文档视界 最新最全的文档下载
当前位置:文档视界 › 生化名词解释

生化名词解释

生化名词解释
生化名词解释

五. 名词解释

1. 氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH叫氨基酸的等电点(pI)。

2. 蛋白质的一级结构:在蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序称为蛋白质的一级结构。

3. 蛋白质的二级结构:是指蛋白质分子中,某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

4. 模体(或膜序):在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在一级结构上总有其特征性的氨基酸序列,在空间结构上可形成特殊的构象,并发挥其特殊的功能,此结构被称为模体。

5. 蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。

6. 结构域:分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠的较为紧密,各行其功能,称为结构域。

7. 蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

8. 蛋白质的等电点:在某一pH的溶液中,蛋白质解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH叫蛋白质的等电点(pI)。

9. 蛋白质的变性:在某些理化因素的作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质变性。

10. 盐溶:加入少量盐时,很易离解成带电离子,对稳定蛋白质所带的电荷有利,从而增加了蛋白质的溶解度。

11. 盐析:是将盐(中性)加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。

12. 透析:利用半透膜原理把大分子蛋白质与小分子化合物分开的方法叫透析。

13. 超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的,称为超滤法。

14. 电泳:蛋白质在高于或低于其pI的溶液中为带电的颗粒,由于不同的蛋白质带电的性质、数量、分子量和形状等的不同,在电场的作用下而达到分离各种蛋白质的技术,称为电泳。

15. 等电聚焦电泳:用一个连续而稳定的线性pH梯度的聚丙烯酰胺凝胶进行电泳,从而根据蛋白质不同的pI而在电场中加以分离,这种电泳称为等电聚焦电泳。

五.名词解释

1.核苷:戊糖与碱基靠糖苷键缩合而成的化合物。

2.核苷酸:核苷分子中戊糖的羟基与一分子磷酸以磷酸酯键相连而成的化合物。

3.核酸:许多单核苷酸通过磷酸二酯键连接而成的高分子化合物。

4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。

5.DNA复性或退火:变性DNA在适当条件下,两条互补链可重新配对,恢复天然的双螺旋构象,这一现象称为复性。热变性的DNA经缓慢冷却后即可复性,这一过程称为退火。

6.DNA的一级结构:组成DNA的脱氧多核苷酸链中单核苷酸的种类、数量、排列顺序及连接方式称DNA的一级结构。也可认为是脱氧多核苷酸链中碱基的排列顺序。

7.解链温度、熔解温度或Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的。在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度。由于这一现象和结晶体的融解过程类似,又称融解温度。

8.稀有碱基:是指除A、G、C、U外的一些碱基,包括双氢尿嘧啶(DHU)、假尿嘧啶和甲基化的嘌呤等微

量不常见的碱基。

9.核酸的杂交:不同来源的DNA单链与DNA或RNA链彼此可有互补的碱基顺序,可通过变性、复性以形成局部双链,即所谓杂化双链,这个过程称为核酸的杂交。

10.碱基对:核酸分子中腺嘌呤与胸腺嘧啶、鸟嘌呤与胞嘧啶总是通过氢键相连形成固定的碱基配对关系,因此碱基对,也称为碱基互补。

五. 名词解释

1. 同工酶:是指催化的化学反应相同,酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。

2. 酶:由活细胞所产生的,具有催化能力的大分子,大多数是蛋白质,个别是核酸或脱氧核酸。

3. 单体酶:仅具有三级结构的酶,即仅有一条肽链所形成的酶称为单体酶。

4. 寡聚酶:由多个(至少是两个)相同或不同亚基以非共价键连接组成的酶称为寡聚酶。

5. 多功能酶(串联酶):具有多个催化功能的一条多肽链所形成的酶称为多功能酶。

6. 结合酶:由蛋白质和非蛋白质部分所组成的酶。

7. 单纯酶:仅有氨基酸所组成的酶,没有非蛋白质的部分。

8. 金属酶:在以金属离子为辅助因子的结合酶中,辅酶与酶蛋白结合紧密,提取过程中不易丢失的这类酶称为金属酶。

9. 金属激活酶:在以金属离子为辅酶的结合酶中,虽金属离子为酶的活性所必需,但与酶蛋白的结合不紧密,这类酶称为金属激活酶。

10. 酶的活性中心:与酶的活性密切相关一些化学基团在一级结构上可能相距甚远,但在空间结构上相互靠近,组成具有特定空间结构的区域,能与底物特异的结合并将底物转化为产物。这一区域称为酶的活性中心或活性部位。

11. 绝对特异性:有的酶只能作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物。

12. 相对特异性:有的酶作用于一类化合物或一种化学建,这种不太严格的选择性称为相对特异性。

13. 诱导契合假说:酶在与底物密切结合前,必需与底物相互靠近,相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合假说。

14. 酶促反应动力学:酶促反应动力学就是研究酶浓度、底物浓度、pH、温度、抑制剂和激活剂等理化因素对酶促反应速度的影响及其变化规律的。

15. 不可逆性抑制作用:就是指抑制剂通常与酶的活性中心上的必需基团以共价键相结合,使酶失活,不能用透析、超滤等方法予以去除的抑制作用叫不可逆性抑制作用。

16. 可逆性抑制作用:就是指抑制剂通过非共价键与酶和(或)酶-底物复合物可逆性结合,使酶活性降低或消失,采用透析、超滤等方法可将抑制剂除去,这种抑制作用叫可逆性抑制作用。

17. 竞争性抑制作用:有些抑制剂与酶的底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶与底物结合成中间产物。这种抑制作用叫竞争性抑制作用。

18. 非竞争性抑制作用:有些抑制剂与酶活性中心以外的必需基团结合,不影响酶与底物的结合,酶和底物的结合也不影响与抑制剂的结合,但酶-底物-抑制剂复合物不能进一步释放出产物,这种抑制作用叫非竞争性抑制作用。

19. 反竞争性抑制作用:抑制剂只能与酶-底物复合物结合,使中间产物的量下降,从而起到抑制作用。这种抑制作用叫反竞争性抑制作用。

20. 必需激活剂:有了这种激活剂酶有活性,没有这种激活剂酶就没活性,这类激活剂叫必需激活剂。

21. 非必需激活剂:有些激活剂不存在时,酶仍有一定的催化活性,这类激活剂叫非必需激活剂。

22. 酶的活性单位:是衡量酶活力大小的尺度,它反应在规定条件下,酶促反应在单位时间内生成一定量的产物或消耗一定数量的底物所需的酶量。

23. 酶的国际单位:在特定条件下,每分钟催化1μmol底物转化为产物所需要的酶量为一个国际单位(IU)。

24. 催量:在特定条件下,每秒钟催化1mol底物转化为产物所需要的酶量为一个催量单位(kat)。

25. 酶原的激活:酶原向酶的转化过程称为酶原的激活,酶原的激活实际上是酶的活性中心形成或暴露的

过程。

26. 变构酶:变构效应剂与酶分子活性中心以外的部位可逆的结合,使酶分子发生构象改变,从而改变了催化活性的酶称为变构酶。

27. 酶的共价修饰(化学修饰):酶蛋白肽链上的一些基团可与某些化学基团发生可逆的共价结合,从而改变酶的活性,这一过程称为酶的共价修饰或化学修饰。

五.名词解释

1. 糖酵解:在无氧或缺氧的情况下,葡萄糖或糖原生成乳酸的过程.

