文档视界 最新最全的文档下载
当前位置:文档视界 › 锂电池k值计算公式

锂电池k值计算公式

锂电池k值计算公式

锂电池是一种高能量密度电池,已经被广泛应用于电动汽车、手机、笔记本电脑等领域。而锂电池的性能评估中,一个重要指标就是其电

化学稳定性,其中一个衡量稳定性的参数就是k值。那么如何计算锂

电池的k值呢?

首先,我们需要了解一下k值的定义。k值,也叫电荷转移系数,是评

估电化学反应反应速率的参数。在锂电池中,k值主要用于描述电极反

应和电解质反应的速率。k值越大,说明锂电池的反应速率越快,反之

就越慢。

那么,如何计算k值呢?下面是k值的计算公式:

k = (1-t) / (1+t)

其中,t为电极表面传质电化学失活因子。在锂离子电池中,t通常用

来表示电极表面锂离子传输过程的速率。t越小,表示锂离子在电极表

面的扩散越容易,反应速率也就越快。

那么如何确定t的值呢?这需要通过实验来获得。实验中,我们需要测

量电极表面的开路电势和交流阻抗。通过对这两个量的测量数据进行

分析,并结合材料性质和系统参数,可以计算出t值。

通过上述公式的计算,我们可以得到锂电池的k值,根据k值的大小,

我们可以对锂电池的性能做出初步评估。同时,k值的提高也是锂电池

研究中一个重要的目标。

总而言之,锂电池的k值是衡量其电化学稳定性的一个重要指标。通

过上述公式的计算,我们可以得到锂电池的k值,并初步评估其性能。在未来,提高锂电池k值的研究将会成为锂电池领域中的一个重要方向。

锂电池的相关参数以及计算方法

(1)(1)电极材料的理论容量 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的 容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷e=1.602176 ×10-19 C的积,其值为96485.3383±0.0083 C/mol 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为 96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol, 如果锂离子全部脱出,其理论克容量274 mAh/g. 石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为 : 对于硅负极,由5Si+22Li++22e- ? Li22Si5 可知,5个硅的摩尔质量为 140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为: 这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小 于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数×理论容量 (2)电池设计容量 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积 其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密 度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子 电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增 加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔 隙内的迁移距离比极片厚度多出很多倍。 (3)N/P比 负极活性物质克容量×负极面密度×负极活性物含量比÷(正极活性物质克容 量×正极面密度×正极活性物含量比) 石墨负极类电池N/P要大于1.0,一般1.04~1.20,这主要是出于安全设计,主要为了防止负极析锂,设计时要考虑工序能力,如涂布偏差。但是,N/P 过大时,电池不可逆容量损失,导致电池容量偏低,电池能量密度也会降低。 而对于钛酸锂负极,采用正极过量设计,电池容量由钛酸锂负极的容量确定。 正极过量设计有利于提升电池的高温性能:高温气体主要来源于负极,在正

锂电参数与计算公式合集

常用锂电参数与计算公式合集 (1)电极材料的理论容量 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷e=1.602176 × 10-19 C的积,其值为96485.3383±0.0083 C/mol 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol,如果锂离子全部脱出,其理论克容量274 mAh/g. 石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为:

对于硅负极,由5Si+22Li++22e- ↔ Li22Si5 可知,5个硅的摩尔质量为140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为: 这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数× 理论容量 (2)电池设计容量 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极片厚度多出很多倍。 (3)N/P比 负极活性物质克容量×负极面密度×负极活性物含量比÷(正极活性物质克容量×正极面密度×正极活性物含量比)

