文档视界 最新最全的文档下载
当前位置:文档视界 › 无线传感器网络协议

无线传感器网络协议

无线传感器网络的安全性研究

无线传感器网络的安全性研究 0 引言 无线传感器网络(WSN,Wireless Sensor Network)是一种自组织网络,由大量具有无线通信、数据采集和处理、协同合作等功能的节点协同组织构成。WSN在军事、环境、工控和交通等方面有着广阔的应用前景。由于大多数用户对WSN的安全性有较高要求,而WSN有着与传统的Ad hoc网络不同的特点,大多数传统的安全机制和安全协议难以直接应用于WSN,因此有必要设计适合WSN的安全性方案。 无线传感器网络与传统的ad hoc网络相比有如下独有的特点[1]: (1)传感器节点数量巨大,网络规模庞大; (2)节点密集分布在目标区域; (3)节点的能量、存储空间及计算能力受限,容易失效; (4)动态的网络拓扑结构; (5)通常节点不具有统一的身份(ID)。 1 WSN的安全性问题 WSN中,最小的资源消耗和最大的安全性能之间的矛盾,是传感器网络安全性的首要问题。通常两者之间的平衡需要考虑到有限的能量、有限的存储空间、有限的计算能力、有限的通信带宽和通信距离这五个方面的问题。 WSN在空间上的开放性,使得攻击者可以很容易地窃听、拦截、篡改、重播数据包。网络中的节点能量有限,使得WSN易受到资源消耗型攻击。而且由于节点部署区域的特殊性,攻击者可能捕获节点并对节点本身进行破坏或破解。 另外,WSN是以数据通信为中心的,将相邻节点采集到的相同或相近的数据发送至基站前要进行数据融合,中间节点要能访问数据包的内容,因此不适合使用传统端到端的安全机制。通常采用链路层的安全机制来满足WSN的要求。 2 常见的攻击和解决方案 在WSN协议栈的不同层次上,会受到不同的攻击,需要不同的防御措施和安全机制。 2.1 物理层 物理层完成频率选择、载波生成、信号检测和数据加密的功能。所受到的攻击通常有: 1)拥塞攻击:攻击节点在WSN的工作频段上不断的发送无用信号,可以使在攻击节点通信半径内的节点不能正常工作。如这种攻击节点达到一定的密度,整个网络将面临瘫痪。 拥塞攻击对单频点无线通信网络影响很大,采用扩频和跳频的方法可很好地解决它。 2)物理破坏:WSN节点分布在一个很大的区域内,很难保证每个节点都是物理安全的。攻击者可能俘获一些节点,对它进行物理上的分析和修改,并利用它干扰网络的正常功能。甚至可以通过分析其内部敏感信息和上层协议机制,破坏网络的安全性。 对抗物理破坏可在节点设计时采用抗窜改硬件,同时增加物理损害感知机制。另外,可对敏感信息采用轻量级的对称加密算法进行加密存储。 2.2 MAC层 MAC层为相邻节点提供可靠的通信通道。MAC协议分3类:确定性分配、竞争占用和随机访问。其中随机访问模式比较适合无线传感网络的节能要求。 随机访问模式中,节点通过载波监听的方式来确定自身是否能访问信道,因此易遭到拒绝服务攻击(Distributed Denial of Service,DOS)[2]。一旦信道发生冲突,节点使用二进指数倒退算法确定重发数据的时机。攻击者只需产生一个字节的冲突就可以破坏整个数据包的发送,这时接收者回送数据冲突的应答ACK,发送节点则倒退并重新选择发送时机。如此这般反复冲突,节点不断倒退,导致信道阻塞,且很快耗尽节点有限的能量。

项目三了解无线传感器协议栈

项目三了解无线传感器协议栈 项目三了解ZigBee无线传感器网络协议栈知识目标1.掌握zigbee无线传感器网络的协议栈和协议的区别等知识。 2.掌握Z-Stack协议栈的OSAL分配机制。 3.了解Z-Stack协议栈的OSAL运行机制。 4.掌握Z-Stack协议栈的OSAL常用函数。 项目三了解ZigBee无线传感器网络协议栈技能目标1.掌握 Z-Stack协议栈的运行机制。 2.掌握Z-Stack协议栈中OSAL的添加新任务的方法。 项目三了解ZigBee无线传感器网络协议栈在实际zigbee无线传感器网络工程的开发过程中首先借助TI提供的协议栈中例程SampleApp,接着根据需要完成的功能,查看支持Z-Stack协议栈的硬件电路图,再查阅数据手册(CC2530的数据手册、Z-Stack协议栈说明、Z-Stack协议栈API函数使用说明等)文件,然后再进行协议栈的修改。 最后,还需要烧录器下载到相应的硬件,实现zigbee无线传感器网络的组建和开发。 设计思路3.1.1协议与协议栈协议定义的是一系列的通信标准,通信双方需要共同按照这一标准进行正常的数据收发;议栈是协议的具体实现形式。 通俗的理解为代码实现的函数库,以便于开发人员调用。