2.糖酵解途径:糖酵解途径指糖原或葡萄糖分子生成丙酮酸的阶段,。

3. 糖的有氧氧化:指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程.是体内糖代谢最主要途径.

4. 三羧酸循环:又称Krebs循环,由草酰乙酸和乙酰辅酶A缩合成柠檬酸开始,经反复脱氢脱羧再生成草酰乙酸的循环反应过程。

5.糖原合成:由单糖(葡萄糖、果糖、半乳糖)合成糖原的过程,是糖原合成的直接途径。

6.肝糖原分解:肝糖原分解为葡萄糖的过程。

7.糖异生:非糖物质(如丙酮酸、乳酸、甘油、生糖氨基酸等)转变为葡萄糖的过程。

8.糖异生途径:由丙酮酸生成葡萄糖的反应阶段。

9.巴斯德效应:有氧氧化抑制糖酵解的现象。

10.Cori循环:又叫乳酸循环,是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用合成葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。

11.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸戊糖旁路。

12.底物循环:在体内代谢过程中由催化单方向反应的酶,催化两个底物互变的循环。

13.血糖:指血液中的葡萄糖。

14.糖原累积症:因体内先天性缺乏与糖原代谢有关的酶类而引起糖原在体内大量堆积的一类遗传性代谢病。

15.蚕豆病:是一类遗传性代谢病,因体内红细胞缺乏6-磷酸葡萄糖脱氢酶,不能经磷酸戊糖途径得到NADPH,使谷胱甘肽不能保持在还原态,从而使红细胞膜脂质被氧化,细胞膜结构被破坏,细胞破裂而溶血。常在使用蚕豆后发病,故称为蚕豆病。

16.三碳途径:指丙酮酸、乳酸等三碳化合物经糖异生途径合成糖原的途径,也称之为糖原合成的间接途径

五. 名词解释

1. 营养必需脂肪酸:动物机体不能自身合成,必须从食物中摄取的多不饱和脂肪酸,它们是不可缺少的营养素。

2. 脂肪动员:储存在脂肪组织中的脂肪,被脂肪酶逐步水解为游离脂肪酸和甘油,释放入血以供其他组织氧化利用的过程。

3. 脂肪酸β-氧化:进入线粒体基质的脂酰CoA,从β碳原子开始经过脱氢.加水.再脱氢和硫解四步连续反应,生成1分子乙酰CoA和少2个碳原子脂酰CoA的过程。

4. 酮体:脂肪酸在肝中氧化分解产生的特有的中间产物,包括乙酰乙酸.β-羟丁酸和丙酮。

5. ACP:酰基载体蛋白,是脂肪酸合成过程中脂酰基的载体,脂肪酸合成的各步反应均在ACP上进行。

6. 血脂:血浆所含的脂类,包括甘油三酯.磷脂.胆固醇及其酯以及游离脂肪酸。

7. 血浆脂蛋白:血脂在血浆中不是自由存在,而是与血浆中的蛋白质结合,以脂蛋白的形式而运输。

8. apo:载脂蛋白,血浆脂蛋白中的蛋白质部分,可分为A.B.C.D和E五类。在血浆中起转运脂质.识别脂蛋白受体和调节血浆脂蛋白代谢酶活性的作用。

9. RCT:胆固醇逆向转运。将肝外组织细胞内的胆固醇,通过血液循环运送到肝,在肝内将胆固醇进行转

化或排泄。

10. LDL:低密度脂蛋白:在血浆中由VLDL转变而来,其内核主要为胆固醇酯,几乎只含有载脂蛋白apoB100,主要转运内源性胆固醇。

11. 磷脂酶A2:水解甘油磷脂第2位酯键,产生具有较强表面活性的溶血磷脂和多不饱和脂肪酸,主要存在与动物各组织的细胞膜和线粒体上,可被Ca2+激活。

五.名词解释

1.生物氧化(biological oxidation):物质在生物体内进行氧化称为生物氧化,主要是糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成二氧化碳和水的过程。

2.呼吸链(respiratory chain):代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。由于此过程与细胞呼吸有关,所以将此传递链称为呼吸链(respiratory chain), 又称为电子传递链(electron transfer chain)。

3.氧化磷酸化(oxidative phosphorylation):在呼吸链电子传递过程中偶联ADP磷酸化生成ATP的过程叫作氧化磷酸化(oxidative phosphorylation),又称为偶联磷酸化。是ATP生成的主要方式。4.磷氧比值(P/O):P/O比值是指物质氧化时,每消耗1摩尔氧原子所消耗的无机磷的摩尔数(或ADP 摩尔数),即生成ATP的摩尔数。

5.底物水平磷酸化(substrate level phosphorylation):细胞内还有一种直接将代谢物分子中的能量转移至ADP(或GDP),生成ATP(或GTP)的过程,称为底物水平磷酸化(substrate level phosphorylation)。6.解偶联作用:是使呼吸链传递过程中泵出的H+不经ATP合酶的F0质子通道回流,而通过线粒体内膜中其他途径返回线粒体基质,从而破坏内膜两侧的质子化学剃度,使ATP的生成受到抑制。

7.高能磷酸键:生物氧化过程中释放的能量大约有40%以化学能形式储存于一些特殊的有机化合物中,形成磷酸酯(磷酸酐)。这些磷酸酯键水解时释放的能量较多(大于21KJ/mol),一般称之为高能磷酸键,用~P表示。

8.高能磷酸化合物:含有高能磷酸键的化合物称之为高能磷酸化合物。ATP是生物细胞中最重要的高能磷酸酯类化合物。

五. 名词解释

1. 氮平衡:测定食物中的氮即摄入的氮和粪.尿中的氮即排出的氮来研究体内蛋白质的代谢个概况。

2. 营养必需氨基酸:指机体需要但自身不能合成,必需从食物中摄取的氨基酸,包括以下八种:Val,Thr,

Met,Leu,Ile,Lys,Trp,Phe。

3. 食物蛋白的互补作用:营养价值较低的蛋白质混合食用,必需氨基酸可以相互补充,从而提高营养价值。

4. 氨基酸代谢库:食物蛋白经消化吸收的氨基酸与组织蛋白降解产生的氨基酸混在一起,分布于体内各处,参与代谢。

5. 转氨基作用:某一氨基酸的α-氨基在转氨酶的作用下,可逆地转移到另一α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成相应的α-酮酸的过程。

6. 一碳单位:某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团。

7. SAM:S-腺苷甲硫氨酸,又称活性甲硫氨酸,是体内甲基的直接供体,参与体内多种甲基化反应。

8. 联合脱氨基作用:是体内最重要的脱氨基方式,氨基酸首先与α-酮戊二酸在转氨酶的作用下生成α-酮酸和谷氨酸,然后谷氨酸经氧化脱氨生成α-酮戊二酸再参加转氨作用。

五.名词解释

1. 嘌呤核苷酸的从头合成途径: 利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料, 经过一系列酶促反应,合成嘌呤核苷酸,称为从头合成途径。

2.嘌呤核苷酸的补救合成途径:利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。

3.嘧啶核苷酸的从头合成途径:利用谷氨酰胺、CO2和天冬氨酸等简单物质为原料, 经过一系列酶促反应,合成嘧啶核苷酸,称为从头合成途径。

4.嘧啶核苷酸的补救合成途径:利用体内游离的嘧啶或尿嘧啶核苷,经过简单的反应过程,合成嘧啶核苷酸,称为补救合成途径。

五.名词解释

1.限速酶:指整条代谢通路中。催化反应速度最慢的酶,它不但可影响整条代谢途径的总速度,还可改变代谢方向,是代谢途径的关键酶,常受到变构调节和/或化学修饰调节。

2.变构酶(Allosteric enzyme):指代谢途径中受到变构调节的酶,酶分子中含与底物结合起催化作用的催化亚基(部位)和与变构效应剂结合起调节作用的调节亚基(部位)。

