文档视界 最新最全的文档下载
当前位置:文档视界 › 2010年煤制油大会-神华直接液化

2010年煤制油大会-神华直接液化

神华煤直接液化工艺技术特点和优势

神华煤直接液化工艺技术特点和优势 神华煤直接液化示范工程采用的煤直接液化工 艺技术是在充分消化吸收国外现有煤直接液化工艺 的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神 华煤直接液化工艺 神华煤直接液化工艺技术特点 1) 采用超细水合氧化铁(FeOOH)作为液化催 化剂。以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。 2) 过程溶剂采用催化预加氢的供氢溶剂。煤 液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过 程溶剂防止煤浆在预热器加热过程中结焦,供氢溶 剂还可以提高煤液化过程的转化率和油收率。 3)强制循环悬浮床反应器。该类型反应器使 得煤液化反应器轴向温度分布均匀,反应温度控制 容易;由于强制循环悬浮床反应器气体滞留系数低, 反应器液相利用率高;煤液化物料在反应器中有较 高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。减压蒸馏是一种成熟 有效的脱除沥青和固体的分离方法,减压蒸馏的馏 出物中几乎不含沥青,是循环溶剂的催化加氢的合 格原料,减压蒸馏的残渣含固体50%左右。 5) 循环溶剂和煤液化初级产品采用强制循环 悬浮床加氢。悬浮床反应器较灵活地催化,延长了 稳定加氢的操作周期,避免了固定床反应由于催化 剂积炭压差增大的风险;经稳定加氢的煤液化初级 产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。神华示范装置运行结果表明,神华煤直接液化 工艺技术先进,是唯一经过工业化规模和长周期运 行验证的煤直接液化工艺。 神华煤直接液化工艺技术优势 1)单系列处理量大。由于采用高效煤液化催 化剂、全部供氢性循环溶剂以及强制循环的悬浮床 反应器,神华煤直接液化工艺单系列处理液化煤量 为6000 t/d。国外大部分煤直接液化采用鼓泡床反 应器的煤直接液化工艺,单系列最大处理液化煤量 为每天2500 ~3000 t。 2)油收率高。神华煤直接液化工艺由于采用

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

煤液化

煤液化 煤液化是指经过一定的加工工艺,将固体煤炭转化为液体燃料或液体化工原料的过程。按化学加工方法的不同煤的液化可分为两类:①煤在较高温度和压力下加氢直接转化为液体产品。煤的间接液化是指煤经气化产生合成气(CO + H2),再催化合成液体产品。 煤的液化是具有战略意义的一种煤转化技术,可将煤转化为替代石油的液体燃料和化工原料,有利于缓解石油资源的紧张局面。从全世界能源消耗组成看,可燃矿物(煤、石油、天然气)占92%左右,其中石油44%,煤30%,天然气18%。每个国家由于自身能源禀赋和工业发达程度的不同,各种能源所占的比重也不同。目前全世界已探明的石油可采储量远不如煤炭,不能满足能源、石油化工生产的需求。因此可以将储量相对较丰富的煤炭,通过煤炭液化转化为石油替代用品。尤其由于我国相对“富煤、贫油、少气”的能源格局,煤炭液化技术对于保障国家能源战略安全和经济可持续发展具有重要的意义[1]。 煤的直接液化已经走过了漫长的历程。1913年德国科学家F.Bergius发明了煤炭直接液化技术,为煤的加氢液化奠定了基础。此后,德国IG公司在第二次世界大战期间实现了工业化,战后由于中东地区廉价石油的开发,煤炭液化失去了竞争力。20世纪70年代由于石油危机煤炭液化又活跃起来。日本、德国、美国等工业发达国家相继开发出一批煤炭液化工艺。这些国家集中在如何降低反应条件的苛刻度,从而达到降低煤炭液化成本。目前,世界上煤炭直接液化有代表性的是德国的IGOR工艺、日本的NEDOL工艺和美国的HTI工艺。这些新工艺的特点是:反应条件与老液化工艺相比大大缓和,压力从40MPa降低到17-30MPa。并且产油率和油的质量都有很大提高,具备了大规模建设液化厂的技术能力。目前,国外没有实现工业化生产的主要原因是:由于原煤价格和液化设备造价以及人工费用偏高,导致液化成本相对于石油偏高,难以与石油竞争。 我国从20世纪70年代末开始进行煤炭直接液化技术的研究和攻关,其目的是用煤生产汽油、柴油等运输燃料和芳香烃等化工原料。煤炭科学研究总院先后从日本、德国、美国引进直接液化试验装置。经过近20年的试验研究,找出了14种适于直接液化的中国煤种;选出了5种活性较高的、具有世界先进水平的催化剂;完成了4种煤的工艺条件试验。为开发适于中国煤种的煤直接液化工艺奠定了基础,成功地将煤液化后的粗油加工成合格的汽油、柴油和航空煤油等。目前,从煤一直到合格产品的全流程已经打通,煤炭直接液化技术在中国已完成基础性研究,为进一步工艺放大和建设工业化生产厂打下了坚实的基础。 1923年,德国出现了煤炭间接液化技术。第二次世界大战时期,建造了9个煤炭间接液化工厂。战后,同样由于廉价的石油开发,导致这项技术停滞不前。之后,由于铁系催化剂的研制成功,新型反应器的开发和利用,煤炭液化技术得到了发展。但是,由于煤炭间接液化工艺复杂,初期投资大,成本高,除了南非外,其他国家对间接液化的兴趣相对于直接液化来说逐渐淡弱。 间接液化的技术主要3种,南非的费一托合成法、美国的莫比尔法和正在开发的直接合成法。目前间接液化技术在世界上已实现商业化生产。全世界共有3家商业生产厂正在运行,其中有南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。新西兰采用莫比尔法液化工艺,但是只进行间接液化的第一部反应,即利用天然气或者煤气化合成气生产甲醇。马来西亚煤炭间接液化厂采用的工艺和南非的类似,但不同的是以天然气为原料来生产优质柴油和煤油。因此,从严格意义上来说,南非的萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。该公司生产的汽油和柴油可满足南非28%的需求量,其煤炭间接液化技术处于世界领先地位。 我国从20世纪50年代初即开始进行煤炭间接液化技术的研究,曾在锦州进行过煤间接液化试验,后因发现大庆油田而中止。由于70年代的两次石油危机,以及“富煤少油”的能源结构带来的一系列问题,我国自80年代初又恢复对煤间接液化合成汽油技术的研究,