锂电池放电曲线全面解析

锂电池放电曲线全面解析 测定电池的放电曲线,是研究电池性能的基本方法之一,根据放电曲线,可以判断电池工作性能是否稳定,以及电池在稳定工作时所允许的最大电流。本文详细全面地介绍锂离子电池放电曲线的基础知识。 锂离子电池放电时,它的工作电压总是随着时间的延续而不断发生变化,用电池的工作电压做纵坐标,放电时间,或容量,或荷电状态(SOC),或放电深度(DOD)做横坐标,绘制而成的曲线称为放电曲线。要认识电池的放电特性曲线,首先需要从原理上理解电池的电压。 1 电池的电压 电极反应要形成电池必须满足以下条件:化学反应中失去电子的过程(即氧化过程)和得到电子的过程(即还原反应过程)必须分隔在两个不同区域中进行,这区别于一般的氧化还原反应;两电极的活性物质进行氧化还原反应时所需的电子必须由外电路传递,这区别于金属腐蚀过程的微电池反应。电池的电压是正极与负极之间的电势差,具体的关键参数包括开路电压、工作电压、充放电截止电压等。 1.1 锂离子电池材料的电极电位 电极电位是指固体材料浸于电解质溶液中,显示出电的效应,即金属的表面与溶液间产生的电位差,这种电位差称为金属在此溶液中

的电位或电极电位。简单说电极电位是表示某种离子或原子获得电子而被还原的趋势。 因此,对某种正极或负极材料来说,当处于有锂盐的电解质中时,其电极电位表示成: 其中,φc即是这种物质表现出来的电极电位。表1中所列的标准电极电势(25.0℃,101.325kPa)是相对于标准氢电极电势的值。标准氢电极电势被规定为0.0V。 表1 常见的材料在水溶液中的标准电极电势 1.2 电池的开路电压 电池电动势是根据电池反应,应用热力学方法进行计算的理论值,即电池在断路时处于可逆平衡状态下,正负极之间的平衡电极电势之差,是电池可以给出电压的极大值。而实际上,正负极在电解液中并不一定处于热力学平衡状态,即电池的正负极在电解质溶液中所建立的电极电势通常并非平衡电极电势,因此电池的开路电压一般均小于它的电动势。对于电极反应:

读透此文后,你就是K值专家

知行锂电●技艺┃读透此文后,你就是K值专家! 引言: K值是用于描述电芯自放电速率的物理量,其计算方法为两次测试的开路电压差除以两次电压测试的时间间隔,公式为OCV2-OCV1/△T。电芯在出货之前,一定要进行K值测试,并将K值大(等价于自放电)的电芯挑出来。对于一个每家必测且如此重要的物理量,我们显然有必要对其进行深入的研究,本文的内容,便是如此。 如何测试K值 在电芯分容后,并不可以马上测试电压,而是要将刚完成分容的电芯存储几天后(本文称呼其为第一次存储)再进行OCV1的测试,然后再存储几天(本文称呼其为第二次存储)进行OCV2测试。电芯的K值,由OCV2减去OCV1后的差值,再除以两次存储之间的时间差值算得。 一般而言,第一次存储我们会使用45度或更高一些的高温条件,其目的有两个:通过高温存储将有腐蚀气账的电芯预先挑出来;通过高温存储让电芯的电压降速率逐步平稳,待存储过后再进行电压及K值测试,可以得到一致性比较好的结果(关于此点原理,下文还会继续介绍)。 综合以上内容,目前我们常见的K值测试及计算方法如下:

K值有何意义 K值作为一个电芯厂出货前必须测试的项目,自然有着其不可替代的价值,对电芯全检并筛选K值有如下意义: 1)筛选内部微短路电芯:极片上的颗粒或微量金属残渣、隔膜上的微小缺陷、电芯在组装过程中引入的粉尘等,都会造成电芯内部微短路。对于微短路电芯,仅通过容量及一次电压是无法完成筛选的,因此必须引入K值测试:通过精确计算其电压降速率来判断电芯是否存在微短路情况。 2)避免电芯长期存储之后电压降低太多:K值是电芯电压降速率的定量描述,K值过大,说明电芯电压降速度太快。这样的电芯出货给客户,如果客户无法及时出货给到终端,那么电芯的电压一致性会随着时间的推移变的越来越差,长期存储后甚至无法满足设备开机等最基本功能,这显然是终端客户无法接受的(买个新开封的手机想试试,开机前还要先充电半小时......) 3)辅助筛选其它性能不良电芯:根据小编的经验,当电芯K值较大时,其便存在腐蚀气账或循环不良的可能。前者的原因是铝塑膜封装不良,这类不良是可能通过K值测试筛选的(但绝对不是100%筛选哦);后者的原因是电芯内部微短路,循环过程中不停地发生副反应从而造成电解液过早消耗干、电芯循环跳水。 与K值有关的规律 为了更深入的了解K值,我们还必须了解以下与K值有关的规律: 1)分容后存储时间越长,K值就会越小:分容之后,电芯电压降的速度(也就是K值的大小)是一个先快后慢的过程,需要常温搁置数日之后,压降速度才能基本稳定。