3.1Z-Stack协议栈3.1.1协议与协议栈协议栈是指网络中各层协议的总和,一套协议的规范。 其形象地反映了一个网络中文件传输的过程由上层协议到底层协议,再由底层协议到上层协议。 使用最广泛的是因特网协议栈,由上到下的协议分别是应用层(Http、Tel、DNS、Email等),运输层(TCP、UDP),网络层(IP),链路层(WI-FI、以太网、令牌环、FDDI等)。 3.1Z-Stack协议栈3.1.1协议与协议栈3.1Z-Stack协议栈3.1.1协议与协议栈Zigbee协议栈开发的基本思路如下。 ①借助TI提供的协议栈中例程SampleApp进行二次开发,用户不需要深入研究复杂的zigbee协议栈,这样可以减轻开发者的工作量。 ②Zigbee无线传感器网络中数据采集,只需要用户在应用层加入传感器的读取函数和添加头文件即可实现。 ③如果考虑节能,可以根据数据采集周期(zigbee协议栈例程中已开发了定时程序)进行定时,定时时间到就唤醒zigbee终端节点,终端节点唤醒后,自动采集传感器数据,然后将数据发送给路由器或者直接发给协调器,即监测节点定时汇报监测数据。 ④协调器(网关)根据下发的控制命令,将控制信息转发到具体的节点,即控制节点等待控制命令下发。 3.1Z-Stack协议栈3.1.2使用Z-Stack协议栈传输SampleApp.c 中定义了发送函数static voidSampleApp_SendTheMessage(void)。 该函数通过调用AF_DataRequest来发送数据。

无线传感器网络协议栈研究与设计-第3章

第3章 低功耗无线传感器网络协议栈整体设计 本章的目标是对低功耗环境测控网络协议栈进行整体设计。首先对环境测控系统进行需求分析明确其适用场景和网络设备类型;然后,根据需求分析确定协议栈的设计目标,并选择适合的网络拓扑结构和协议栈的分层架构。协议栈的网络层和MAC 层将作为本章的设计的重点。 3.1 网络需求分析 3.1.1 应用场景介绍 本课题来源于研究生校企合作项目,所设计的低功耗无线传感器协议栈主要应用于环境测控系统中。该系统长期无人值守,其温度、湿度等环境参数由连接无线节点的传感器实时采集并上传至汇聚节点,汇聚节点再通过有线的方式传输至面向用户的管理终端。多个子系统采集的数据最后由各自的管理终端传送至云端处理中心进行数据的保存,整个系统框图如图3.1所示。 云端处理中心 二级中继 汇聚节点 图3.1 环境测控系统框图 图中的环境测控无线网络是执行数据采集和设备控制的主体,也是协议栈发挥作用的区域。一个环境测控无线网络负责一个区域,区域之间有一定的距离,

因此无线网络之间不存在干扰,但无线网络的运行方式一致。该项目处于初期开发阶段,所以本文设计的协议栈只应用于单个环境测控无线网络中。 该课题所涉及的环境测控系统处于室内,人员进出频率低。网络中节点数不超过65个,包含一个汇聚节点。点对点通信的距离要求达到20米。传感器节点以10秒为周期采集并发送环境数据。考虑到室内可能会出现一些特殊设备、隔断等障碍影响通信距离,并使得部分节点处于屏蔽的位置,因此网络通过设置中继节点来扩展通信距离,经过中继后的通信距离要求60米及以上。由于成本等原因,课题设定数据包最多经过两级中继传递,每级中继最多4个,中继数量不超过8个。同时,系统中存在少量控制节点,控制节点连接室内的控温设备来调节室内温度。控制节点由工作人员从软件端下达命令进行开关,因此不具备周期性。该课题要求除汇聚节点、中继节点之外的所有节点能在1000mA/h电池的支持下工作一年以上。为保证数据采集的有效性和传输的可靠性,该课题要求多节点共享信道的丢包率在5%以内。此外,由于环境的特殊性,人员不能随时到场,还要求该环境测控网络中的节点具有安装简单、组网快速、配置容易的特点。以上需求总结如表3.1所示。 表3.1 环境测控系统需求指标 表3.1明确了该环境测控无线网络的要求。通过需求指标能使协议栈的设计更有约束性,设计方向也会更加明确。

无线传感器网络的应用及影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的X围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素applications of wireless sensor networks and influencing factors analysis liu peng (college of puter science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a prehensive description of the development process of the wireless sensor network,the status of the research areas and a number of factors affecting the application of the sensor. keywords:wireless sensor networks;sensor nodes;limiting factor 一、无线传感器网络的技术起源以及特点

无线传感器网络练习题(1)

一、填空 1.无线传感器网络系统通常包含汇聚节点、传感器节点、管理节点。 2.传感器节点一般由通信模块、传感器模块、存储模块和电源模块 组成。 3.无线传感器节点的基本功能是:采集数据、数据处理、控制和通 信。 4.传感器节点通信模块的工作模式有发送、接收和空闲。 5.无线通信物理层的主要技术包括介质的选择、频段的选择、调制 技术和扩频技术。 6.扩频技术按照工作方式的不同,可以分为四种:直接序列扩频、 跳频、跳时和宽带线性调频扩频。 7.目前无线传感器网络采用的主要传输介质包括无线电波、光纤、 红外线等。 8.无线传感器网络可以选择的频段有:868MHz、915MHz、和5GHz。 9.传感器网络的电源节能方法:休眠机制、数据融合。 10.根据对传感器数据的操作级别,可将数据融合技术分为一下三类: 决策级融合、特征级融合、数据级融合。 11.根据融合前后数据的信息含量分类(无损失融合和有损失融合) 12.根据数据融合与应用层数据语义的关系分类(依赖于应用的数据 融合、独立于应用的数据融合、结合以上两种技术的数据融合)13.定向扩散路由机制可以分为三个阶段:兴趣扩散、梯度建立、路 径加强。

