2 依据其用途分类 按用途不同塑料可以分为通用塑料、工程塑料和特种塑料。 一般把价格低、产量大、用途广而受力不大的,常用于制造日用品的塑料称为通用塑料。例如:聚乙烯、聚丙烯、聚氯乙烯、酚醛、聚苯乙烯等等。把机械强度高、刚性大的,常用于取代钢铁或有色金属材料制造机械零件或工程结构受力件的塑料称为工程塑料。例如:聚砜、聚酰胺、聚碳酸酯、聚醚酮等等。另外,将一些具有特殊功能的塑料,称为特种塑料。例如:导电的聚乙炔、耐高温的聚芳砜等。随着聚合物合成技术的发展,塑料可以通过采取各种措施来改进性能和增加强度,从而制成新颖的塑料品种。 1.2 塑料成形方法及塑料的种类 1.2.1 塑料的成形方法 1.注射成形:注射成形技术是据压铸原理发展起来的,是目前塑料加工中最普遍采用的方法之一。注射成形是间歇操作,成形周期短,生产效率高,产品种类繁多,生产灵活。其制品已占塑料制品总产量的30%以上。注射成形的工艺原理是将颗粒状塑料原料置于塑料注射成形机内并加热熔化,通过压力作用注射到模具内定型,经过一段时间冷却后取出制品。 2.吹塑成形:吹塑成形是目前塑料成形生产的主要方法,它包括挤出吹塑,如吹塑薄膜;中空吹塑,如吹塑中空的塑料容器等。 3.热成形:塑料的热成形是将热塑性塑料的片状材料加热至软化,使其处于热弹性状态,然后通过压力在模具中成为制品。塑料的热成形工艺主要有:差压成形、覆盖成形、柱塞助压成形等。 另外,塑料成形方法还有挤塑成形、压缩成形和压注成形等。 1.2.2 塑料的种类 常用的塑料有以下一些种类: 1.聚乙烯(PE)是目前国内外产量最大的塑料,优点是质轻、价廉和电绝缘性能好。 2.聚丙烯(PP)除了具有聚乙烯同样的质轻、价廉和电绝缘性能好的优点之外,其机械性能和耐热性比聚乙烯要好得多。缺点是耐寒和耐氧化性较差。 3.聚氯乙烯(PVC) 机械性能良好,耐化学腐蚀和耐候性较好,缺点是耐热性不好。适用于多种成形工艺,产量大而价廉,是重要的塑料品种。 4.聚苯乙烯(PS) 主要优点是质轻、透明、易染色,成形工艺性好,应用广泛。缺点是韧性较差、不耐寒、不耐热。 5.聚甲基丙烯酸甲酯(PMMA)俗称有机玻璃具有良好的综合性能,尤其是光学性能非常好。缺点是硬度小、耐磨性及耐热性差、吸湿性大、易脆裂。 6.聚碳酸酯(PC) 透光率与有机玻璃相近,而机械性能要好得多,尤其是韧性较突出,抗蠕变性能也较好。缺点是制品易开裂。 7.聚酰胺(PA) 就是尼龙或锦纶,大多为乳白色热塑性塑料。其机械性能优越,在弹性模量、强度等方面较突出。抗震性较好,震动时发出的噪声低。 8.氯化聚醚(CPT)又称盼通塑料。常用于注射和挤出成形,是优良的耐腐蚀性材料。 9.聚苯醚(PPO)抗拉强度高、韧性好。主要通过注射和挤出成形,应用于机械、化工、医药、电器、电子及国防工业等尖端技术上面。 10.聚甲醛(POM)机械性能较好,在机电、汽车、仪表、精密仪器等方面常用来代替有色金属和合金。

产品结构设计资料

产品结构设计资料--塑料材质 热硬化性塑料---在原料状态下是没有什么用,在某一温度下加热,经硬化作用,聚合作用或硫化作用后,热硬化塑料就会保持稳定而不能回到原料状态。 硫化作用后,热硬化塑料是所有塑料中最坚硬的。 热塑性塑料---象金属一样形成熔融凝固的循环。常用有聚乙烯(P E)、聚苯乙烯(PS)、聚氯乙烯(PVDC)。 ABS:成分聚合物 1.丙烯晴---耐油,耐热,耐化学和耐候性。 2.苯乙烯---光泽,硬固,优良电气特性和流动性。 3.丁二烯---韧性。 螺杆对原料有输送,压缩,熔融及计量等四种功能。螺杆在旋转时使之慢慢后退的阻力为背压。背压太低,产品易产生内部气泡,表面银线,背压太高,原料会过热,料斗下料处会结块,螺杆不能后退,成型周期延长及喷嘴溢料等。压力的变动在一两模内就可知道结果,而温度的变动则需约10分钟的结果才算稳定。 2-1电镀 塑料电镀时,须先进行无电解电镀,塑料表面形成薄金属皮膜,形成导电物质后再进行电解电镀。

印刷 1.网版印刷:适用于一般平面印刷 2.移印:适用不规则,曲面的印刷文字 3.曲面印刷:被印物体旋转而将文字与油墨印上 常用工程塑料 NORYL---PPO和HIPS合成,在240~300℃成型加工,须用70~9 0℃高模温。 ABS---在170~220下成型加工,模温40~60℃即可。 2-2ABS系列成品设计及模具加工 最佳的补强厚度t=70%成品工称肉厚(T),角隅圆角的外圆R= 3/2*T,内圆R=T/2,T是成品工称肉厚。喷嘴信道最小口径为6.35 mm,长度宜尽量短,可变电阻器控制精度稍嫌不足,所以在喷嘴外壁应装设电偶作温度控制。流道形状以圆形最佳,流动长度与流道口径关系。 流动长度(mm)流道直径(mm) 2509.5 75~2507.9 75 6.0 对防火级ABS材料应使用直溢口为最佳设计(流道直径最小7mm),边溢口及潜伏式溢口,建议其长度为0.762mm。 透气得设置是绝对必须的,每隔25~50mm开设一条透气沟,深度