常见聚合物锂电池参数计算公式

常见聚合物锂电池参数计算公式 在做聚合物锂电池生产制造或购买的锂电池的时候,我们常常会电池的某个参数需要进行计算,对于不少专业做锂电池的人来说比较困难,下面介绍一下常见聚合物锂电池参数计算公式,希望可以帮到大家。 (1)锂电池电极材料的理论容量计算公式 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容量,其值通过下式计算: 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol,如果锂离子全部脱出,其理论克容量274 mAh/g. 石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为: 对于硅负极,由5Si+22Li++22e- ↔ Li22Si5 可知, 5个硅的摩尔质量为140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为:这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数×理论容量(2)锂电池设计容量计算公式 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极片厚度多出很多倍。

常用锂电参数与计算公式

常用锂电参数与计算公式 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214某1023mol-1与元电荷e=1.602176某10-19C的积,其值为96485.3383±0.0083C/mol故而,主流的材料理论容量计算公式如下:LiFePO4摩尔质量157.756g/mol,其理论容量为:同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2)摩尔质量为96.461g/mol,其理论容量为278mAh/g,LiCoO2摩尔质量97.8698g/mol,如果锂离子全部脱出,其理论克容量274mAh/g.石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066g/mol,石墨的最大理论容量为: 对于硅负极,由5Si+22Li++22e-↔Li22Si5可知,5个硅的摩尔质量为140.430g/mol,5个硅原子结合22个Li,则硅负极的理论容量为:这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数某理论容量(2)电池设计容量电池设计容量=涂层面密度某活物质比例某活物质克容量某极片涂层面积其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极片厚度多出很多倍。 (3)N/P比负极活性物质克容量某负极面密度某负极活性物含量比÷(正极活性物质克容量某正极面密度某正极活性物含量比)石墨负极类

锂电池公式

1.设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系 数(1) 设计系数一般取1.03~1.10。 2.极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2) 极片宽度Wp: Wp = 电池宽度-C (3) 包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4) 包尾极片的宽度Wp′: Wp′= Wp-0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当

(1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm; (2)3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm; (3)4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值5.2~6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值5.4~6.0mm。 B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定: 确定极片的数量N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取300mAh/g。 N =(T-0.2) /0.35±1(6) 注:计算时N取整,并根据面密度的值来调整N。

技术丨锂离子电池老化机理与工艺过程

技术丨锂离子电池老化机理与工艺过程 导读:对于不同的电池体系,三元正极/石墨负极锂电池、磷酸铁锂正极/石墨负极锂电池抑或是钛酸锂负极电池,需要根据材料特性及锂电池特性进行针对性试验。 锂电池的生产工艺可以分为前道极片制造、中道电芯封装、后道电池活化三个阶段,电池活化阶段的目的是让电池中的活物质和电解液经过充分活化以达到电化学性能稳定。活化阶段包括预充电、化成、老化、定容等阶段。预充电和化成的目的是为了让正负极材料进行最初几次的充放电来激活材料,使材料处于最佳的使用状态。 老化的目的主要有几个: 一是让电解液的浸润更加良好,有利于电池性能的稳定; 二是正负极材料中的活性物质经过老化后,可以促使一些副作用的加快进行,例如产气、电解液分解等,让锂电池的电化学性能快速达到稳定; 三是通过老化一段时间后进行锂电池一致性筛选。化成之后电芯的电压不稳定,其测量值会偏离实际值,老化后的电芯电压、内阻更为稳定,便于筛选一致性高的电池。 老化制度对锂电池性能的影响因素主要有两个,即老化温度和老化时间。除此之外,还有老化时电池处于封口还是开口的状态也比较重要。对于开口化成来说,如果厂房可以控制好湿度可以老化后再封