14.无线传感器网络的关键技术主要包括:时间同步机制、数据融合、 路由选择、定位技术、安全机制等。 15.无线传感器网络通信安全需求主要包括结点的安全保证、被动抵 御的入侵能力、主动反击入侵的能力。 16.标准用于无线局域网,标准用于低速无线个域网。 17.规定三种帧间间隔:SIFS、PIFS、DIFS。 18.标准为低速个域网制定了物理层和MAC子层协议。 19.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支 持三种拓扑结构:网状网络、树形网络、星型网络。 20.传感器网络中常用的测距方法有:接收信号强度指示、到达时间 差、到达角。 21.ZigBee网络分4层分别为:物理层、网络层、应用层、数据链路 层。 22.与传统网络的路由协议相比,无线传感器网络的路由协议具有以 下特点:能量优先、基于局部拓扑、以数据为中心、应用相关。 23.数据融合的内容主要包括:目标探测、数据关联、跟踪与识别、 情况评估与预测。 24.无线传感器网络信息安全需求主要包括数据的机密性、数据鉴别、 数据的完整性、数据的实效性。 25.传感器结点的限制条件是电源能量有限、通信能力有限、计算和 存储能力有限。

线传感器网络常用的通信协议

线传感器网络常用的通信协议(上) 通信协议是无线传感器网络实现通信的基础,无线传感器网络通信协议的设计目的是为了使具体的无线传感器网络通信机制与上层应用分离,为传感器节点提供自组织的无线网络通信功能。 与传统无线网络相比,无线传感器网络的应用环境有诸多不同。无线传感器网络是能量受限的网络,需要使用低功率、短距离的无线通信技术,以节省能源消耗,延长网络寿命。无线传感器网络的通信协议可以采用自定义的通信协议,也可以采用已经形成标准的通信协议,如ZigBee、蓝牙、Wi-Fi,这三种无线通信技术标准都是短距离的无线通信,它们在各方面性能之间有较大差异,ZigBee、蓝牙、Wi-Fi.之间的比较见表5-6。蓝牙技术所能通信的距离非常短,限制了其应用范围;Wi-Fi协议栈所占内存很大、功耗高使其在很多场合不实用。究竟选用什么通信标准,还需要根据系统需求来定。 由表5-6得知,ZigBee是比较适合无线传感器网络应用的,简单阐述自定义通信协议并对ZigBee协议栈进行分析。 1. 自定义通信协议 自定义的通信协议可以采用分层设计,参考OSI参考模型的结构,可以提高系统的灵活性,在保持各层协议之间接口不变的情况下,各层协议可以独立进行开发,并尝试不同的算法。早期提出的一个协议栈包括物理层、数据链路层、网络层、传输层和应用层,另外还有能量管理平台、移动管理平台和任务管理平台,如图5-23所示。 如图524所示的网络协议栈对原始模型进行了改进,加入了定位和时间同步子层,并用倒L型描述这两个子层。另外还增加了QoS管理及网络管理等功能。 2 ZigBee协议栈

目前已经有多家公司推出支持ZigBee的无线收发芯片、ZigBee开发套件及ZigBee协议栈等,如Microchip的PICDEMZ Demo Kit及其ZigBee协议栈、飞思卡尔的MC13191/92开发者初级套件及其协议栈、Figure8的Z-Stack ZigBee 协议栈等,国内也涌现出了不少专门从事ZigBee开发的公司。在此介绍Microchip的ZigBeel.0版协议栈。 1.Microchip ZigBee协议栈简介 Microchip的ZigBee1.0版协议栈设计得可以随着ZigBee的发展而发展,它具有以下特点。 ①基于ZigBee规范的0.8版本。 ②使用Chipcon CC2420 RF收发器,支持2.4GHz频带。 ③支持简化功能设备(Reduced Device,RFD)和协调器。 ④在协调器节点中实现对邻接表和绑定表的非易失性存储。 ⑤支持非时隙的星型网络。 ⑥可以在大多数PICl8系列单片机之间进行移植。 ⑦协同多任务处理架构。 ⑧不依赖于RTOS和应用。 ⑨支持Microchip MPLAB?C18和Hi-Tech PICC-18TM C编译器。 ⑩易于添加或删除特定模块的模块化设计。 当然,该协议栈也不是完全支持ZigBee标准中的所有规范,它有以下限制。 ①不完全符合ZigBee协议。 ②不支持群集和点对点网络。 ③无安全和访问控制功能。 ④无路由器功能。 ⑤不提供标准的配置文件,但是包含创建配置文件所必需的所有原始函数。

