文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料与生活

纳米材料与生活

纳米材料与生活
纳米材料与生活

纳米材料和我们的生活

在21实际的今天,众所周知,纳米技术已经被大多数人所熟知,它也在不知不觉中走进了我们的生活,并影响着我们的生活。下面将从几个方面具体阐述纳米技术从哪几方面影响我们的生活。

一、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

二、环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

三、能源环保中的纳米技术:在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。

四、生物医药中的纳米技术:这是我国进入WTO以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

五、信息产业中的纳米技术:其应用主要表现在三个方面,①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间。③网络

通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。

从以上谈到的关于纳米材料在各个方面的应用可以很清楚的知道,纳米材料的确会给我们的生活带来很多积极正面的影响。俗话说任何事物都存在两面性,同样的道理,纳米材料也是一柄双刃剑,它给我们生活所带来的负面影响也是不可忽视的。具可靠研究报道显示,纳米材料具有难回收性,用通俗的话说就是我们使用过的纳米材料会残存在我们的生活环境中无法将其回收。同时它对环境也有负面影响。2002年,科学家发现,纳米材料会在实验动物的肺里累积,会带来怎么的危害还未可知。

纳米技术在生活中的应用

纳米技术在生活中的应用 论文摘要:本文介绍了纳米技术、纳米材料的基本概念、原理、特征和各种纳米材料在涂料领域的应用;阐述了纳米材料在应用中所存在的技术问题,以及纳米技术在涂料领域的发展前景。 论文关键词:纳米技术纳米材料涂料 1纳米简介 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米是一个微小的长度单位,1纳米等于10亿分之一米。根头发丝有7万到8万纳米。纳米技术这个词汇出现在1974年。纳米科学、纳米技术是在0。10 到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。碳纳米管自从1991年被发现以来,就一直被誉为未来的材料。碳纳米管在强度上大约比钢强100倍,其传热性能优于所有已知的其它材料。碳纳米管具有良好的导电性,在常温下导电时,几乎不产生电阻。纳米陶瓷材料在1600摄氏度高温下能像橡皮泥那样柔软,在室温下也能自由弯曲。从1998年世界上第一只纳米晶体管制成,到1999年100纳米芯片问世,使20世纪最后10年世界上出现的“纳米热”进一步升温。 我国在纳米技术领域占有一度之地,处于国际先进行列。已成功制备出包括金属、合金、氧经化物、氢化物、碳化物、离子晶体和半导体等多种纳米材料,合成出多种同轴纳米电缆,掌握了制备纯净碳纳米管技术,能大批量制备长度为2至3毫米的超长纳米管。合成的最细的碳纳米管的直径只有0.33纳米,这不但打破了我国科学家自已不久前创造的直径只为0.5纳米的世界纪录,而且突破了日本科学家1992年所提出的0.4纳米的理论极限值 纳米技术应用前景十分广阔,经济效益十分巨大。纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。一张纳米光盘上能存几百部,

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不

纳米材料科学与技术

聚合物基纳米复合材料的研究进展 摘要:本文总结了聚合物基纳米复合材料的研究进展,主要涉及纳米复合材料的制备方法、性能介绍和应用情况等方面,对聚合物基纳米复合材料的合成技术方法、不同的类型和相应性能特点进行了重点分析。对于聚合物基纳米复合材料,纳米填料的分散性、与聚合物基体的界面性能以及基体的性质都是影响其物理、热性能、机械等性能的重要参数。最后,简要介绍了目前在聚合物基纳米复合材料研究领域存在的问题,并对中国在该领域的未来发展以及纳米复材的产业化应用提出了相关建议。 关键词:纳米复合材料;聚合物;进展 Progress in Polymer Nanocomposites Development Abstract:This article summarizes some of the highlights of newest development in polymer nanocomposites research. It focuses on the preparation, properties and applications of polymer nanocomposites. The various manufacturing techniques, analysis of kinds of polymer nanocomposites and their applications have been described in detail. In the case of polymer nanocomposites, filler dispersion, intercalation/exfoliation, orientation and filler-matrix interaction are the main parameters that determine the physical, thermal, transport, mechanical and rheological properties of the nanocomposites. Finally, the recent situation of research in polymer nanocomposites was introduced and some constructive suggestions were proposed about the industrialization of polymer nanocomposites in China. Keywords:nanocomposites; polymer; progress

纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢 1、特殊性能材料的生产 材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。 纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。 2、生物医学中的纳米技术应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

浅谈纳米材料与生活

浅谈纳米材料与生活 摘要:人类迈着欢快的步伐轻松地进入二十一世纪。二十世纪是计算机技术革命蓬勃发展的时期,计算机技术得到了卓越的发展。现在人类进入了又一世纪,在这个日新月异的新的世纪里,科学家通过运用的发达的计算机技术,为我们奏起了“纳米技术”发展的号角。“纳米技术”主要是围绕开发纳米材料为核心而发展的技术,它有着广阔的发展前景,随着纳米技术的发展纳米材料也不断有着新的开发。“纳米材料”的有效发掘及其利用必定会给人们的生活带来又一翻天覆地变化,给人们的衣、食、住、行、医疗卫生事业带来极大便利。本文主要是通过给大家说明纳米材料的本质这一基点,向大家普及纳米材料的特性,以使更多的人能对纳米材料有整体的认识。除此之外更重要的就是联系生活实际,向大家说明纳米材料是如何影响人们生活的。到目前为止,它的发展的确已经给我们生活带来了很多便利,我相信在纳米技术不断进步、发展的未来,纳米材料一定有更广阔的空间。 关键词:纳米、纳米技术、纳米材料、应用 现如今,科学界普遍认为,纳米技术是21世纪经济增长的一台主要发动机,他将成为超过网络技术和基因技术的“决定性技术”,并将成为最有前途的材料,它所见具有的独特物理和化学性质,可以节省资源、合理利用能源并且能够净化生存环境,它的发展研究会对化工行业带来新的机遇。 纳米材料的特性: 纳米材料是英文“napometer”的译音,是一个物理学上的长度单位。1纳米是1米的十亿分之一,用我们能看见的最小微粒院子来表示的话,相当于45个远在啊排列起来的长度。自然界只有生物具有纳米尺度,遗传基因DNA螺旋结构的半径约1纳米左右,一个典型的病毒大约100纳米长,相当于万分之一的头发丝的粗细。纳米科技就是一门以0.1至100纳米这样的尺度为研究对象的前沿科学。作为尺度单位的纳米,并没有物理内涵,当物质到纳米尺度后,

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米科技与纳米技术

纳米技术 1510700224 韦甜甜纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,也称毫微技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 利用纳米技术将氙原子排成IBM纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 在我国,纳米技术早已融入到大众的生活了,包括很多涂料、纤维材料、燃料、高分子合成和纺织品加工处理技术等等。其实纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米技术内容 1、纳米材料 当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 2、纳米动力学 主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.