口。如果采用高温老化,封口后老化比较好。对于不同的电池体系,三元正极/石墨负极锂电池、磷酸铁锂正极/石墨负极锂电池抑或是钛酸锂负极电池,需要根据材料特性及锂电池特性进行针对性试验。在试验设计中,可以通过锂电池的容量差别、内阻差别、压降特点来确定最佳的老化制度。 一、三元或磷酸铁锂正极/石墨负极锂电池 对于三元作为正极材料,石墨作为负极材料的锂电池来说,锂离子电池的预充化成阶段会在石墨负极的表面形成一层固态电解质膜(SEI),此种膜的形成电位约在0.8V左右,SEI允许离子穿透而不允许电子通过,由此在形成一定厚度后会抑制电解液的进一步分解,可以起到防止电解液分解引起的电池性能下降。但是化成后形成的SEI膜结构紧密且孔隙小,将电池再进行老化,将有助于SEI结构重组,形成宽松多孔的膜,以此提高锂电池的性能。三元/石墨锂电池的老化一般选择常温老化7天-28天时间,但是也有的厂采用高温老化制度,老化时间为1-3天,所谓的高温一般是38℃- 50℃之间。高温老化只是为了缩短整个生产周期,其目的和常温老化一样,都是让正负极、隔膜、电解液等充分进行化学反应达到平衡,让锂电池达到更稳定的状态。 老化一般就是指电池装配注液完成,第一次充放电化成后的放置,可以有常温老化也可有高温老化,老化的目的主要以下几个方面: 1、将电池置于高温或常温下一段时间,可以保证电解液能够对极片进行充分的浸润,有利于电池性能的稳定; 2、电池经过预化成工序后,电池内部石墨负极会形成一定的量的SEI膜,但是这个膜结构紧密且孔隙小,将电池在高温下进行老化,将有助于SEI结构重组,形成宽松多孔的膜。 3、化成后电池的电压处于不稳定的阶段,正负极材料中的活性物质经过老化后,可以促使一些副作用的加快进行,例如产气、电解液分解等,让锂电池的电化学性能快速达到稳定。 4、剔除自放电严重的不合格电池,便于筛选一致性高的电池。 二、钛酸锂负极锂电池 俗称的钛酸锂电池是负极采用了钛酸锂的电池,正极材料主要还

百科知识精选K值

微生物K值 K值:微生物耐热性的一种特征,随微生物的种类和灭菌温度变化而变化,相同温度下,k越小,微生物越耐热。 根据微生物的热死规律-对数残留定律: 在一定温度下,微生物受热后其死亡细胞的个数变化与化学反应的浓度变化一样,有一定的规律。 微生物受热死亡的速率与微生物存活细胞数目有关,即微生物受热死亡的速率与任一瞬间残存的微生物活细胞数成正比: Nt=N0e-kt 对数残留定律。 大肠杆菌在不同温度下的残留曲线,温度越高,k值越大,微生物越容易死亡。 某些微生物的残留曲线不是直线,由于微生物中即存活营养细胞,也存活耐热芽孢,温度越高,k越大,微生物越易死亡。 芽孢的k值远小于其营养细胞 同一种微生物在不同的灭菌温度下,k值也不同:灭菌温度低,k越小;温度越高,k值越大,微生物死亡越快。灭菌温度越高,k值越大,灭菌时间缩短, 培养基灭菌:受热很短时间内,培养基中的油脂、糖类和蛋白质会增加微生物的耐热性;高浓度盐、色素会降低其耐热性。 灭菌条件加强,培养基中成分发生变化,糖焦化、蛋白质变性、维生素失活、醛糖和氨基化合物反应、不饱和醛聚合、一些化合物发生水解。 培养基采用高温短时间加热方法。 水产品鲜度指标 鱼类鲜度的一种指标,为次黄嘌呤核苷和次黄嘌呤之和与腺苷三磷酸及其分解物总量之比的百分率。 K(%)=100*(Ino+Hx)/(ATP+ADP+AMP+IMP+Ino+Hx) 当K 40 % 时,鱼已不宜食用。 相机中的K值 所谓K值定量地以开尔文Kelvin温度(K)来表示色彩,就是色温。K 值越高,显现的颜色就愈趋向于白蓝色;K 值越低,显现的颜色就愈趋向于黄红色。英国著名物理学家开尔文认为,假定某一黑体物质,能够将落在其上的所有热量吸收,而没有损失,同时又能够将热量生成的能量全部以“光”的形式释放出来的话,它便会因受到热力的高低而变成不同的颜色。例如,当黑体受到的热力相当于500—550摄氏度时,就会变成暗红色,达到1050-1150摄氏度时,就变成黄色,温度继续升高会呈现蓝色。光源的颜色成分是与该黑体所受的热力温度是相对应的,任何光线的色温是相当于上述黑体散发出同样颜色时所受到的“温度”,这个温度就用来表示某种色光的特性以区别其它。 钨丝灯所发出的光由于色温较低表现为黄色调,不同的路灯也会发出不同颜色的光,天然气的火焰是蓝色的,原因是色温较高。万里无云的蓝天的色温约为10000 K,阴天约为7000~9000 K,晴天日光直射下的色温约为6000 K,日出或日落时的色温约为2000 K,烛光的色温约为1000 K。这时我们不难发现一个规律:色温越高,光色越偏蓝;色温越低则偏红。