国产零部件包装通用技术规范

Q/JD T08 重庆长安汽车股份有限公司企业标准 Q/JD 3147-2011 国产零部件包装通用技术规范 2011-08-23 发布 2011-09-10 实施 重庆长安汽车股份有限公司发布

前 言 本标准依据GB/T 1.1的起草规则进行编写。 本标准由重庆长安汽车股份有限公司提出。 本标准由重庆长安汽车股份有限公司汽车工程研究总院管理。本标准起草单位:重庆长安汽车股份有限公司物流部。 本标准主要起草人:范正文、陈盛、胡珺。 本标准批准人: 本标准于2011年 08月23日首次发布。

国产零部件包装通用技术规范 1 范围 本规范规定了国产零部件包装的设计原则、塑料周转箱设计及制作标准、金属料架设计及制作标准、金属网箱设计及制作标准、纸箱制作标准、周转料箱料架附带内部衬格的设计要求、托盘标准和相关条件目录。 本标准适用于重庆长安汽车股份有限公司(本部)自主品牌汽车制造工厂用于国内流通的外购零部件包装。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 190-2009 危险货物包装标志 GB/T 191-2008 包装储运图标标志 GB/T 3094-2000 冷拔异性钢管 GB/T 4122.1-2008 包装术语第1部分:基础 GB/T 4122.3-1997 包装术语防护 GB/T 4122.4-2002 包装术语木容器 GB/T 4122.5-2002 包装术语检验与试验 GB/T 4456-2008 包装用聚乙烯吹塑薄膜 GB/T 4768-2008 防霉包装 GB/T 4857.1-1992 包装运输包装件试验时各部位的标示方法 GB/T 4857.3-2008 包装运输包装件基本试验第3部分:静载荷堆码试验方法 GB/T 4857.4-2008 包装运输包装件基本试验第4部分:采用压力试验机进行的抗压和堆码试验方法 GB/T 4857.5-1992 包装运输包装件跌落试验方法 GB/T 4857.9-2008 包装运输包装件基本试验第9部分:喷淋试验方法 GB/T 4857.14-1999 包装运输包装件倾翻试验方法 GB/T 4857.19-1992 包装运输包装件流通试验信息记录

塑胶产品结构设计注意事项(20200915043207)

塑胶产品结构设计注意事项 目录 第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料选择 1.2 、壳体厚度 1.3 、零件厚度设计实例 2、脱模斜度 2.1 、脱模斜度要点 3、加强筋 3.1 、加强筋与壁厚的关系 3.2 、加强筋设计实例 4、柱和孔的问题 4.1 、柱子的问题 4.2 、孔的问题 4.3 、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1 、止口的作用 6.2 、壳体止口的设计需要注意的事项 6.3 、面壳与底壳断差的要求 7、卡扣的设计 7.1 、卡扣设计的关键点 7.2 、常见卡扣设计 7.3 、

第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料的选取 a. ABS :高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不 承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支 架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰 件等)。目前常用奇美PA-757 、PA-777D 等。 b. PC+ABS :流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y 、PC2405 、 PC2605 。 d. POM 具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和 吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如: M90-44 。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如: CM3003G-30 。 f. PMMA 有极好的透光性,在光的加速老化240小时后仍可透过92% 的太阳 光,室外十年仍有89% ,紫外线达78.5% 。机械强度较高,有一定的耐寒 性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有

产品的结构设计注意事项(塑胶类)

塑胶结构篇 塑料的外观要求:产品表面应平整、饱满、光滑,过渡自然,不得有碰、划伤以及缩孔等缺陷。产品厚度应均匀一致,无翘曲变形、飞边、毛刺、缺料、水丝、流痕、熔接痕及其它影响性能的注塑缺陷。毛边、浇口应全部清除、修整。产品色泽应均匀一致,表面无明显色差。颜色为本色的制件应与原材料颜色基本一致,且均匀; ?需配颜色的制件应符合色板要求。 ?上、下壳外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面 ?壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽量 ?使产品:面壳>底壳。 ?一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, ?一般选0.5%,底壳成型缩水较小,所以缩水率选择较小,一般选0.4%。 结构设计的一般原则:力求使制品结构简单,易于成型;壁厚均匀;保证强度和刚度;根据所要求的功能决定其形状尺寸外观及材料,当制品外观要求较高时,应先通过外观造型在设计内部结构。 尽量将制品设计成回转体或对称形状,这种形状结构工艺性好,能承受较大的力,模具设计时易保证温度平衡,制品不以产生翘曲等变形。应考虑塑料的流动性,收缩性及其他特性,在满足使用要求的前提下制件的所有转角尽可能设计成圆角或用圆弧过渡。 塑料件设计要点 开模方向和分型线 每个塑料产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响; 开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 脱模斜度 脱模斜度的要点 脱模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。此外,成型的方式,壁厚和塑料的选择也在考虑之列。一般来讲,对模塑产品的任何一个侧壁,都需有一定量的脱模斜度,以便产品从模具中取出。脱模斜度的大小可在0.2°至数度间变化,视周围条件而定,一般以0.5°至1°间比较理想。具体选择脱模斜度时应注意以下几点: a. 取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得,外形以大端为准,符合图样,斜度由缩小方向取得。如下图1-1。 b. 凡塑件精度要求高的,应选用较小的脱模斜度。

相关文档