3.变构调节(Allosteric regulation):某些物质能以非共价键形式与酶活性中心以外特定部位结合,使酶蛋白分子构象发生改变,从而改变酶的活性。

4.蛋白激酶(Protein kinase):细胞内由ATP提供磷酸基及能量,催化酶蛋白或其它蛋白质分子中丝氨酸,苏氨酸或酪氨酸羟基磷酸化的酶,包括蛋白激酶A、K等。

5.酶的化学修饰:某些酶分子上的一些基团,受其它酶的催化发生共价化学变化,从而导致酶活性的变化。6.泛素(Ubiquitin):是一种广泛存在于真核细胞胞浆中,高度保守的蛋白质,能与待降解蛋白结合,促进蛋白的降解。

7.激素反应元件(HRE):能与激素-受体复合物二聚体结合的DNA特定序列,结合后可调节(促进或抑制)相邻基因的转录,进而调节该基因编码蛋白的合成。

8.激素受体:细胞膜上或细胞内能特异识别和结合配体(激素、药物等),并将信息传给细胞内信息转换系统,从而启动各种特异生物效应的特殊蛋白质分子。

9.膜受体激素:指蛋白、多肽及儿茶酚胺等水溶性的激素,因其不能透过细胞质膜,这类激素需与膜受体结合后,才能将信息传到细胞内,产生各种生物效应。

10.物质代谢:机体在生命活动过程中不断摄入O2及营养物质,在细胞内进行中间代谢,同时不断排出CO2及代谢废物,这种机体和环境之间不断进行的物质交换即物质代谢

五. 名词解释

1.基因:基因是为生物活性产物编码的DNA功能片段,这些产物主要是蛋白质或是各种RNA。

2.中心法则:遗传信息从DNA向RNA,再向蛋白质传递的规律。

3.半保留复制:亲代双链DNA以每条链为模板,按碱基配对原则各合成一条互补链,这样一条亲代DNA双螺旋,形成两条完全相同的子代DNA螺旋,子代DNA分子中都有一条合成的“新”链和一条来自亲代的旧链,称为半保留复制。

4.领头链:在DNA复制过程中,以亲代链(3’→ 5’为模板时,子代链的合成 (5’→ 3’)是连续的.这条能连续合成的链称领头链。

5.冈崎片段:在DNA复制过程中,以亲代链(5’→ 3’)为模板时,子代链的合成不能以3’→ 5’方向进行,而是按5’→ 3’方向合成出许多小片段,因为是冈崎等人研究发现,因此称冈崎片段。

6.半不连续复制:在DNA复制过程中,一条链的合成是连续的,另一条链的合成是不连续的,所以叫做半不连续复制。

7. 复制叉:复制中的DNA分子,末复制的部分是亲代双螺旋,而复制好的部分是分开的,由两个子代双螺旋组成,复制正在进行的部分呈丫状叫做复制叉。

8. 逆转录:以RNA为模板合成DNA的过程。

9.突变指个别dNMP残基以至片段DNA在构成、复制或表型功能的异常变化,也称为DNA损伤。

10.切除修复:在一系列酶的作用下,将DNA分子中受损伤部分切除,以互补链为模板,合成出空缺的部分,使DNA恢复正常结构的过程。

五. 名词解释

1.转录:由依赖于DNA的RNA聚合酶催化,以DNA的一条链的一定区段为模板,按照碱基配对原则,合成一条与DNA链互补的RNA链的过程。

2.不对称转录:一是指双链DNA只有一股单链用作转录模板;二是同一单链上可以交错出现模板链或编码

链。

3.模板链:转录过程中用作模板的这条DNA链,称模板链。

4.启动子:DNA链上能指示RNA转录起始的DNA序列称启动子,是RNA聚合酶结合模板DNA的部位。5.断裂基因:真核生物的结构基因由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因。

6.内含子:真核生物基因中,不为蛋白质编码的、在mRNA加工过程中消失的DNA序列,称内含子。7.外显子:真核生物基因中,在mRNA上出现并代表蛋白质的DNA序列,叫外显子。

8.剪接体:是由snRNP和hnRNA形成的复合体,可对hnRNA起剪接的作用,去除内含子,连接外显子。9.核酶:有催化作用的核酸称为核酶。

五. 名词解释

1.翻译:以mRNA为模板,氨酰-tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。

2.密码子:mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的, mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。

3.密码的连续性:编码蛋白质氨基酸序列的密码子在阅读时为连续阅读,密码间无间断也无交叉。4.mRNA编辑:某些生物基因后存在一种对mRNA外显子加工过程,可通过特定碱基的插入、缺失或置换,导致mRNA的移码、错义突变或提前终止。造成mRNA与其DNA模板序列之间不匹配,使同一mRNA前体翻译出序列、功能不同的蛋白质。

5.密码的简并性:某些氨基酸具有两个以上密码子的现象称为密码的简并性。

6.反密码子:指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中通过碱基配对,识别并结合到mRNA的特殊密码上。

7.多核蛋白体:mRNA同时与若干个核蛋白体结合形成的念珠状结构,称为多核蛋白体。

8.核蛋白体结合序列(S-D序列):原核生物mRNA起始密码前,普遍存在有AGGA序列,可与核蛋白体小亚基16SrRNA 3’末端序列互补,称为核蛋白体结合序列。

9.核蛋白体循环:肽链延长是在核蛋白体上连续性循环进行,每次循环可分为进位、成肽、转位三步,每次循环肽链增加一个氨基酸,此过程称为核蛋白体循环。

10.蛋白质的靶向输送:蛋白质合成后经过复杂机制,定向输送到最终发挥生物功能的目标地点,这一过程称为蛋白质的靶向输送。

11.信号肽:是未成熟分泌性蛋白质中可被细胞转运系统识别的特征性氨基酸序列。有碱性N-末端区、疏水核心区及加工区三个区段。

五.名词解释

1.操纵子:原核生物绝大多数基因按功能相关性成簇地串联、密集于染色体上,共同组成的转录单位。2.增强子:远离转录起始点(1~30kb)、决定基因的时间、空间特异性表达、增强启动子转录活性的DNA 序列,其发挥作用的方式通常与方向、距离无关。

3.管家基因:某些基因产物对生命全过程都是必需的或必不可少的。这类基因在一个生物个体的几乎所有细胞中持续表达,通常被称为管家基因。

4.基本的(组成性)基因表达:某些基因产物对生命全过程都是必需的或必不可少的。这类基因在一个生物个体的几乎所有细胞中持续表达,通常被称为管家基因。管家基因较少受环境因素影响,而是在个体各个生长阶段的大多数、或几乎全部组织中持续表达,或变化很小。区别于其它基因,这类基因表达被视为基本的、或组成性基因表达。

5.顺式作用元件(cis-acting element):是指可影响自身基因表达活性的真核DNA序列。根据顺式作用元件在基因中的位置、转录激活作用的性质及发挥作用的方式,可将真核基因的顺式作用元件分为启动子、增强子及沉默子等。