浅谈纳米材料与技术的应用与发展

浅谈纳米材料与技术的应用与发展 二十一世纪是信息技术、生命科学和纳米技术的世纪,科学技术的飞速发展以及国民经济的提高为纳米材料与技术这一专业的发展奠定了坚实的基础。纳米材料不同于传统的材料,拥有其他材料不具备的优异性能,同时,纳米材料应用范围十分广泛,可应用在环境保护、航空航天、生物医学、防护装置等各个方面,因此,发展纳米材料与技术具有十分重要的意义。本文主要论述了纳米材料与技术的应用,并对其发展前景进行了阐述,期望能为我国的纳米材料与技术的发展提供一些建议。 标签:纳米材料与技术;应用;发展 一、引言 纳米材料是物质的颗粒大小属于纳米级,主要是通过压制、烧结由金属、无机物或者聚合纳米微颗粒产生的材料。它处于1-100纳米这个范围空间,拥有着特殊的性能,是一种介于微观和宏观物质结构之间的特殊材料[1]。納米材料与技术概念率先提出于20世纪60年代,在1984年纯物质纳米细粉的制得则标志着其研究进入了新的阶段;而在1990年7月,纳米材料科学正式成为材料科学新的分支。二十一世纪以来,纳米技术是二十一世纪三大科技之一,纳米材料进入高速发展的阶段,各国不断加大对纳米材料研究的投资,例如美国的NNI,欧盟的“地平线2020”,以及我国在“八五”期间,将“纳米材料科学”列入国家项目之中,并于2006 年启动了纳米技术科学研究计划。现在纳米材料逐渐步入2.0时代,与医药、测量技术等学科的结合研究已走上日程,相信在未来,纳米材料在安全、环境、健康方面的研究也会不断深入,更好的应用于我们社会的各个领域[2]。 二、纳米材料与技术的应用 2.1 在环境保护上的应用。 随着科学技术的发展,我国的工业越来越强,但是在发展过程中污染了环境,所排放的废气废水已经严重超过环境自身的承载力,其恢复效果十分差,给人们的生活以及身体健康带来了十分不利的影响。但纳米材料的发现,其良好的性能有助于保护环境。工业发展过程中汽油、柴油的使用,因其含有硫的化合物在燃烧时产生有害气体,过量排放导致了大气污染,纳米材料和纳米技术的应用能够解决这些有毒气体的污染问题。具有良好性能的纳米钛酸钴,有良好的催化效果,催化后的石油含硫量满足了国际要求,有效地抑制了有毒气体的排放。污水中包含有毒物质、泥沙、悬浮物、细菌病毒等,将这些有害物质去除就是污水处理。使用纳米材料与技术可以提炼出污水中的金属材料,以便继续使用。污水中的有毒有害物质可以使用纳米微粒光催化作用将这些污染物转化为矿化物。 2.2 在防护装置上的应用。

纳米材料与技术作业

纳米材料与技术作业 1.纳米材料按维度划分,可分为几类? (1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。 (2) 1维材料—线径为1—100 nm的纤维(管)。 (3) 2维材料—厚度为1 — 100 nm的薄膜。 (4) 体相纳米材料(由纳米材料组装而成)。 (5)纳米孔材料(孔径为纳米级) 2. 详细说明纳米材料有那几大特性?这几大特性的特点是什么?为什么纳米材料具有这些特性? (1) 表面效应:我们知道球形颗粒的比表面积是与直径成反比的,故颗粒直径越小,比表面积就会越大,因此,纳米颗粒表面具有超高的活性,在空气中金属颗粒会迅速氧化而燃烧,也正是基于表面活性大的原因,纳米金属颗粒可以看成新一代的高效催化剂,储气材料和低熔点材料; (2) 小尺寸效应:随着颗粒尺寸的量变会引起颗粒宏观物理性质的质变。特殊的光学性质:所有的金属在超微颗粒状态都呈现为玄色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等;特殊的热学性质:固体颗粒在超微细化后其熔点将明显降低,当颗粒小于10纳米量级时尤为明显;特殊的磁学性质:超微的磁性颗粒可以使鸽子、海豚等生物在微弱的地磁场中辨别方向,利用磁性超微颗粒具有高矫顽力的特性,可以做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等;利用超顺磁性,可以将磁性超微颗粒制成用途广泛的磁性液体;特殊的力学性质:由于纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很轻易迁移,因此表现出甚佳的韧性与一定的延展性。 (3)宏观量子隧道效应:处于分子、原子与大块的固体颗粒之间的超微纳米颗粒具有量子隧道效应,例如:在知道半导体集成电路时,当电路的尺寸接近电子的波长时,电子就会通过隧道效应溢出器件,使器件无法正常工作。 3.半导体纳米材料光催化特性产生的原因是什么?为什么一些半导体纳米材料的光催化特性要远远好于非纳米结构的半导体材料? (1)光催化特性是半导体具有的独特性能之一,在光的照射下,半导体价带中的电子跃迁到导带,从而价带产生空穴,导带中产生电子。空穴具有很强的氧化性,电子具有很强的还原性;(2)光激发和产生的电子和空穴可经历多种变化途径,其中最主要的分离和符合这两个相互竞争的过程,因此为了提高催化效率,需要加入电子或者空穴捕获剂,纳米半导体材料相比于一般的半导体材料具有更大的比表面积,因此具有更好的催化效果。 4.详细说明零维纳米材料具有哪些优良的物理化学特性?产