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

无线传感器网络面临的安全隐患及安全定位机制

无线传感器网络面临的安全隐患及安全定位机制 随着通信技术的发展,安全问题显得越来越重要。在现实生活中,有线网络已经深入到千家万户:互联网、有线电视网络、有线电话网络等与人们生活的联系越来越紧密,已经成为必不可少的一部分,有线网络的安全问题已经能够得到有效的解决。在日常生活中,人们可以放心的使用这些网络,利用它来更好的生活和学习。然而随着无线通信技术的不断发展,无线网络在日常生活中已占据重要的地位,如无线LAN技术、3G技术、4G技术等,同时也有许多新兴的无线网络技术如无线传感器网络,Ad-hoc等有待进一步发展。随着人们对无线通信的依赖越来越强烈,无线通信的安全问题也面临着重要的考验。本章首先介绍普通网络安全定位研究方法,随后介绍无线传感器网络存在的安全隐患以及常见的网络攻击模型,分析比较这些攻击模型对定位的影响,最后介绍已有的一些安全定位算法,为后续章节的相关研究工作打下基础。 3.1 安全定位研究方法 不同的定位算法会面临着不同的安全方面的问题,安全定位的研究方法可以采用图3-1所示的流程来进行。 图3-1安全定位方法研究流程图

Figure 3-1 Flowchart of security positioning research method 在研究中首先要找出针对不同定位算法的攻击模型,分析这些攻击对定位精度所造成的影响,然后从两方面入手来解决这个安全问题或隐患:一方面改进定位算法使得该定位算法不易受到来自外界的攻击,另一方面可以设计进行攻击检测判断及剔除掉受到攻击的节点的安全定位算法或者把已有的安全算法进行改进使之能够应用于无线传感器网络定位,还可以从理论上建立安全定位算法的数学模型,分析各种参数对系统性能的影响,最后根据这个数学模型对算法进行仿真,并把仿真结果作为反馈信息,对安全定位算法进一步优化和改进,直到达到最优为止。 3.2 安全隐患 由于无线传感器网络随机部署、网络拓扑易变、自组织成网络和无线链路等特点,使其面临着更为严峻的安全隐患。在传感器网络不同的定位算法中具有不同的定位思想,所面临的安全问题也不尽相同。攻击者会利用定位技术的弱点设计不同的攻击手段,因此了解各定位系统自身存在的安全隐患和常见的攻击模型对安全定位至关重要。 影响无线传感器网络定位的原因大致可以分为两类:其一,节点失效(如节点被破坏、电量耗尽)、环境毁坏(通信干扰)等引起的定位误差;其二,恶意攻击[30],攻击者主要是通过内部攻击和外部攻击两种方式来增大无线传感器网络的定位误差或使节点定位失效。 采用不同的定位算法,系统存在不同的安全隐患。按照定位算法的分类将安全隐患大致分为:基于测距的定位的安全隐患和基于无需测距定位的安全隐患。 3.2.1 基于测距定位的安全隐患 基于测距的定位技术需要测量未知节点和参考节点之间的距离或方位信息。攻击者主要针对定位系统位置关系的测量阶段和距离估计阶段进行攻击。在测距阶段,攻击者通过改变测距所需要的参数或者产生干扰和欺骗以增大误差,达到攻击的目的。 基于测距定位的攻击手段主要有以下几种:(1)通过移动、隔离信标节点来