6.反式作用因子(trans-acting factor):大多数真核转录调节因子由某一基因表达后,通过与特异的顺

式作用元件相互作用(DNA-蛋白质相互作用)反式激活另一基因的转录,故称反式作用蛋白或反式作用因子。

7.启动子(真核基因)或启动序列(原核基因)(promoter):原核基因启动序列与真核基因启动子都是RNA聚合酶结合位点周围的一组转录控制组件,包括至少一个转录起始点。在真核基因中增强子和启动子常交错覆盖或连续。有时,对结构密切联系而无法区分的启动子、增强子样结构统称启动子。

8.基因表达的时空性:即时间、空间特异性。噬菌体、病毒或细菌侵入宿主后,呈现一定的感染阶段。随感染或生长阶段发展,某一特定基因的表达严格按特定的时间顺序发生,这就是基因表达的时间特异性。在多细胞生物,基因表达的时间特异性表现为与分化、发育阶段一致的时间性。因此,多细胞生物基因表达的时间特异性又称阶段特异性。

在多细胞生物个体某一发育、生长阶段,同一基因产物在不同的组织器官表达多少是不一样的;在同一生长阶段,不同的基因表达产物在不同的组织、器官分布也不完全相同。在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现,这就是基因表达的空间特异性。基因表达伴随时间或阶段顺序所表现出的这种空间分布差异,实际上是由细胞在器官的分布决定的,因此基因表达空间特异性又称细胞特异性会组织特异性。

9.锌指结构:为蛋白质分子中的一种模序结构,往往以β2α或βLβ等形式存在,由多个二级结构共同组成。其中肽链上2个半胱氨酸、2个组氨酸残基通过配位键与1个锌离子结合,使该肽段折叠成手指状而得名锌指结构。锌指结构往往出现在锌指蛋白中,起转录调控作用。

10.基因表达:就是基因转录及翻译的过程。在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特异生物学功能的蛋白质分子,赋予细胞或个体一定的功能或形态表型。但并非所有基因表达过程都产生蛋白质。RRNA、tRNA编码基因转录产生RNA的过程也属于基因表达。

五. 名词解释

1. 接合作用:细胞或细菌通菌毛相互接触时,质粒DNA从一个细胞转移至另一个细胞。这种DNA的转移方式称为接合作用

2. 转化作用:自动获取或人为地使外源DNA进入宿主细胞,并使宿主细胞获得新的遗传表型的过程。

3. DNA克隆:应用酶学的方法,将外源DNA与载体相连,继而导入宿主细胞,筛选出含有目的DNA的转化子再进行扩增,获得大量同一DNA分子的过程。

4. 基因工程:在分子水平上,按照人们的设计对基因进行人工操作,使基因得以改造.扩增和表达的一系列技术。

5. 克隆:通过无性繁殖产生的与亲代遗传性状相同的子代群体。

6. 限制性核酸内切酶:识别DNA的特异序列,并在识别位点内或周围切割双链DNA的一类核酸内切酶。

7. cDNA文库:以mRNA为模板,经逆转录酶催化,在体外逆转录成cDNA,与适当的载体连接后导入受体菌,则每个细菌含有一段能繁殖扩增的cDNA,这种包含细胞全部mRNA信息cDNA克隆的集合称为cDNA文库。

8. 质粒:存在于细菌染色体外,能自主复制的小型环状双链DNA分子。小质粒只有2-3kb,大的有数百kb。

9. 标志补救:是一种直接筛选法。若克隆基因能够在宿主细胞内表达,且表达产物能与宿主的营养缺陷互补,那么就可以用营养突变菌株进行筛选,这种筛选方式称为标志补救,

10. 基因诊断:利用分子生物学及分子遗传学的技术和原理,在分子水平上分析.鉴定遗传性疾病所涉及的基因突变。

11. 基因治疗:向有功能缺陷的细胞导入具有相应功能的外源基因,以纠正或补偿该基因缺陷,包括体细胞基因治疗和性细胞基因治疗。

五.名词解释

1.细胞间信息物质:指由细胞分泌的调节靶细胞生命活动的化学物质

2.细胞内信息物质:指在细胞内传递细胞调控信号的化学物质

3.第二信使:指在细胞内传递信息的小分子化合物如DAG,IP3,cAMP等

4.受体(Receptor):是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,它能把识别和接受的

信号正确无误地放大并传递入细胞内部,进而引起生物学效应。

5.受体下调(down regulation):受体的数目和(或)对配体的结合能力降低与失敏

6.HRE:激素反应元件,激素与胞内受体结合为激素-受体复合物,进入核内与DNA的特定部位结合,这个DNA的特定部位就是HRE

7.第三信使:负责细胞核内外信息传递的物质

五.名词解释

1.未结合胆红素: 在网状内皮系统中血红蛋白分解产生的胆红素在血浆中主要与清蛋白结合而运输,这部分水溶性低、易透过细胞膜的胆红素称为未结合胆红素或称游离胆红素。

2.结合胆红素胆红素在肝微粒体中与葡糖醛酸结合生成的葡糖醛酸胆红素称为结合胆红素,它水溶性大,易从尿中排出。

3.生物转化作用(Biotransformation): 人体内存在一些非营养物质(药物. 毒物. 染料. 添加剂,以及肠管内细菌的腐败产物),它们既不能构成细胞的结构成分,又不能氧化供能,其中一些对人体有一定的生物学效应或毒性作用,机体在排出这些物质以前将其进行各种代谢转变(氧化. 还原. 水解和结合反应),这一过程称为肝的生物转化作用。

4.初级胆汁酸(Primary bile acids):初级胆汁酸是胆固醇在肝细胞内转化生成的胆汁酸,包括胆酸和鹅脱氧胆酸及其与甘氨酸和牛磺酸的结合产物。

5.次级胆汁酸(Secondary bile acids):由初级胆汁酸在肠道中经细菌作用氧化生成的胆汁酸,包括脱氧胆酸和石胆酸及其与甘氨酸和牛磺酸的结合产物。

6.胆素随胆汁分泌到肠管中的结合胆红素在细菌的作用下转变成中胆素原. 粪胆素原和 d- 尿胆素原。这些物质在肠道下段接触空气分别被氧化为相应的 1- 尿胆素. 粪胆素和 d- 尿胆素。后三者合称胆素。7.胆素原: 经肝转化生成的葡糖醛酸胆红素随胆汁进入肠道,在肠菌的作用下大部分脱去葡糖醛酸基,并被逐步还原生成中胆素原. 粪胆素原和 d- 尿胆素原。这些物质统称为胆素原。

8.胆素原的肠肝循环: 生理情况下,肠中产生的胆素原约有 10 % ~20 %重吸收,经门静脉入肝,其中大部分又以原形随胆汁再次排人肠道,此过程称为胆素原的肠肝循环。

9.胆汁酸的肠肝循环: 在肝细胞合成的初级胆汁酸,随胆汁进人肠道,转变为次级胆汁酸。肠道中约 95 %胆汁酸经门静脉被重吸收入肝,并同新合成的胆汁酸一起再次被排入肠道,此循环过程称胆汁酸的肠肝循环。

10.黄疸: 胆红素为金黄色物质,大量的胆红素扩散进人组织,可造成组织黄染,这一体症称为黄疸。根据胆红素生成的原因可将黄疸分为三种类型。即溶血性黄疸. 肝细胞性黄疸和阻塞性黄疸。

