文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米与粉体材料

纳米与粉体材料

纳米与粉体材料
纳米与粉体材料

纳米与粉体材料

会后,上海海晏威固国际贸易有限公司的工作人员向到场的嘉宾以及经销商和新闻媒体的朋友现场展示了琥

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

纳米金属用途简介

纳米金属用途简介 钴(Co) 高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材 料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。

铁 (Fe) 高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。

粉体纳米材料的表面活性

作者简介:刘剑,女,1972年生,硕士研究生。1996~2001年就职于中国兵器工业第二一三研究所,担任国家“九五”重点预研项目“激光 引爆控制技术”主要完成人之一,及该项目“十五”预研立项人,并获得所级“科技进步三等奖”。此外还担任数个军品项目研制工作的课题负责人。2001年在理学院应用化学系功能材料专业深造,现在主要从事生物医学材料的表面改性研究。曹瑞军,博士,硕士导师。 开发应用 表面活性剂在纳米粉体制备中的应用 刘 剑 曹瑞军 郗英欣 (西安交通大学理学院应用化学系,西安710049) 摘 要 本文论述了表面活性剂在Al 2O 3纳米粉体制备、改性等方面的应用,并简要介绍表面活性剂在纳米粉体修饰中的作用。 关键词 表面活性剂,纳米微粒,Al 2O 3纳米粉体,表面修饰 Application of surfactants in preparation of nano 2particles Liou Jian Cao Ruijun Xi Y ingxin (School of Science ,Xi ’an Jiaotong University ,Xi ’an 710049) Abstract The functions of surfactants during the preparation ,modification and storage of nano 2particle Al 2O 3were discussed in this paper ,and application of surfactant in nano 2particles surface modification were brief described. K ey w ords surfactant ,nano 2particles ,nano -particles Al 2O 3,surface modification 纳米材料和技术是纳米科技领域富有活力、研 究内涵十分丰富的分支学科。近年来,纳米级超微粉是材料制备的热点。纳米材料的合成方法虽然很多,但若想合成超细的纳米级粉料而很少团聚或没有团聚,则很不容易,这是由于纳米微粒特殊的表面性质所致。纳米粉体具有如下的表面特性:(1)庞大的比表面积;(2)纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,并具有不饱和性质,键态严重失配,出现许多活性中心,因而极易与其他原子相结合而趋于稳定,所以,具有很高的化学活性;(3)表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价。 由于纳米粉体的巨大比表面,以致有巨大的表面G ibb 函数。而团聚将降低这种能量,这在热力学上是自发的。团聚可由各种键合形式聚集,一般而 言,若是由物理上的键合(如范德华力等)引起的团聚,称为软团聚。若是由化学上的键合(如氢健、桥氧键等)引起的团聚,称为硬团聚。软团聚可以用机械方法使之打开,而打开硬团聚就比较困难。微小粒子的团聚可能发生在合成阶段、干燥过程及后处理中,因此重要的是在粒子制备和处理的每一步都使粒子稳定而不团聚。表面活性剂常被用于合成过程中,制备分散粒子或分散已合成的团聚的超细粒子。在液相介质中,利用分散剂分散超细粒子的方法已得到广泛研究。表面活性剂对于纳米微粒的制备、改性和保存都具有非常重要的作用。 1 表面活性剂分散微粒的机理 超细微粒的团聚是由于范德华力的吸引而造成的,或由于使体系的总表面能趋于极小化的驱动力 第31卷第7期 化工新型材料 Vol 131No 172003年7月 N EW CHEMICAL MA TERIAL S J uly 2003

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

纳米粉体材料行业分析报告行业基本情况

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.docsj.com/doc/1f7899144.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY,英文缩写为 CSMNT)是全国范围纳米行业的自律性管理组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上,政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有: 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016年6月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