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

对纳米材料的认识

浅谈对纳米材料的认识 “纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。 纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。 纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。 纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。 经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。 目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术知识材料

纳米技术知识材料 一、纳米(nano meter,nm): 一种长度单位,一纳米等于十亿分之一米,千分之一微米。大约是三、四个原子的宽度。 二、纳米科学技术(nanotechnology): 纳米科学技术是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳米电子学、纳米材料学、纳米机械学等。纳米科学技术被认为是世纪之交出现的一项高科技。 三、纳米材料(nano material)与纳米粒子(nano particle): 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 四、几种典型的纳米材料: a) 纳米颗粒型材料: 应用时直接使用纳米颗粒的形态称为纳米颗粒材料。被称为第四代催化剂的超微颗粒催化剂,利用甚高的比表面与活性可以显著得提高催化效率,例如,以微径小于微米的镍和钢-锌合金的超微颗粒为主要成分制成的催化剂可使有机物氯化的效率达到传统镍催化剂的10倍;超细的铁微粒作为催化剂可以在低温将二氧化碳分解为碳和水,超细铁粉可在苯气相热分解中起成核作用,从而生成碳纤维。 录音带、录像带和磁盘等都是采用磁性粒子作为磁记录介质。随着社会的信息化,要求信息储存量大、信息处理速度高,推动着磁记录密度日益提高,促使磁记录用的磁性颗粒尺寸趋于超微化。目前用金属磁粉(20)纳米左右的超微磁性颗粒)制成的金属磁带、磁盘,国外已经商品化,其记录密度可达4’106~4’107位/厘米(107~108位/英寸),即每厘米可记录4百万至4千万的信息单元,与普通磁带相比,它具有高密度、低噪音和高信噪比等优点。

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

纳米科学与技术

深圳大学课程教学大纲 课程编号: 23200001 课程名称: 纳米科学与技术 开课院系: 材料学院 制订(修订)人: 曹培江 审核人: 批准人: 2007年9月3日制(修)订

课程名称:纳米材料与技术 英文名称: Nano science & technology 总学时: 36 其中:实验课0 学时 学分: 2 先修课程:大学物理、普通化学、材料科学基础 教材:《纳米材料和纳米结构》—张立德,牟季美著;科学出版社 参考教材:《纳米科学与技术》—白春礼著;云南科技出版社《纳米材料制备技术》—王世敏主编;化学工业出版社《纳米技术与纳米武器》—赵冬等编著;军事谊文出版社 授课对象:非材料专业大学本科生 课程性质: 综合选修(全校公选课) 教学目标: 1. 了解纳米科技的内涵、实用目的及其终极目标。 2. 简单了解用于纳米材料制备的各种仪器。纳米微粉的科学制备分类方法应该是气相法、液相法、固相法。其中气相法包括电阻加热法、高频感应加热法、等离子体加热法、电子束加热法、激光加热法、通电加热蒸发法、流动油面上真空沉积法、爆炸丝法、热管炉加热化学气相反应法、激光诱导化学气相反应法、等离子体加强化学气相反应、化学气相凝聚法、溅射法等。其中液相法包括沉淀法、水解法、喷雾法、溶剂热法(高温高压)、蒸发溶剂热解法、氧化还原法(常