五.名词解释

1.维生素:是机体维持正常功能所必需,但在体内不能合成,或合成量很少,必须由食物供给的一组小分子有机化合物。

2.微量元素:每人每日的需要量在100mg以下的元素。

3.脂溶性维生素:是一类不溶于水、而溶与有机溶剂的维生素,在食物中与脂类共存。

4.水溶性维生素:是一类易溶于水、在体内不易储存,已从尿中排出的维

五. 名词解释

1.DNA印渍技术(Southern blotting):是将基因组DNA经限制性内切酶消化后进行琼脂糖凝胶电泳,再利用毛细作用将胶中的DNA分子转移到NC膜上进行杂交反应的技术。主要用于基因组DNA的分析。2.探针:用同位素、生物素或荧光染料标记DNA分子的末端或全链的一段已知序列的多聚核苷酸称为探针,可用于检测已固定在膜上的DNA或RNA片段的同源序列。蛋白质的检测常用抗体作为探针。

3.基因芯片:是指采用原位合成或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断。

五. 名词解释

1. 体液: 体内的水分及融解于其中的无机盐及有机物的总称。

2. 高血钾:血浆中钾离子的浓度高于5.5mmol/L。

3. 微量元素:组成人体的元素中凡含量占人体总重量的万分之一以下,每天需要量在100mg以下者称微量元素。

五.名词解释

1. 酸碱平衡:机体通过一系列的调节作用,将多余的酸性或碱性物质排出体外,使体液PH维持在相对恒定的范围之内,这一过程称之为酸碱平衡。

2. 尿液的酸化:尿液中Na2 HPO4/Na H2 PO4 的比值降低,Na H2 PO4排出增多,尿液PH降低,这一过程叫做尿液的酸化。

3. 二氧化碳分压:物理溶解于血浆中的CO2所产生的张力。

4. 二氧化碳结合力:25℃,PCO2=

5.3Kpa时,每升血浆中以NaHCO3形式存在的CO2mmol数。

5. 实际碳酸氢盐:在隔绝空气的条件下,测的血浆中NaHCO3浓度。

6. 标准碳酸氢盐:在标准条件下(Hb的氧饱和度为100%,温度37℃,PCO2=5.3Kpa),测的血浆中NaHCO3浓度。

7. 碱过剩:在标准条件下(Hb的氧饱和度为100%,温度37℃,PCO2=5.3Kpa)分离的血浆用酸或碱滴定至PH=7.4时,所消耗的酸或碱的量。

8. 阴离子间隙:指未测定阴离子与未测定阳离子的差值,可用([Na+]+[k+])-([Cl+]+ [HCO3ˉ])表示。

关于生物化学重点名词解释

两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 氨基酸的等电点:使氨基酸净电荷为零时溶液的pH值,用符号pI表示,是氨基酸的特征常数。 中性氨基酸pI = 1/2 ( pK1' + pK2' )???????? 酸性氨基酸pI = 1/2 ( pK1' + pKR' )碱性氨基酸pI = 1/2 ( pK2' + pKR' ) 必需氨基酸:指机体又必需,自身不能合成,需要从饮食中获得的氨基酸。 一个氨基酸的羧基与另一个氨基酸的氨基脱去一分子水而形成酰胺键,这个键称为肽键,产生的化合物叫做肽。 谷胱甘肽 (GSH):Cys 残基上的-SH是GSH的活性基团。GSH广泛分布于生物体内,是某些氧化还 原酶的辅酶。此外,可以用作巯基酶的保护剂。 构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 组成蛋白质的氨基酸都为α-氨基酸(除Pro外),都为L型(除Gly外),除Gly之外,其余氨 基酸都有手性碳原子,都具有旋光性。由于蛋白质中的Tyr、Trp 和 Phe 残基在紫外区有光吸收,所以蛋白质在 280nm 的光波长处有最大光吸收 蛋白质的一级结构:广义的一级结构指蛋白质中共价键连结的全部情况,包括肽链的数目,肽链中 氨基酸之间的连结方式,肽链中氨基酸的排列顺序,二硫键的位置;狭义的一级结构肽链中氨基酸的排列顺序。蛋白质的一级结构决定它的高级结构,即各个层次的结构所需的信息全都储存于一级结构中 蛋白质的二级结构:指多肽链本身通过氢键沿一定方向盘绕、折叠而形成的构象。天然蛋白质包括α-螺旋、β-折叠、β-转角、无规则卷曲等二级结构。 α-螺旋:蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。螺距为,每一圈含有个氨基酸残基,每个残基沿着螺旋的长轴上升,旋转100°。 β-折叠:?蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰胺氢之间形成的氢键维持的。这些肽链可以是平行排列(由N到C方向)或者是反平行排列。 结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 蛋白质的三级结构:指蛋白质在二级结构(二级结构、超二级结构和结构域)的基础上,主链构象和侧链构象相互作用,进一步盘曲折叠形成球状分子结构。 蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生化名词解释

生化名词解释 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage) 12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity)3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy)14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation) 2.呼吸链(respiratory chain) 3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6.能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

生化名词解释 (4)

. . 名词解释 1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准 氧化还原电位,由低到高顺序排列组成的一种能量转换体系。 2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。 3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基 生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。例如:丙氨酸的联合脱氨基作用。 4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切 酶统称为限制性核酸内切酶。 5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生A TP 的代谢过程。 6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中 进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。 7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。 减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。 8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生 DNA 链。 9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。 10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。 11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活 性中心 C CH COOH CH 2COOH C O CH 2CH 2COOH CH COOH NH 2CH 2谷氨NH 2CH 3CH 3O 丙氨酸丙酮酸谷丙转或或NADPH H +++H +NH 3酸脱氢酶α-酮戊二酸

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y 型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