基于ZigBee协议栈的无线传感器网络的设计

基于ZigBee 协议栈的无线传感器网络的设计 徐振峰,尹晶晶,陈小林,周全 (安徽国防科技职业学院机电工程系,安徽六安237011) 摘要:首先介绍了无线传感器网络的基本拓扑结构与传感器节点的结构,详细说明了基于ZigBee 协议栈的无线传感网络的建立过程,包括协调器启动及建立网络、传感器节点启动及加入网络、传感器节点与协调器之间建立绑定以及传感器节点向协调器发送数据的过程。设计了基于ZigBee 协议栈的无线传感网络系统。以采集温度信息为例,协调器能够接收到传感器节点发来的数据,并能通过RS232串口,将收到的数据发送给PC 机进行显示。实验显示在距离 80m 远处,系统仍能保持良好的通信质量。 关键词:ZigBee 协议栈;无线传感器网络;协调器;传感器节点中图分类号:TP393 文献标识码:A 文章编号:1674-6236(2012)05-0075-03 Design of wireless sensor networks based on ZigBee stack XU Zhen -feng ,YIN Jing -jing ,CHEN Xiao -lin ,ZHOU Quan (Department of Mechanical and Electrical Engineering ,Anhui Vocational College of Defense Technology ,Liu ’an 237011,China ) Abstract:First ,the basic topological structures of wireless sensor network and the structure of sensor node are introduced.The starting -up process of wireless sensor network based on ZigBee stack is explained in details ,including startup and establishing network of coordinator ,startup and joining network of sensor node ,binding between sensor nodes and coordinator ,and the process of terminal nodes sending data to coordinator.The wireless sensor network is designed based on ZigBee stack.Taking sampling temperature information as a example ,the coordinator can collect the information from sensor nodes ,and send them to PC by using RS232.The temperature information can be displayed in PC.The experiment shows that good communication quality of this system can be obtained ,although at the distance of 80meters.Key words:ZigBee stack ;wireless sensor network ;coordinator ;sensor node 收稿日期:2012-01-12 稿件编号:201201050 基金项目:安徽省高校省级优秀青年人才基金项目(2010SQRL202) 作者简介:徐振峰(1981—),男,山东郓城人,硕士,讲师。研究方向:无线传感器网络理论及应用。 无线传感器网络(Wireless Sensor Network ,WSN )是由部署在监测区域内大量廉价微型传感器节点组成,通过无线通信方式形成多跳、自组织网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者[1]。 目前能够用于短距离无线传感网络的通信技术主要有5种[2]:Wi-Fi 技术、超宽带通信(Ultra Wideband ,UWB )技术、近场通信(Near Field Communication ,NFC )技术、蓝牙以及 ZigBee 技术。其中,ZigBee [3]是基于IEEE802.15.4的一种新兴 短距离无线通信技术,其特点是低功耗、低速率、低复杂度、低成本等。这些特点决定了ZigBee 技术非常适合应用于无线传感网络中,因此ZigBee 技术被认为是最有可能应用于工业监控、传感器网络、家庭监控、安全监控等领域的无线技术。在ZigBee 协议的制定中,IEEE802.15.4无线标准定义了物理层(Physical Layer ,PHY )和介质访问控制层(Medium Access Control Sub -Layer ,MAC ),而ZigBee 协议栈的网络层和应用 层是由ZigBee 联盟制定的。 支持ZigBee 协议的无线通信芯片主要有TI 公司推出的CC2420、CC2430、CC2530以及Freescale 半导体公司推出的MC13191、MC13192及MC13193等芯片。CC2430是世界上首 个单芯片ZigBee 解决方案,除了保持CC2420所包括的优良射频性能之外,其内部还集成了一个增强型8051内核,这使得 CC2430成为市面上最具有竞争力的ZigBee 无线收发芯片。 文中设计了基于ZigBee 协议栈的无线传感网络,该系统包括一个协调器和四个终端传感节点。以采集温度信息为例,实现了无线通信功能。协调器节点通过RS232串口,将收到的数据发送给PC 机进行处理及显示。 1 无线传感网络的结构 1.1 网络体系结构 无线传感网路中的基本单元是传感器节点,根据其在网 络中的所承担的任务不同,传感器节点可以分为3类:协调器、路由器和传感器节点。在网络中,协调器负责建立网络,允许路由器和传感器节点与其绑定,并接收路由器和传感器节点发送来的数据信息,以及传送给PC 机进行处理、存储等;传感器节点负责感知被测对象的物理信息,并将其无线 电子设计工程 Electronic Design Engineering 第20卷Vol.20第5期No.52012年3月Mar.2012 -75-

无线传感器网络路由协议

无线传感器网络的关键技术有路由协议、MAC协议、拓扑控制、定位技术等。路由协议: 数据包的传送需要通过多跳通信方式到达目的端,因此路由选择算法是网络层设计的一个主要任务。路由协议主要负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能: 1.寻找源节点和目的节点间的优化路径。 2.将数据分组沿着优化路径正确转发。 无线传感器与传统的无线网络协议不同之处,它受到能量消耗的制约,并且只能获取到局部拓扑结构的信息,由于这两个原因,无线传感器的路由协议要能够在局部网络信息的基础上选择合适路径。传感器由于它很强的应用相关性,不同应用中的路由协议差别很大,没有通用的路由协议。无线路由器的路由协议应具备以下特点: (1)能量优先。需要考虑到节点的能量消耗以及网络能量均衡使用的问题。(2)基于局部拓扑信息。WSN为了节省通信能量,通常采用多跳的通信模式,因此节点如何在只能获取到局部拓扑信息和资源有限的情况下实现简单 高效的路由机制,这是WSN的一个基本问题。 (3)以数据为中心。传统路由协议通常以地址作为节点的标识和路由的依据,而WSN由于节点的随机分布,所关注的是监测区域的感知数据,而不是具体哪个节点获取的信息,要形成以数据为中心的消息转发路径。 (4)应用相关。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。 现介绍几种常见的路由协议(平面路由协议、网络分层路由协议、地理定位辅助路由协议): 一、平面路由协议 平面路由协议中,逻辑结构时平面结构,节点间地位平等,通过局部操作和反馈信息来生成路由。当汇聚点向某些区域发送查询并等待来自于这些区域内传感器所采集的相关数据,其中的数据不能采用全局统一的ID,而是要采用基于属性的命名机制进行描述。平面路由的优点是结构简单、鲁棒性(即路由机制的容错能力)较好,缺点是缺乏对通信资源的优化管理,对网络动态变化的反应速度较慢。其中典型的平面路由协议有以下几种: 1.1.洪泛式路由(Flooding): 这是一种传统的网络通信路由协议。这种算法不要求维护网络的拓扑结构和相关路由的计算,仅要求接受到信息的节点以广播形式转发数据包。例如:S节点要传送一段数据给D节点,它需要通过网络将副本传送给它每一个邻居节点,一直到传送到节点D为止或者为该数据所设定的生存期限为零为止。优点在于:实现简单;不需要为保持网络拓扑信息和实现复杂路由发现算法消耗计算资源;适用于鲁棒性较高的场合。但同时也有相应的缺点:一个节点可能得到一个数据的多个副本;存在部分重叠,如果相邻节点同时对某件事作出反应,则两个节点的邻居节点将收到两份数据副本;盲目使用资源,无法作出自适应的路由选择。 为克服Flooding算法这些固有的缺陷,S.Hedetniemi等人提出闲聊式