2017年纳米金属粉体材料行业分析报告

2017年纳米金属粉体材料行业分析报告 2017年1月

目录 一、新材料行业发展概况 (8) 1、新材料的定义 (8) 2、纳米材料市场发展情况 (9) 二、行业管理 (11) 1、行业监管体制及主管部门 (11) 2、行业主要法律法规和标准 (12) (1)主要法律法规 (12) (2)国家标准 (12) 3、行业主要产业政策 (13) 三、主要产品细分行业概况 (15) 1、片式多层陶瓷电容器(MLCC)行业 (16) 2、表面封装行业 (19) 3、晶片电阻器行业 (21) 4、3D打印行业 (21) 四、行业上下游之间的关联性 (22) 1、上游行业对本行业的影响 (22) (1)上游行业价格波动的情况 (22) (2)上游行业对本行业的影响 (24) 2、下游行业对本行业的影响 (24) (1)片式陶瓷电容器(MLCC)领域 (24) (2)太阳能电池领域 (25) (3)锡膏领域 (25) (4)3D打印金属粉 (27)

五、行业竞争格局 (27) 1、技术进入门槛高 (28) 2、低端产品产业集中度低 (29) 3、国外企业处于第一阵营 (29) 4、国内企业迅速发展 (29)

纳米镍粉是一种灰黑色的粉体状产品,对金属碳化物(如WC、TiC、TaC等)及石墨等具有良好的润湿性和很好的压制性、烧结性能,是一种重要的硬质合金和金刚石胎体粘结金属粉体材料;纳米镍粉表面活性高,表面积大,也是一种良好的催化剂;纳米镍粉还具有良好的导电性,成本低,被广泛应用于制造片式多层陶瓷电容器(MLCC)(Multi-Layered Ceramic Capacitor片式多层陶瓷电容器英文缩写)的内部电极及其他电子组件的电子浆料、镍电池、蓄电池、催化剂、磁流体以及特种涂料、吸波材料等。作为高效助燃剂,纳米镍粉还可被应用在航空航天等高端领域,将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 MLCC作为纳米镍粉重要的应用产品,其是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)而成;电极浆料作为制造MLCC 的关键材料,其主要成分是由金属粉体、玻璃相及有机载体3个部份组成,金属粉体在浆料中含量很高,它是决定电极性能的主要因素,经高温烧结形成金属网络结构实现导电功能。因此电极浆料所用的金属粉体材料要求纯度高、粉体颗粒近球形、粒径小及分散性好等特性,而纳米镍粉能够很好的满足这一要求。

ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备 (一)实验类型:综合性 (二)实验类别:设计性实验 (三)实验学时数:16 (四)实验目的 (1)掌握沉淀法制备纳米粉体的工作原理。 (2)了解X-射线粉末衍射仪鉴定物相的原理。 (五)实验原理 纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。 合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线粉末衍射仪是分析材料晶体结构的重要工具。晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。这就是X射线衍射物相定性分析的方法的依据。 根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。 0.89cos D λ βθ= (λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角) (六)实验内容 1. 制备 以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。 2. 称量、计算产率 3. X-射线物相测定:计算晶粒尺寸 (七)实验要求 1、设计实验方案: (1)设计不同煅烧温度及时间 (2)设计不同原料比及模板剂 设计实验方案要求:方案必须切合实际,具有可操作性;尽量选择原料易得,反应条件温和,催化剂价廉,后处理方便,收率高及环境友好的方案。

纳米材料的定义,特点和应用前景

纳米材料的定义、特点和应用前景 中国科学院上海硅酸盐研究所作者:张青红 图1 图2 图3 什么是纳米材料? 纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。纳米科技是研究由尺寸在0.1至100纳米之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。可衍生出纳米电子学、机械学、生物学、材料学加工学等。 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入一个新的层次,它是联

