文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料用在哪方面

纳米材料用在哪方面

纳米材料用在哪方面
纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢

1、特殊性能材料的生产

材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。

纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。

2、生物医学中的纳米技术应用

从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

是生命现象中基本的东西。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。遗传基因序列的自组装排列做到了原子级的结构准确,神经系统的信息传递和反馈等都是纳米科技的典范。生物合成和生物过程已成为启发和制造新的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级控制和操纵。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。目前已获得较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等。

正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技。将直接应用于临床诊断,药物开发和人类遗传诊断。植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。纳米生物材料也可以分为两类,一类是适合于生物体内的纳米材料,如各式纳米传感器,用于疾病的早期诊断、监测和治疗。各式纳米机械系统可以快速地辨别病区所在,并定向地将药物注入病区而不伤害正常的组织或清除心脑血管中的血栓、脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。另一类是利用生物分子的活性而研制的纳米材料,它们可以不被用于生物体,而被用于其它纳米技术或微制造。

3、新的国防科技革命

纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在隐身技术上的应用尤其引人注目。在雷达隐身技术中,超-高-频(SHF,GHz)段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身材料加以研制。由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,不饱和键和悬挂键增多。大量悬挂键的存在使界面极化,吸收频带展宽。高的比表面积

造成多重散射。纳米材料的量子尺寸效应使得电子的能级分裂,分裂的能级间距正处于微波的能量范围,为纳米材料创造了新的吸波通道。纳米材料中的原子、电子在微波场的辐照下,运动加剧,增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能。美国研制的“超黑粉”纳米吸波材料对雷达波的吸收率达99%,法国研制的CoNi纳米颗粒被覆绝缘层的纳米复合材料,在2-7GHz范围内,其m¢和m¢¢几乎均大于6。国外正致力于研究可覆盖厘米波、毫米波、红外、可见光等波段的纳米复合材料,并提出了单个吸收粒子匹配设计机理,这样可以充分发挥单位质量损耗层的作用。纳米材料在具备良好的吸波功能的同时,普遍兼备了薄、轻、宽、强等特点。纳米材料中的硼化物、碳化物,铁氧体,包括纳米纤维及纳米碳管在隐身材料方面的应用都将大有作为。

4、其他领域

除此之外,纳米材料还在诸如海水净化、航空航天、环境能源、微电子学等其他领域也有着逐渐广泛的应用,纳米材料在这些领域都在逐渐发挥着光和热。

南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂与仪器等研发与生产。公司拥有一批包括多名创业教授、博士后、博士及硕士的自主研发队伍,同时广泛联合各知名高校院所及医院的专家团队。

纳米技术在生活中的应用

纳米技术在生活中的应用 论文摘要:本文介绍了纳米技术、纳米材料的基本概念、原理、特征和各种纳米材料在涂料领域的应用;阐述了纳米材料在应用中所存在的技术问题,以及纳米技术在涂料领域的发展前景。 论文关键词:纳米技术纳米材料涂料 1纳米简介 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米是一个微小的长度单位,1纳米等于10亿分之一米。根头发丝有7万到8万纳米。纳米技术这个词汇出现在1974年。纳米科学、纳米技术是在0。10 到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。碳纳米管自从1991年被发现以来,就一直被誉为未来的材料。碳纳米管在强度上大约比钢强100倍,其传热性能优于所有已知的其它材料。碳纳米管具有良好的导电性,在常温下导电时,几乎不产生电阻。纳米陶瓷材料在1600摄氏度高温下能像橡皮泥那样柔软,在室温下也能自由弯曲。从1998年世界上第一只纳米晶体管制成,到1999年100纳米芯片问世,使20世纪最后10年世界上出现的“纳米热”进一步升温。 我国在纳米技术领域占有一度之地,处于国际先进行列。已成功制备出包括金属、合金、氧经化物、氢化物、碳化物、离子晶体和半导体等多种纳米材料,合成出多种同轴纳米电缆,掌握了制备纯净碳纳米管技术,能大批量制备长度为2至3毫米的超长纳米管。合成的最细的碳纳米管的直径只有0.33纳米,这不但打破了我国科学家自已不久前创造的直径只为0.5纳米的世界纪录,而且突破了日本科学家1992年所提出的0.4纳米的理论极限值 纳米技术应用前景十分广阔,经济效益十分巨大。纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。一张纳米光盘上能存几百部,

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

浅谈纳米材料与生活

浅谈纳米材料与生活 摘要:人类迈着欢快的步伐轻松地进入二十一世纪。二十世纪是计算机技术革命蓬勃发展的时期,计算机技术得到了卓越的发展。现在人类进入了又一世纪,在这个日新月异的新的世纪里,科学家通过运用的发达的计算机技术,为我们奏起了“纳米技术”发展的号角。“纳米技术”主要是围绕开发纳米材料为核心而发展的技术,它有着广阔的发展前景,随着纳米技术的发展纳米材料也不断有着新的开发。“纳米材料”的有效发掘及其利用必定会给人们的生活带来又一翻天覆地变化,给人们的衣、食、住、行、医疗卫生事业带来极大便利。本文主要是通过给大家说明纳米材料的本质这一基点,向大家普及纳米材料的特性,以使更多的人能对纳米材料有整体的认识。除此之外更重要的就是联系生活实际,向大家说明纳米材料是如何影响人们生活的。到目前为止,它的发展的确已经给我们生活带来了很多便利,我相信在纳米技术不断进步、发展的未来,纳米材料一定有更广阔的空间。 关键词:纳米、纳米技术、纳米材料、应用 现如今,科学界普遍认为,纳米技术是21世纪经济增长的一台主要发动机,他将成为超过网络技术和基因技术的“决定性技术”,并将成为最有前途的材料,它所见具有的独特物理和化学性质,可以节省资源、合理利用能源并且能够净化生存环境,它的发展研究会对化工行业带来新的机遇。 纳米材料的特性: 纳米材料是英文“napometer”的译音,是一个物理学上的长度单位。1纳米是1米的十亿分之一,用我们能看见的最小微粒院子来表示的话,相当于45个远在啊排列起来的长度。自然界只有生物具有纳米尺度,遗传基因DNA螺旋结构的半径约1纳米左右,一个典型的病毒大约100纳米长,相当于万分之一的头发丝的粗细。纳米科技就是一门以0.1至100纳米这样的尺度为研究对象的前沿科学。作为尺度单位的纳米,并没有物理内涵,当物质到纳米尺度后,