无线传感器网络中的同步算法

WWW.cismag.com.cn 54 引 言 无线传感器网络(WSNs)是当前的一个研究热点,被称为是21世纪最重要的技术之一。一般来说,无线传感器网络是由大量的传感器节点组成,这些节点能够感知周围的环境,具有数据采集、处理、无线通信和自动组网的能力,能协作完成大型或复杂的监测任务。无线传感器网络有监测精度高、容错性好、覆盖区域大等显著优点,在军事、环境监测、工业控制和城市交通等方面有着广泛的应用前景,特别适合部署在恶劣环境和人不宜到达的场所。时间同步是WSNs中的一项关键技术,无线传感器网络的许多应用和关键技术中都离不开时间同步,例如,在多传感器数据融合技术中,网络中的节点必须以一定的精度保持时间同步,否则根本无法实现数据融合。在低能耗MAC协议的设计中,为减少能量的消耗,通常是通过调节占空比来实现TMDA调度算法的,但需要参与通信的双方首先实现时间同步,并且同步精度越高,防护频带越小,相应的功耗也越低。定位技术也依赖于时间同步,在声波测距定位中,如果网络中的节点保持时间同步,则声波在节点间的传输时间很容易被确定,反之亦然。节点间的数据处理也离不开时间同步,通信是无线传感器网络中最主要的能 耗单元,传统分布式系统中的集中式 数据处理模式需要频繁交换原始数据,不适合无线传感器网络;利用节点上的独立处理能力,发挥节点间的协同作用,对原始采样数据进行加工与萃取,以减小网络传输开销是延长网络生命周期的有效途径。另外,进行数据压缩和剔除冗余数据等也是减小网络传输的手段,但进行这些处理需要目标附近的节点具有统一的时标来判定不同的原始监测数据是对同一事件的刻画,还是不同事件的描述。更重要的是,无线传感器网络的一些独特的特性:对于能量、带宽等的限制等,使得现有网络的同步技术不再适合于这种新型的网络,因而有必要研究WSN中的时间同步。 同步算法分析 1. 时间同步的基本原理要设计网络中的时间同步算法,必须要了解同步的原理。图1通过一对节点的双向信息交换,介绍了两个节点是如何同步的。 如图1所示,在T1时刻,节点A向节点B发送一个包含A的标识和T1值的synchronization_pulse信息包,要求与节点B同步;在T2时刻,节点B收到节点A发送的包,此时T2=T1+dr+de,其中dr表示时钟漂移,de表示传播时延;在T3时刻,节点B向节点A返回一个acknowl-edgment信息包,该包包含B的标识以及T1、T2、T3的值;在T4时刻,节点A接收到节点B返回的ac-knowledgment信息包,此时T4=T3-dr+de。 假定,在T1到T4这么短的时间内,时钟漂移和传播时延不会发生变化,则可以算出时钟漂移dr=[(T2-T1)-(T4-T3)]/2,传播时延de=[(T2-T1)+(T4-T3)]/2。 知道了时钟漂移,则节点A就能纠正其时钟,从而与节点B的时钟达到同步,即发送方把其时钟与接收方的时钟同步,这就是发送方-接收方同步的基本原理。 在传统计算机网络中,时间同步 基本上都是采用这种发送方-接收方的同步算法,那么在传感器网络中能不能采用这种方法 呢? 通信技术 无线传感器网络中的同步算法 摘 要:无线传感器网络由于其自身的独特性,使得传统网络的时间同步算法不适合于这种网络。本文分析了当前传感器网络中两种典型的同步算法,提出了一种新的设想。 韩翠红 李立宏 赵尔沅/ 文 图1 节点间双向消息交换的时间线

无线传感器网络安全技术

无线传感网络设计报告 题目无线传感器网络安全设计 报告人 指导老师 二○一六年十二月 无线传感器网络安全技术 摘要:针对目前库在未来的几十年里,传感器网络作为首要的技术的出现给许多研究拘束人员带来了很多挑战。这些传感器网络由大量的同质节点,这些节点可以用来限制计算机的资源。现实生活中的很多应用在传感器网络的研究文献中被提出来。当传感器网络部署在一个意想不到的或敌对的环境中,安全问题成为一个重要的关注点,因为这些安全问题都来自不同类型的恶意攻击。在本文中,我们目前的关于无线传感器网络安全问题的调查、网络受到的攻击还有相应的对策以及对未来工作范围的都有了很好结论和概述。 关键字:无线传感器网络;安全;威胁;危险 1 引言 传感器网络监控物理或环境条件如温度、声音、压力、湿度等。传感器网络由大量的低功率、低成本的智能设备与极端的资源约束。每个设备是称为传感器节点,每个节点连接到一个有时几个传感器节点。它具有无线通信的能力和一些情报信号处理和数据网络。这些传感器节点通常是在各种随机方向地区收集数据、过程数据并将其传递给中央节点进行进一步处理。每个传感器节点由三个子系统组成:传感器子系统、处理子系统和通信子系统。传感器子系统用于传感环境。处理子系统用于执行当前计算数据感知和负责通信子系统与邻近的传感器节点的信息交换。