系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。 纳米材料的特点? 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 纳米材料的应用前景 纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮”DNA的结构,有点像黑暗中挂满了灯笼的宝塔,借助与发光的“灯笼”,我们不仅可以识别灯塔的外型,还可识别灯塔的结构。简而言之,这些纳米晶粒,在DNA 分子上贴上了标签。目前,我们应当避免纳米的庸俗化。尽管有科学工作者一直在研究纳米材料的应用问题,但很多技术仍难以直接造福于人类。2001年以来,国内也有一些纳米企业和纳米产品,如“纳米冰箱”,“纳米洗衣机”。这些产品中用到了一些“纳米粉体”,但冰箱和洗衣机的核心作用任何传统产品相同,“纳米粉体”赋于了它们一些新的功能,但并不是这类产品的核心技术。因此,这类产品并不能称为真正的“纳米产品”,是商家的销售手段和新卖点。现阶段纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段,应该指出这不过是纳米材料应用的初级阶段,可以说这并不是纳米材料的核心,更不能将“纳米粉体的应用”等同与纳米材料。 下面我们选用几副插图来说明纳米材料。 图一:二氧化钛纳米管。多种层状材料可形成管状材料,最为人们所熟悉的是碳纳米管。图一为二氧化钛纳米管的透射电镜照片,这种管是开口、中空管,比表面积能达到400m2/g,可能在吸附剂、光催化剂等方面有应用前景。 图二:晶内型纳米复相陶瓷,颜色较浅的大晶粒内部有一些深色的颗粒,在陶瓷收到外力破坏时,这些晶内的深色颗粒像一颗颗钉子,抑制裂纹扩散,起到对陶瓷材料的增强和增韧作用。

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

ZnO纳米粉体制备与表征解析

ZnO纳米粉体制备与表征 一实验目的 1.了解氧化锌的结构及应用 2.掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。 3.了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM)与比表面测定仪等表征手段和原理 二基本原理 2.1 氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体 结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常 数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如 图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2.2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 2.3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 2.3.1 共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强

纳米材料在金属上的应用

纳米材料在金属上的应用 当今世界,高新技术产业在经济发展中的作用日益突出。我国将高新技术产业作为经济发展的重点,从各方面给予了扶持。如何界定与高技术产业相关的各类概念,客观反映我国高技术产业的发展状况,已成为统计部门面临的重要课题之一。而随着我国科技的进步,纳米材料作为新兴的高科技技术,在中国也渐渐发展起来了。它在各个领域都起着越来越重要的作用了。也让我们得到了许多好的材料。我所讲的是关于它在我所学的专业的应用。当纳米材料应用在金属上时,金属能得到很多我们得不到的优点。 中国墨是由烟炱这种超细微粒作为重要原料,再加上黏结剂和添加剂按适当比例制成的。虽然还算不上现代所说的纯纳米材料,但的确开创了纳米材料的先河。现代的纳米材料是近一二十年才发展起来的。它的起源来自一个科学家在国外旅游中产生的联想。 生产工艺 从此,由德国到美国,一大批科学家都着了迷似地研究起纳米材料来。比如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度要比普通粗晶粒金属的硬度高2~4倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但如果用只有纳米大小的陶土粉末烧结成陶瓷制品,却有良好的韧性。更有趣的是,纳米材料的熔点会随超细粉末的直径的减小而大大降低。例如,金的熔点本是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米的金粉末熔点降至830℃;2纳米的金粉末熔点只有33℃,你说神不神?这一特点对人们大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先制成纳米大小的陶土粉末,就可以在较低的温度下烧结成高温发动机的耐热零件。1纳米只有1米的1/109,人们要问,像纳米那么微小的粉末是怎样制造出来的呢?德国的材料科学家在90年代初发明了一种生产金属超细粉末的方法。即在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内。如果要用这些粉末做成零件,就可以将它们模压成零件形状,通过一道烧结工序,即可制成纳米材料零件。 应用领域 纳米材料的用处多得很。如高密度磁性记录带就是用纳米大的粉末制成的;有些新药物制成纳米颗粒,可以注射到血管内顺利进入微血管;纳米大的催化剂分散在汽油中可提高内燃机的效率,把纳米大的铅粉末加入到固体燃料中,可使固体火箭的速度增加,这是因为越细的粉末,表面积越大,能使表面活性增强,加大了燃烧的力度。总之,纳米材料前途无量,