压)、乳液法、辐射化学合成法、溶胶—凝胶法等。其中固相法包括热分解法、固相反应法、火花放电法、溶出法、球磨法等。 3. 了解用于纳米材料测试的各种仪器。其中了解扫描电子显微镜(SEM)、透射电子显微镜(TEM)和扫描隧道显微镜(STM)。 4. 了解纳米科技的国际环境及纳米材料的主要现实应用领域。 通过本门课程的学习,要求学生对纳米材料与技术所涉及的相关领域有初步认知。使学生开阔视野,拓宽知识面,改善知识结构,增强适应能力,激发学习兴趣,破除对高技术的神秘感,树立攀登科技高峰的信心。 课程简介: 纳米材料与技术是一门基础研究与应用研究紧密联系的新型学科。本课程紧跟当代纳米技术发展的最新成就和前沿,系统阐述纳米技术的有关概念、应用、国内外研究开发战略和中国的纳米产业,介绍国内外纳米行业研究开发的最新资料和信息,特别是当前国内外在纳米领域的新成果、新观点、新理论和产业化实例,具有最新实时的特点,为学生提供新思路和应用信息。 教学内容: 1.加深长度概念的理解。 (1)展示一组题为“无限”的图片(42张) (2)了解长度单位:光年、公里、米、毫米、微米、纳米、皮米、飞米等。 2. 碳纳米管

纳米材料认识浅谈

纳米材料认识浅谈 纳米材料认识浅谈 (1) 摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。 (1) 关键词:纳米材料功能应用; (1) 一、纳米材料和纳米技术的基本特点 (1) 二、纳米材料的特性 (2) 1.小尺寸效应 (2) 2.表面效应 (2) 三.纳米材料的制备(举例) (3) 1.碳纳米管 (3) 2. 碳60 (4) 四.纳米科技具有非常重要的科技意义 (5) 1.纳米科技将促使人类认知的革命 (5) 2.纳米科技将引发一场新的工业革命 (5) 五.纳米科技前景的展望 (5) 1.材料和制备 (5) 2.微电子和计算机技术 (5) 3.环境和能源 (6) 4.医学与健康 (6) 5.生物技术 (6) 6.航天和航空 (6) 7.国家安全 (6) 摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。 关键词:纳米材料功能应用; 一、纳米材料和纳米技术的基本特点 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100nm或者由他们形成的材料。所以在纳米尺寸上对物质和材料进行研究处理的技术称为纳米技术。纳米材料是指显微结构中的物相具有纳米级尺度的材料。它包含了三个层次,即:纳米微粒、纳米固体和纳米组装体系。

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 纳米技术本质上是一种用单个原子、分子制造物质的科学技术,旨在创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测分析纳米区域的性质和现象。纳米科技主要包括:①纳米体系物理学;②纳米化学;③纳米材料学;④纳米生物学;⑤纳米电子学;⑥纳米加工学;⑦纳米力学。 二、纳米材料的特性 1.小尺寸效应 ⑴特殊的光学性质 当黄金(Au)被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在纳米颗粒状态都呈为黑色,而且尺越小,颜色愈黑. ⑵特殊的电学性质 介电和压电特性是材料的基本物性之一。纳米半导体的介电行为(介电常数、介电损耗)及压电特性同常规的半导体材料有和很大的不同。 ⑶特殊的磁性 小尺寸超微颗粒的磁性比大块材料强许多倍,大块的纯铁矫顽力约为80A/m,而当颗粒尺寸减小到20nm以下时,其矫顽力可增加1000倍,若进一步减小其尺寸,大约小于6nm时,其矫顽力反而降低到零,表现出所谓超顺磁性 ⑷特殊的热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 ⑸特殊的力学性质 由纳米超微粒压制成的纳米陶瓷材料却具有良好的韧性,这是因为纳米超微粒制成的固体材料具有大的界面,界面原子的排列相当混乱。原子在外力变形条件下容易迁移,因此表现出很好的韧性与一定的延展性,使陶瓷材料具有新奇的力学性能。这就是目前的一些展销会上推出的所谓“摔不碎的陶瓷碗”。 2.表面效应 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减

相关文档