生化名词解释

核酸的增色效应:核酸变性后,在260nm处的吸收值上升的现象。 核酸的减色效应:当变性的DNA经复性以重新形成双螺旋结构时,其溶液的A260值则减小,这一现象称为减色效应。 核酸的TM值:加热变性使DNA双螺旋结构丧失一半时的温度。 DNA的双螺旋:DNA的两条链围着同一中心轴旋绕而成的一种空间结构。 核酸分子杂交:两条来源不同但有核苷酸互补关系的DNA单链分子之间,或DNA 单链分子与RNA分子之间,在去掉变性条件后,互补的区段能够复性形成双链DNA分子或DNA/RNA异质双链分子。 核小体:真核生物染色质的基本结构单位,是DNA绕组蛋白核心盘旋所形成的串珠结构。 退火:热变性的DNA在缓慢冷却得条件下,两条单链再重新结合恢复双螺旋结构,这种复性叫退火。 核酸变性:天然核酸双螺旋区的氢键断裂,变成单链,但并不涉及共价键断裂的现象。 核酸复性:变性的DNA在适当的条件下,可使两条彼此分开的链重新缔合成为双螺旋结构,使其物理.化学性质及生活活性得到恢复的过程。 必需氨基酸:人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。 氨基酸的等电点:使氨基酸静电荷为零时溶液的PH值。 蛋白质的变性:蛋白质受到某些理化因素的影响,其空间结构发生改变,蛋白质的理化性质和生物学功能随之改变或丧失,但未导致蛋白质一级结构改变的现象。 蛋白质的复性:高级结构松散了的变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性的现象。 盐析:加入大量的中性盐使蛋白质沉淀析出的现象。 盐溶: 球蛋白溶于稀得中性盐溶液,其溶解度随稀盐溶液浓度增加而增大的现象。 同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。 蛋白质的一级结构:多肽链内氨基酸残基从N末端到C末端的排列顺序,是蛋白质最基本的结构。 蛋白质的二级结构:多肽链主链的折叠产生由氢键维系的有规律的构象。 蛋白质的三级结构:由二级结构元件构建成的总三维结构。 蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成,有特定三维结构的蛋白质构象。 蛋白质的超二级结构:蛋白质中相邻的二级结构单位组合在一起,形成有规律的在空间上能辨认的二级结构的组合体。 结构域:多肽链在二级结构或超二级结构的基础上形成三级结构局部折叠区,是相对独立的紧密球状实体。 辅酶:与酶蛋白结合较松弛。用透析法能够除去的小分子有机物。 辅基:与酶蛋白结合较紧密,常以共价键结合,透析不能除去的小分子有机物及金属离子。 酶活力:在一定条件下所催化的某一化学反应速度的快慢,即酶促反应的能力。酶的活性中心:指必需基团在一级结构上可能相距遥远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。米氏常数:酶反应速度为最大速度一半时的底物浓度。 激活剂:能提高酶活性的物质 抑制剂:引起抑制作用的物质。 不可逆抑制:抑制剂与酶的必需基团以共价键结合而引起酶活力丧失,不能用透析,超滤等物理方法除去抑制剂而恢复酶活性。 可逆抑制剂:酶与抑制剂非共价地可逆结合,当用透析,超滤等方法除去抑制剂剂后酶的活性可以恢复。 别构酶:具有别构效应的酶 同工酶:催化相同的化学反应,但其蛋白质分子结构,理化性质和免疫能力等方面都存在明显差异的一组酶。 酶原激活:酶原转变为有活性的酶的过程。 单体酶:一般仅有一条多肽链。 寡聚酶:酶蛋白是寡聚蛋白质,由几个至几十个亚基组成,以非共价键连接。多酶复合体:由几个酶靠非共价键嵌合而成 诱导契合:当酶分子与底物分子接近时,酶分子受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。 糖酵解:是将葡萄糖降解为丙酮酸并伴随ATP生成的一系列反应。 底物水平磷酸化:产生ATP等高能分子的方式。 回补反应:酶催化的,补充柠檬酸循环中代谢产物供给的反应。 激酶:从高能供体分子转移到特定靶分子的酶。 糖的异生作用:由非糖前体合成葡萄糖的过程。 呼吸链:一系列的氢和电子传递体称为呼吸链。 氧化磷酸化:氧化与磷酸化的偶联作用称为氧化磷酸化。 生物氧化:有机分子在生物细胞内氧化分解,最终生成二氧化碳和水,并释放能量的过程。 能荷:在总腺苷酸系统中所负荷的高能磷酸基的数量。 磷氧比:消耗的无机磷酸的磷原子数与消耗分子氧的氧原子数之比。 解偶联剂:抑制偶联磷酸化的化合物。 高能磷酸化合物:分子中含有磷酸基团,被水解下来时释放出大量的自由能,这类高能化合物加高能磷酸化合物。 电子传递抑制剂:能够阻断呼吸链中某部位电子传递的物质。 必需脂肪酸:机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸。β—氧化:脂肪酸在体内氧化时在羧基端的β碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位。 α—氧化:在α碳原子上发生氧化作用,分解出二氧化碳,生成缩短了一个碳原子的脂肪酸。 ω—氧化:脂肪酸的ω端甲基发生氧化,先转变为羟甲基,继而在氧化成羧基,从而形成α,ω—二羧酸的过程。 酮体:在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸,β—羟基丁酸及丙酮三者统称为酮体。 生物固氮:是微生物,藻类和与高等生物共生的微生物通过自身的固氮酶复合物把分子氮变成氨的过程。 氨的同化:把生物固氮和硝酸盐还原形成的无机态NH3,进一步同化转变成含氮有机物的过程。 一碳单位:在代谢过程中,某些化合物可以分解产生具有一个碳原子的基团。生糖氨基酸:能通过代谢转变成葡萄糖的氨基酸。 生酮氨基酸:分解代谢过程中能转变成乙酰乙酰辅酶A的氨基酸。 联合脱氨基作用:转氨基作用与氧化脱氨基作用配合进行的脱氨基作用。 复制:以亲代DNA分子的双链为模板,按照碱基互补配对原则,合成出与亲代DNA分子完全相同的两个双链DNA分子的过程。 转录:以DNA分子中一条链为模板,按碱基互补配对原则,合成出一条与模板DNA链互补的RNA分子的过程。 翻译:在mRNA指令下,按照三个核苷酸决定一个氨基酸的原则,把mRNA上的遗传信息转化成蛋白质中特定的氨基酸序列的过程。 半保留复制:每个子代DNA分子中有一条链来自亲代DNA,另一条链是新合成的。这样的复制方式叫半保留复制。 Klenow片段:保留5’→3’聚合酶和3’→5’外切酶活力的片段。 复制子:独立复制的单位叫复制子。 前导链:以3’→5’走向的亲代链为模板,子代链就能连续合成,这条链叫前导链。 后随链:以5’→3’走向的亲代链为模板,子代链按5’→3’的方向不连贯的合成许多小片段,然后由DNA聚合酶Ⅰ切除小片段上的RNA引物,填补片段之间的空缺,最后由连接酶把它们连接成一条完整的子代链,这条链叫后随链。半不连续复制:在复制叉上新生的DNA链一条按5’→3’的方向连续合成;另一条按5’→3’的方向不连续合成,因此叫半不连续复制。 冈崎片段:后随链合成的较小的DNA片段叫冈崎片段。 逆转录:以RNA为模板合成DNA的过程。 转化:一个嘌呤碱基被另一个嘌呤碱基置换或一个嘧啶碱基被另一个嘧啶碱基置换。 颠换:一个嘌呤碱基被嘧啶碱基置换或一个嘧啶碱基被嘌呤碱基置换。 启动子:转录起始的特殊序列。 终止子:控制转录终止的部位。 基因工程:在分子水平上利用人工方法对DNA进行重组的技术。 模板连(反义链,负链):在一个转录单位中,双链DNA分子中作为模板被转录的一条链。 编码链(有义链,正链):与模板链互补的DNA链。 遗传密码:DNA中或(mRNA)中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系。 密码子:mRNA上每3个相邻的核苷酸编码蛋白质多肽链的一个氨基酸,这三个核苷酸就称为一个密码子。 简并性:同一种氨基酸有两个或更多密码子的现象。 同义密码子:对应同一种氨基酸的不同密码子。 多核糖体:由一个mRNA分子与一定数目的单个核糖体结合而成的念珠状的结构。氨基酸的活化:氨基酸与tRNA相连,形成氨酰-tRNA的过程。 SD序列:原核生物mRNA起始的AUG序列上有10个左右的位置通常含有一段富含嘌呤碱基的序列,与原核生物16SrRNA的3’端的嘧啶碱基进行互补配对,以帮助从起始AUG处开始翻译。 关键酶(标兵酶):催化限速步骤的酶。 反馈抑制:在系列反应中对反应序列前头的标兵酶发生的抑制作用,从而调节整个系列反应速度。 前馈激活:在一系列,前面的代谢物可对后面的酶起激活作用。 单价反馈抑制;指一个单一代谢途径的末端产物对催化关键步骤的酶活性,通常是第一步反应酶活性的抑制作用。 二价反馈抑制:在分支代谢途径中,催化共同途径第一步反应的酶活性可以被两个或两个以上的末端产物抑制的现象。 顺序反馈抑制:分支代谢途径中的两个末端产物,不能直接抑制代谢途径中的第一个酶,而是分别抑制分支点后的反应步骤,造成分支点上中间产物的积累,这种高浓度的中间产物再反馈抑制第一个酶的活性。 协同反馈抑制:在分支代谢途径中,几种末端产物同时都过量,才对途径中的第一个酶具有抑制作用。若某一末端产物单独过量则对途径中的第一个酶无抑制作用。 累积反馈抑制:在分支代谢途径中,任何一种末端产物过量时都能对共同途径中的第一个酶起抑制作用,而且各种末端产物的抑制作用互不干扰。 同工酶反馈抑制:第一个限速步骤由一组同工酶催化,分支代谢的几个最终产物往往分别对其中一个同工酶发生抑制作用,从而起到与累积的反馈抑制相同的效应。 操纵子:在细菌基因组中,编码一组在功能上相关的蛋白质的几个结构基因,与共同的控制位点组成的一个基因表达的协同单位。 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导mRNA通过构象变化终止或减弱转录。