纳米金属材料的制备

纳米金属材料的制备 学院:材料与冶金学院 专业:材料科学与工程 班级:材料10b 姓名:叶晓江 学号:1008020131

纳米金属材料的制备 摘要:纳米金属材料具有奇异的结构和特异的性能,这使得纳米金属材料的应用十分广泛。概括介绍了纳米金属材料的特性,对一些主要的制备技术作了较为详细的阐述, 关键词:纳米金属;特性;制备 1纳米金属材料 在金属材料的生产中利用纳米技术,有可能将材料成分和组织控制得极其精密和细小,从而使金属的力学性能和功能特性得到飞跃的提高。纳米金属材料是当今新材料研究领域中最具活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最活跃、最接近应用的组成部分。纳米金属材料是20世纪80年代开发的一种高新材料,是指晶粒尺寸小于100纳米的金属材料,包括纳米金属粉末和纳米金属结构材料[2]。 2 纳米金属的特性 2.1 表面效应 表面效应是指纳米粒子表面原子与总原子之比随着粒子尺寸减少而大幅度地增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性质变化的现象。由于纳米粒子的表面原子数增多,极不稳定,很容易与其他原子结合趋于稳定,因此,纳米粒子具有很高的化学活性。新制成的纳米粒子必须进行一定的稳定化处理或者保存。例如金属纳米粒子在空气中自燃,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应[3]。 2.2 小尺寸效应 固体物理的研究表明,当超细微粒的尺寸减小到与光波波长、得布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件被破坏;非晶态纳米颗粒的颗粒表面附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应,材料的宏观物理、化学性能将会

粉体材料的发展情况及应用

粉体材料的发展情况及应用: 发展 从上世纪 50 年代日本首先进行超细材料的研究以后 ,到上世纪 80~90 年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪 60 年代就对非金属矿物超细粉体技术、装备进行了研究 ,对于超细粉体材料的系统的研究则开始于上世纪 80 年代后期。超细粉体从广义上讲是从微米级到纳米级的一系列超细材料 ,在狭义上讲是从微米级、亚微米级到 100 纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀 , 因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等 ,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是 21 世纪重要的基础材料。 应用 在材料领域的应用超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及 建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料 ,可用其制造坦克和装甲车复合板 ,这种复合板较普通坦克钢板重量轻30 %~50 % ,而抗冲击强度较之提高 1~3 倍 ,是一种极好的新型复合材料[2] 。将固体氧化剂、炸药及催化剂超细化后 ,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高 1~ 10 倍[3] ,这对制造高性能火箭及导弹十分有利。

在化工领域的应用将催化剂超细化后可使石油的裂解速度提高 1 ~5 倍 ,赤磷超细化后不仅可制成高性能燃烧剂 ,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中 ,其固体填料如 :重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 在生物医药领域的应用医药经超细化后 ,外用或内服时可提高吸收率、疗效及利用率 ,适当条件下可改变剂型 ,如微米、亚微米及纳米药粉可制成针剂使用[4] 。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。南京理工大学超细粉体与表面科学技术研究所已成功地为上海 XX医药公司、常州XX公司及浙江 XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药 ,产品性能提高 ,达到国际标准 ,因而大量出口创汇 ,价格显著提升 ,产生了良好的经济效益和社会效益。 在中医药保健食品中的应用超细粉体技术扩展到中草药及保健食品中 ,扩大了人类的食品源 ,使得有营养 ,但因无法直接被人体吸收的植物变成了高档的营养性保健食品。经超细化的中药材大大提高了有效成分的溶出速度和利用率 ,且服用方便 ,避免了繁杂的煎煮。再如茶叶、灵芝、孢子、花粉、螺旋藻、蔬菜、水果、珍珠、蚕丝、人参、贝壳、蛇、蚂蚁、甲鱼、动物和鱼类的鲜骨及脏器的超细化 ,都为人类提供了大量的新型纯天然高吸收率的保健食品。目前南京理工大学超细粉体与表面科学技术研究所已成功的

相关文档