传感器网络在许多应用程序中使用。这些应用程序包括: 1)军事应用,如监测出对方是否是友好的和设备、军事影院或战场监测、核、生物和化学攻击检测。 2)环境应用程序等小气候、森林火灾探测、精确农业和洪水检测。 3)应用程序,如跟踪和健康监控,医生对在医院的病人进行药物生理数据的管理、远程监控。 4)家庭应用,如食品自动化的环境,自动抄表等。 5)环境等商业应用控制在工业办公楼和车辆跟踪和检测、库存控制、交通流监测[1]。 2 传感器节点的体系结构 传感器节点是无线传感器的重要组成部分。通过网络可以收集传感器和执行一些计算的信息和其他结果网络中连接节点沟通。 图1:传感器节点的体系结构传感器节点由以下部分组成: a:控制器 它是传感器节点的大脑。它的功能是控制其它部分的传感器节点。它能够处理数据执行任务。由于其低成本,灵活地连接到其他设备,方便编程和低功耗主要在传感器微控制器作为控制器比通用微控制器节点(数字信号桌面处理器,处理器)。 b .收发器 无线传输介质可以像无线电频率(RF),光学(激光)和红外通信以不同的方式。激光有优势它只需要更少的能量,但主要缺点是它大气状况更为敏感。红外是也是一个不错的选择,但它广播有限能力。所以大部分的基础是基于射频通信。收发器的主要功能能够作为发射机和接收机。 c .外部存储器 由于成本和存储容量,使用闪存。 d .电源 电源是最重要的一个单位例如单电池可能是有限的。有些支持清除设备(如太

无线传感器网络的时间同步问题

无线传感器网络的时间同步问题 摘要 时间同步对任何分布式系统都是一个关键的基础问题。分布式无线传感器网络广泛使用的同步时间,往往在范围,寿命和精度同步实现等方面有特殊要求,以及实现同步所需的时间和所需的能源。现有的时间同步方法需要扩展,以满足这些新的需求。我们列举了传感器网络未来的同步要求,并提出了我们自己的低能耗同步方案,事后同步。我们还描述了一个实验,其性能特点是使用很少的能量创造短暂的,局部的,但高精度的同步。 1.介绍 最近的发展小型化和低成本,低能耗设计导致积极研究在大规模,高度分散的小系统,无线,低功耗,无人值守传感器和致动器[ 1,7, 4 ] 。许多研究人员提出了创造传感器丰富的“聪明环境”的设想。通过有计划或临时部署数千个传感器,每一个短距离无线通信通道,并能够检测环境条件如温度,运动,声,光,或存在某些物体。 时间同步对任何分布式系统都是一个关键的基础设施。分布式,无线传感器网络使特别是广泛使用的同步时间:例如,将时间序列的接近侦测到的速度估计[ 3 ] ;测量声音的运行时间定位其来源[ 5 ] ;分发波束阵列[ 13 ] ;或制止重复邮件,由认识到他们所描述重复检测同一事件不同的传感器[ 6 ] 。传感器网络也有许多相同的要求,传统的分布式系统:精确的时间戳,往往需要在加密计划,以协调活动定于今后,供订购记录的事件在系统调试,等等。传感器网络应用的广泛性导致时间要求的范围,寿命和精度不同于传统的系统。此外,许多节点新兴的传感器系统将非系留,因此有小型的能源储备。所有通讯,甚至被动的听,将产生重大的影响,这些储备时间同步方法的传感器网络 因此,必须也考虑到他们消费的时间和精力。 在本文中,我们认为,非均质性要求在传感器网络应用的需要能源效率和其他方面的限制没有发现在常规分布式系统,甚至是各种硬件而传感器网络将部署,使目前的同步计划不足以完成这项任务。传感器网络,现有的计划将需要扩大和合并后新的方式,以便提供服务,以满足应用的需要与可能的最低能量支出。 在此框架内,我们提出我们的想法事后同步,极低功耗同步方法时钟在一个地方时,准确的时间戳记是需要具体的事件。我们还提出了实验这表明这个多式联运计划能够精确在1微秒。为了更好地级比的两种模式,它的组成。这些结果是令人鼓舞的,但仍是初步的,表现实验室条件下的理想化。 第2节中,我们提出了一些指标,可以用来区分两种类型所提供的服务同步 方法和要求的应用使用这些方法。第3节介绍我们的事后同步的想法,并介绍了实验的特点其表现。第4节描述今后的工作中,我们的结论在第5节。 2.时间同步的特征 许多不同的方法分配的时间同步在共同使用。如美国全球定位系统(GPS )[ 8 ]和WWV / WWVB广播电台由国家研究所标准与技术[ 2 ]提供参考美国时间和频率标准。网络时间协议,特别是在Mills的NTP [ 10 ] ,从这些主要来源的网络连接电脑分配时间。 在研究适用于传感器网络,我们已发现有用的特点是不同类型的时间沿线各轴同步。我们认为某些指标特别重要: 精密,无论是分散之间的一组同龄人,或最大误差对外部标准。 生命周期,这可以从持续同步持续只要网络运营,几乎瞬时(有益的,例如,如果节点要比