生化名词解释

生化名词解释1 1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。 2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。 3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。 4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。 5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。 6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。 7.多肽:含有三个以上的氨基酸的肽统称为多肽。 8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。 9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。 10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。 11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。 12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。 13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。 14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。 15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以

生物化学名词解释重点

1.糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳 酸(同时释放少量能量合成ATP)的过程 2.糖原合成与分解:由单糖合成糖原的过程成为糖原的合成。糖原的分解是指由糖原 分解成葡萄糖的过程 3.糖异生:由非糖类物质合成葡萄糖的过程 4.有氧氧化:在供氧充足时,葡萄糖在细胞液中分解生成的丙酮酸进入线粒体,彻底 氧化成CO2和H2O,并释放大量能量 5.三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸缩合成柠檬酸,柠檬酸再经过一系 列酶促反应之后又生成草酰乙酸,形成一个反应循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环 6.血糖:血液中的单糖,主要是葡萄糖 7.血脂:血浆中脂类的总称,主要包括甘油三酯,磷脂,胆固醇和游离脂肪酸 8.血浆脂蛋白:是脂类在血浆中的存在形式和转运形式(一类由脂肪,磷脂,胆固醇 及其酯与不同的载脂蛋白按不同比例组成的,便于通过血液运输的复合体。包括CM,VLDL,LDL,HDL) 9.脂肪动员:脂肪内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全 身各组织氧化利用的过程 10.酮体:包括乙酰乙酸,B—羟丁酸和丙酮,是脂肪酸分解代谢的正常产物 11.必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成, 必须由食物来供给。包括亚油酸、亚麻酸、花生四烯酸 12.必需氨基酸:体内需要而自身又不能合成、必须由食物供给的氨基酸。包括:异亮 氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸 13.蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺 少的必须氨基酸,从而提高其营养价值,称为蛋白质的互补作用 14.转氨基作用:是指由氨基转移酶催化,将氨基酸的a-氨基转移到一个a-酮酸的羰基 位置上,生成相应的a-酮酸和新的a-氨基酸。该过程只发生氨基转移,不产生游离的氨气 15.一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称 为一碳单位 16.密码子:从mRNA编码区5’端到3’端按每3个相邻碱基为一组连续分组,每组碱 基构成一个遗传密码,称为密码子或三联体密码。(共有64个密码子,其中有61个密码子编码20中氨基酸,另三个密码子代表终止信号) 17.中心法则:中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质的转 录和翻译的过程,以及遗传信息从DNA传递给DNA的复制过程。 18.半保留复制:当DNA进行复制时,亲代DNA双链必须解开,两股链分别作为模板, 按照碱基互补配对原则指导合成一股新的互补链,最终得到与亲代DNA碱基序列完全一样的两个子代DNA分子,每个子代DNA分子都含有一股亲代DNA和一股新生DNA 链,这种复制方式称为半保留复制(半保留复制是DNA复制最重要的特征) 19.逆转录:是以RNA为模板,以dNTP为原料,由逆转录酶催化合成DNA的过程,该过 程的信息传递方向是RNA到DNA 20.转录:是指生物体按照碱基互补配对的原则把DNA碱基序列转化为RNA碱基序列, 从而将遗传信息传递到RNA分子上的过程 21.启动子:原核生物和真核生物基因的启动均是由RNA聚合酶结合位点,转录起始位 点及控制转录起始的其他调控序列组成,是启动转录的特异序列

生化常考名词解释

1.增色效应:变性后的DNA 在260nm 的紫外光吸收有明显升高。 2.DNA 的变性:碱基对间的氢键断裂,双螺旋结构分开,成为两条单链的DNA 分子,即改变了DNA 的二级结构,但并不破坏一级结构。 3.Tm 值:50%的DNA 分子发生变性时的温度。 4.肽键:蛋白质分子中不同氨基酸是以相同的化学键连接的,即前一个氨基酸分子的a-羧基与下一个氨基酸分钟的a-氨基缩合,脱去一个水分子形成肽,肽链上的C-N 化学键称为肽键。 5.蛋白质一级结构:蛋白质多肽键氨基酸的组成和排列顺序。 6.电游:在直流电中,带正电何的蛋白质分子向阴极移动,带负电的向阳极移动。 7.氨基酸的等电点(pl):氨基酸解离成两性离子或正电荷与负电荷相等,也就是静电何为零,其在的溶液中pH 值就是浓氨酸的等电点。 8.酶的活性中心:酶分子上直接与底物结合并与其催化性能直接有关的一些基因所构成的微区。 9.变构酶:守变构调节的酶。 10.米氏常数(即Km):为酶促反映速度为最大速度一半时的底物浓度。 11.同工酶:催化相同的无化学反应,但酶蛋白的分子结构,理化性质和免疫学性质不同的一组酶。 12.酶的抑制剂和激活酶:凡能使酶的活性下降并不引起酶蛋白质变性的物质为酶的抑制剂,能使酶由无活性变为有活性或促酶活性提高的物质。 13.生物膜:是构成各种细胞器的内膜系统,如线粒体膜、内质网膜、高尔基体膜等,统称为生物膜。 14.钾-钠泵:细胞内外永远存在钾钠离子的浓度差,这种浓度差靠细胞上的特异蛋白来维持的,它能水解ATP并利用ATP 水解所释放的能量,蒋钠从细胞内运向细胞外,将钾从细胞外运向细胞内。 15.受体:细胞膜上或细胞内能识别生物活性分子并与之结合的生物大分子 16.糖酵解:是在无氧条件下,把葡萄糖转变为乳酸(三碳糖)并产生ATP 的一系列反应。 17.柠檬酸循环:又称三羧酸循环,是指在有氧条件下,葡萄糖氧化生成的乙酰辅酶A 通过与草酰乙酸生成柠檬酸,进入循环被氧化分解为一碳的CO2 和水,同时释放能量的循环过程。 18.葡萄糖异生作用:非糖物质在肝.肾中转变成葡萄糖和糖元的过程,非糖物质转化为糖代谢的中间产物后,在相应酶催化下,糖酵解的三个不可逆反应,利用糖酵解途径,其它酶生成葡萄糖的途径。 19.生物氧化:营养物质在生物体内氧化分解成H2O 和CO2 并释放能量的过程称为生物氧化。 20.氧化磷酸化:氢沿着呼吸链传递给氧形成的同时,伴有ADP 磷酸化为ATP 的过程,氧化作用释放能量,磷酸化吸收能量俩个反应偶联在一起。 21.底物水平磷酸化:在底物被氧化的过程中,底物分子形成高能键,由此高能键提供能量使ADP 磷酸化生成ATP 的过程称为底物水平磷酸化。此过程与呼吸链的作用无关。 22.解偶联作用:在氧化磷酸过程中,底物的脱氢氧化与ADP 的磷酸化是过程能量进行偶联的,某些物质能解除这个偶联过程,其结果是底物的脱氢氧化继续进行,同样有电子传递和氧气消耗,也有能量释放,但却不能利用所释放的能量进行ADP 的磷酸化,不能生成ATP. 23.酮体:脂肪酸在肝细胞中的氧化不很完全,经常出现一些脂肪酸氧化的中间产物,即乙酰乙酸、β –羟丁酸和丙酮,统称为酮体。 24.a-氧化:每一次氧化,先去一个碳原子即羟酸碳原子,生成减了一个碳原子的脂肪酸和CO2 的氧化过程。 25.蛋白质的生理价值:蛋白质的生理价值是指饲料蛋白质被动物机体合成组织蛋白质的利用率。 26.转氨基作用:在转氨酶的催化下,将某一氨基酸的α –氨基转移到另一种α –酮酸的酮基上,生成相应的α –酮酸和另一种氨基酸的作用(赖氨酸、脯氨酸、羟脯氨酸除外) 27.中心法则: 28.转录:以DNA 的某些片段为模板,合成与之相应的各种RNA。通过转录把遗传信息转抄到某些RNA 分子上。 29.翻译:以RNA 为模板,指导合成相应的各种蛋白质,这个过程称为翻译。 30.半保留半不连续复制:DNA 复制时子链双链中有一条链来源于母链,故称半保留复制。以DNA 母链双链为模板合成子链时,其中一条子链的合成是不连续的,而另一条链的合成是连续的,故称半不连续复制,合称半保留半不连续复制。 31.遗传密码:把排列在DNA 或其转录物RNA 链中的核甘酸顺序与蛋白质的氨基酸排列顺序联系起来的关系。