纳米科技的发展现状及前景

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。关键突破 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。 纳米技术包含下列四个主要方面:

浅谈纳米材料与技术的应用与发展

浅谈纳米材料与技术的应用与发展 二十一世纪是信息技术、生命科学和纳米技术的世纪,科学技术的飞速发展以及国民经济的提高为纳米材料与技术这一专业的发展奠定了坚实的基础。纳米材料不同于传统的材料,拥有其他材料不具备的优异性能,同时,纳米材料应用范围十分广泛,可应用在环境保护、航空航天、生物医学、防护装置等各个方面,因此,发展纳米材料与技术具有十分重要的意义。本文主要论述了纳米材料与技术的应用,并对其发展前景进行了阐述,期望能为我国的纳米材料与技术的发展提供一些建议。 标签:纳米材料与技术;应用;发展 一、引言 纳米材料是物质的颗粒大小属于纳米级,主要是通过压制、烧结由金属、无机物或者聚合纳米微颗粒产生的材料。它处于1-100纳米这个范围空间,拥有着特殊的性能,是一种介于微观和宏观物质结构之间的特殊材料[1]。納米材料与技术概念率先提出于20世纪60年代,在1984年纯物质纳米细粉的制得则标志着其研究进入了新的阶段;而在1990年7月,纳米材料科学正式成为材料科学新的分支。二十一世纪以来,纳米技术是二十一世纪三大科技之一,纳米材料进入高速发展的阶段,各国不断加大对纳米材料研究的投资,例如美国的NNI,欧盟的“地平线2020”,以及我国在“八五”期间,将“纳米材料科学”列入国家项目之中,并于2006 年启动了纳米技术科学研究计划。现在纳米材料逐渐步入2.0时代,与医药、测量技术等学科的结合研究已走上日程,相信在未来,纳米材料在安全、环境、健康方面的研究也会不断深入,更好的应用于我们社会的各个领域[2]。 二、纳米材料与技术的应用 2.1 在环境保护上的应用。 随着科学技术的发展,我国的工业越来越强,但是在发展过程中污染了环境,所排放的废气废水已经严重超过环境自身的承载力,其恢复效果十分差,给人们的生活以及身体健康带来了十分不利的影响。但纳米材料的发现,其良好的性能有助于保护环境。工业发展过程中汽油、柴油的使用,因其含有硫的化合物在燃烧时产生有害气体,过量排放导致了大气污染,纳米材料和纳米技术的应用能够解决这些有毒气体的污染问题。具有良好性能的纳米钛酸钴,有良好的催化效果,催化后的石油含硫量满足了国际要求,有效地抑制了有毒气体的排放。污水中包含有毒物质、泥沙、悬浮物、细菌病毒等,将这些有害物质去除就是污水处理。使用纳米材料与技术可以提炼出污水中的金属材料,以便继续使用。污水中的有毒有害物质可以使用纳米微粒光催化作用将这些污染物转化为矿化物。 2.2 在防护装置上的应用。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

简述纳米材料的发展历程

简述纳米材料的发展历程 纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。 “纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。 该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。该产品已经在企业实现了中试生产,正在建设规模化生产线。 联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应 用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。 纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。 一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

对纳米材料的认识

浅谈对纳米材料的认识 “纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。 纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。 纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。 纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。 经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。 目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

纳米材料论文

纳米材料的特性与应用 摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。 关键词:纳米材料特性应用 1. 纳米发展简史 1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.什么是纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 3. 纳米材料的特性 广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3.1表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 3.2小尺寸效应

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 2、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 3、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。 纳米技术的发展史 1959年著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小 的机器制做更小的机器,最后将变成根据人类意愿,逐个地排列原 子,制造产品,这是关于纳米技术最早的梦想。 20世纪70年代科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家 唐尼古奇最早使用纳米技术一词描述精密机械加工 1982年科学家发明研究纳米的重要工具——扫描隧道显微镜,揭示了一个 可见的原子、分子世界,对纳米科技发展产生了积极的促进作用。1990年7月第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科

纳米材料发展史

纳米材料发展史 专业 --------- 姓名—————— 学号 _________ 一、什么是纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1

微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其

具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 二.纳米材料的发展历程 1959年12月29日

理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。1974年 日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年 格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1985年 赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使用最广泛的纳米材料之一。 1986年 在苏黎世的IBM研究实验室中,卡尔文?夸特(Calvin Quate)和克里斯托?格柏(Christoph Gerber)与德国物理学家宾尼(Binnig)协作,发明了原子力显微镜。它成为在纳米尺度成像,测量和操作的最重要的工具之一,这是纳

相关文档