常用锂电参数与计算公式

常用锂电参数与计算公式 (1)电极材料的理论容量 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷e=1.602176 × 10-19 C的积,其值为96485.3383±0.0083 C/mol故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol,如果锂离子全部脱出,其理论克容量274 mAh/g.石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为: 对于硅负极,由5Si+22Li++22e-↔ Li22Si5 可知,5个硅的摩尔质量为140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为:

这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数× 理论容量(2)电池设计容量 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极片厚度多出很多倍。 (3)N/P比 负极活性物质克容量×负极面密度×负极活性物含量比÷(正极活性物质克容量×正极面密度×正极活性物含量比)石墨负极类电池N/P要大于 1.0,一般1.04~1.20,这主要是出于安全设计,主要为了防止负极析锂,设计时要考虑工序能力,如涂布偏差。但是,N/P过大时,电池不可逆容量损失,导致电池容量偏低,电池能量密度也会降低。而对于钛酸锂负极,采用正极过量设计,电池容量由钛酸锂负极的容量确定。正极过量设计有利于提升电池的高温性能:高温气体主要来源于负极,在正极过量设计时,负极电位较低,更易于在钛酸锂表面形成SEI膜。( 4)涂层的压实密度及孔隙率

锂电常用参数与计算公式、中英对照

作者:一气贯长空 锂电常用参数与计算公式、中英对照 1 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷e=1.602176 × 10-19 C的积,其值为96485.3383±0.0083 C/mol 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质

量97.8698 g/mol,如果锂离子全部脱出,其理论克容量274 mAh/g. 石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为: 对于硅负极,由5Si+22Li++22e- ↔ Li22Si5 可知, 5个硅的摩尔质量为140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为: 这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数× 理论容量 (2)电池设计容量 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积 其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密度不变时,涂层面密度增加意味着极片

常用锂电池参数、设计、计算公式及应用解析

常用锂电池参数、设计、计算公式及应用解析 一、锂电池设计及计算公式 (1)电极材料的理论容量: 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷 e=1.602176 × 10-19 C的积,其值为96485.3383±0.0083 C/mol。 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得: 三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为96.461g/mol; 其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol,如果锂离子全部脱出; 其理论克容量274 mAh/g.石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。

6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为: 对于硅负极,由5Si+22Li++22e- ↔ Li22Si5 可知,5个硅的摩尔质量为140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为: 这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小于1,实际的材料的克容量为: 材料实际克容量=锂离子脱嵌系数×理论容量。 (2)电池设计容量: 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积。 其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。 压实密度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子电阻增加,但是增加程度有限。 厚极片中,锂离子在电解液中的迁移阻抗增加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔隙内的迁移距离比极片厚度多出很多倍。 (3)N和P比:

相关文档