生化部分名词解释

生化名词解释 1、肽键(peptide bond)是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。 2、模体(motif):模体是蛋白质分子中具有特定空间构象和特定功能的结构成分。 3、结构域(domain):三级结构中、分割成折叠较为紧密且稳定的区域,各 行使其功能。结构域也可看作是球状蛋白质的独立折叠单位,有较为独立的 三维空间结构。 锌指结构:由23个氨基酸残基组成,形成1个α-螺旋和2个反平行的β- 折叠的二级结构,形似手指, 每个β-折叠上有1个半胱氨酸残基,而α-螺旋 上有2个组氨酸或半胱氨酸残基,4个氨基酸残基与Zn2+形成配位键。锌指具 有结合DNA的功能。 4、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一 pH 时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的 pH 称为蛋白质的等电点。 5、蛋白质的变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。 6、亚基 (subunit):四级结构中每条具有完整三级结构的多肽链。 7、谷胱甘肽(glutathione,GSH):是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。分子中半胱氨酸的巯基是该化合物的主要功能基团。 8、协同效应(cooperativity) :一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体的结合能力,称为协同效应。若是促进作用则称为正协同效应(positive cooperativit ); 若是抑制作用则称为负协同效应(negative cooperativity). 9、分子病(molecular disease):由蛋白质分子发生变异所导致的疾病,称为分子病。 10、DNA 变性(DNA denaturation):某些理化因素(温度、pH、离子强度等)会导致 DNA 双链互补碱基之间的氢键发生断裂,使 DNA

王镜岩生化真题名词解释整理汇总情况

王镜岩——生物化学名词解释(2013年~2002年) 【2013年】 1.寡聚蛋白质(oligomeric protein):两条或两条以上具有三级结构的多肽链组成的蛋白质。(也称多聚蛋白质)。如:血红蛋白(两条α链,两条β链)、己糖激酶(4条α链)。附:仅由一条多肽链构成的蛋白质称为单体蛋白质。如:溶菌酶和肌红蛋白【第三章蛋白质】(上159) 2.酶的转换数(turnover number,TN):即K3,又称催化常数(catalytic constant,K cat)是指在一定条件下每秒钟每个酶分子转换底物的分子数。(通常来表示酶的催化效率) 附:[ 或每秒钟每微摩尔酶分子转换底物的微摩尔数] ,大多数酶对它们的天然底物的转换数的变化围是每秒1到104(上321)【第四章酶】 3.糖的变旋现象(mutarotation):是当一种旋光异构体,如糖溶于水中转变为几种不同的旋光异构体的平衡混合物时,发生的旋光变化的现象。【第一章糖类】(上8;2013、2008) 4.油脂的酸值(acid number):是指中和1g油脂中的游离脂肪酸所消耗KOH 的毫克数。【第二章脂类和生物膜】(上95) 5.激素受体:位于细胞表面或细胞,结合特异激素并引发细胞响应的蛋白质。【第六章维生素、激素和抗生素】 6.乙醛酸循环(glyoxylic acid cycle ,GAC):是一种被修改的三羧酸循环,在两种循环中具有某些相同的酶和产物,但代谢途径不同,在乙醛酸循环中乙酰CoA首先和草酰乙酸缩合成柠檬酸,然后转变为异柠檬酸,再裂解为琥珀酸和乙醛酸,在这一循环中产生乙醛酸,故称乙醛酸循环。【第八章糖代谢】(这个循环除两步由异柠檬酸裂合酶和苹果酸合酶催化的反应外,其他的反应都和“柠檬酸循环”相同。)(2013、2012) 资料2:又称三羧酸循环支路,该途径在动物体不存在,只存在于植物和微生物中,主要在乙醛酸循环体中和线粒体中进行。乙醛酸循环从草酰乙酸与乙酰CoA缩合形成柠檬酸开始,柠檬酸经异构化生成异柠檬酸,与TCA循环不同的是异柠檬酸经异柠檬酸裂解酶裂解为琥珀酸和乙醛酸。乙醛酸与另一分子乙酰CoA在苹果酸合酶的催化下形成苹果酸,最后生成草酰乙酸。该途径中含有两种特异的酶:异柠檬酸裂解酶和苹果酸合酶,其总反应式为:2乙酰CoA+2NAD++FAD →草酰乙酸+2CoASH+2NADH+2H++FADH2。 7.丙酮酸脱氢酶系: 8.呼吸链:由一系列可作为电子载体的酶复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧代谢的最终的电子受体分子氧(也称呼吸电子传递链)【第七章代谢总论、生物氧化和生物能学】(2013、2011) 9.化学渗透学说(chemiosnotic theory):电子经呼吸链传递的同时,可将质子从膜的基质面排到膜外,造成膜外的电化学梯度,此梯度贮存的能量致使质子顺梯度回流,并使P 与ADP生成ATP。【第七章代谢总论、生物氧化和生物能学】 10.半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,是由于缺乏1—磷酸半乳糖尿酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。【第八章糖代谢】(2013、2011) 11.退火(annealing):热变性的DNA,在缓慢冷却条件下重新形成双链的过程。[ 将热变性的DNA骤然冷却至低温时,DNA不可能复性。] 退火温度=Tm—25℃【第五章核酸化

相关文档