无线传感器网络攻击与防范_刘勇

本栏目责任编辑:冯蕾无线传感器网络攻击与防范 刘勇,侯荣旭 (沈阳工程学院计算中心,辽宁沈阳110136) 摘要:无线传感器网络安全机制的研究一直是传感器网络的研究热点,该文主要介绍了无线传感器网络各层的攻击方式以及各个攻击方式的防范措施。 关键词:无线传感器网络;安全;攻击;防范 中图分类号:TP393文献标识码:A 文章编号:1009-3044(2013)35-7927-02 Wireless Sensor Network Attack and Prevention LIU Yong,HOU Rong-xu (Computer Center,Shenyang Institute of Engineering,Shenyang 110136,China) Abstract:The security mechanism research of wireless sensor network has been a hot research topic of sensor networks,this pa?per mainly introduces the wireless sensor network attack means of each layer and the preventive measures against various attacks. Key words:Wireless Sensor Networks;security;attack;prevention 无线传感器网络(wireless sensor networks)是结合传感器技术、计算和通信的产物,并作为一种全新的信息获取和处理技术在国际上备受关注。由于现代科学的通讯技术和微型制造技术的不断提高,致使传感器不但具有感应外界环境的能力,而且还有独立处理信息和无线通讯的能力,外观上也变得越来越小。无线传感器网络属于自组织多跳式的网络,它可以在一定范围内自行组建网络,一个终端节点可以通过多条路径把信息传送到另一个节点。无线传感器网络通常适用于通讯距离较短和功率较低的通信技术上,但由于传感器网络自身的一些特性,致使其更容易遭受到各种形式的攻击。因此,无线传感器网络的安全面临着巨大挑战。 1无线传感器网络攻击与防范 无线传感器网络要想进入实际应用,安全因素是必须要考虑的,这样就需要可行的安全机制。作为一种特殊的Ad-hoc 网络,无线传感器网络又具有自组网络的多跳性、无中心性和自组织性等独特的特征,所以现有的网络安全机制没有办法用到本领域上。鉴于无线传感器网络面临的诸多威胁,并针对网络安全性能要求,下面我们将对无线传感器网络进行分层分析。 1.1物理层的攻击与防范 物理层的攻击包括物理破坏、信息泄露和拥塞攻击。由于无线传感器网络所处的环境比较恶劣,通常使用者没有办法进行现场监控,所以攻击者就可以利用这一特点轻易对该节点进行破坏或者进一步对节点进行内存重写以甚至替代该节点的攻击。又由于攻击者可以轻易监听暴露在物理空间上的无线信号,这样就造成信息的泄露。再者,攻击者还可以通过在无线传感器网络工作的频段上不断发射无用信号,致使该节点不能正常工作,如果这种攻击节点的密度达到一定程度时,就可以使得整个网络处于拥塞状态而无法进行正常工作。 物理层防范的关键之处在于建立有效的数据加密机制,因为传感器节点在计算能力和存储空间上有一定的局限性限,所以,轻量级的对称加密算法可以有效地被采用,同时非对称密钥加密系统也在探索之中,例如基于椭圆曲线的密钥系统。再者,扩频或者跳频技术也可以有效抵抗电波干扰。 1.2链路层的攻击和防范 数据链路层的攻击包括耗尽攻击、碰撞攻击和链路层DOS 攻击:攻击者可以利用无线传感器网络协议存在的漏洞,持续向一个节点发送数据包,最后使其忙于处理这些无意义的数据包而耗尽资源,从而令合法用户无法访问,这种攻击叫做耗尽攻击。而防止耗尽攻击的方法有限制节点的发送次数和在协议上设置重发次数的上限值等等。攻击者还可以利用数据链路层的媒体接入机制的漏洞进行传输数据包,从而进行碰撞攻击,这会使正常的数据无法传输,最终耗尽节点的能量资源,而防止碰撞攻击可以采用纠错编码、信道监听等手段来完善链路层的协议,具体为,先采用信道监听和重传机制来防止恶意节点数据包的碰撞攻击,再进行控制MAC 层的接入,使网络自动把过多的请求进行忽略,这样就可以不必对每个请求都应答,节省了通信的开销。攻击者还可以利用恶意节点或者被俘节点来不断在网络上发送高优先级的数据包来占据信道,导致其他节点无法传送正常的数据,这种DOS 攻击不但可以存在于数据链路层,还可以存在于物理层、网络层和传输层,对于DOS 攻击,可以采用短包策略或者弱化优先级之间的差异的方法来防止恶意节点发送的高优先级的数据包。 1.3网络层的攻击和防范 在无线传感器网络中,传感器节点大都密集分布在一个区域中,信息需要若干节点的传送才能到达目的地,又因为传感器网收稿日期:2013-09-20 作者简介:刘勇(1973-),男,辽宁沈阳人,高级实验师,硕士,主要研究方向为网络研究。 7927

相关文档
相关文档 最新文档