神华煤制油项目一览

神华集团煤化工板块一览 一、企业概况 1. 神华集团有限责任公司(以下简称神华集团),是于1995 年10 月经国务院批准,按照《公司法》组建的国有独资公司,是以煤炭生产、销售,电力、热力生产和供应,煤制油及煤化工,相关铁路、港口等运输服务为主营业务的综合性大型能源企业。 2. 神华集团是全国最具竞争力的综合性能源企业,实施多元化的发展战略,矿、路、电、港一体化开发,产、运、销一条龙经营。截至2013 年底,神华集团共有全资和控股子公司21 家,生产煤矿70 个,投运电厂总装机容量6566 万千瓦,拥有1765 公里的自营铁路、设计吞吐能力2.63亿吨的港口码头和现有船舶30 艘的航运公司。 3. 2013 年,神华集团煤炭产量 4.96 亿吨,商品煤销售量6.54 亿吨,自营铁路运量完成3.98 亿吨,发电3354 亿度。 二、主要煤化工技术 1. 煤直接液化技术-上海PDU 装置已完成长周期运行试验,位于内蒙古鄂尔多斯的100 万吨/年工业化示范项目已经进入长周期稳定运行阶段。 2. 间接液化煤制油技术-和浙江工业大学联合开发,仍然处于中试阶段。 3. 神华集团与GE 组建合资公司,从事气化与清洁煤技术有关的研究和开发。 三、主要煤化工项目 1. 内蒙古包头180 万吨/年煤制甲醇、60 万吨/年甲醇制烯烃项目——采用的大化所DMTO 技术,已于2011 年1 月投入商业运行 2. 内蒙古鄂尔多斯18 万吨/年煤间接液化示范项目——已于2009 年6 月建成,采用中科院山西煤化所F-T 合成技术

3. 内蒙古鄂尔多斯100 万吨/年煤制油示范项目——于2009 年1 月中旬成功完成了接近两周的首次试运行,在2009 年的试运行中总计生产了近10 万吨油品。2010 年,累计运行5172 小时,年产油量4 4.3 万吨;2011 年,累计运行6744 小时,年产油79 万吨,总利润为10.05 亿元,净利润达到4.06 亿元;2012 年,累计运行7248 小时,年产油86.5 万吨,总利润为18.6 亿元,净利润为 5.8 亿元。 4. 内蒙古鄂尔多斯20 亿立方米/年煤制合成天然气项目——仍处于前期工作阶段。 5. 陕西榆林神华/DOW 煤制甲醇和MTO 项目——仍处于可研阶段,于2010 年3 月获得国家能源局的“路条”,继续深化开展前期工作。目前该项目已向国家发改委提交项目申请审批报告,等候发改委的批准。 6. 神华宁煤400 万吨/年煤炭间接液化项目——总投资550 亿元,利用中科合成油公司技术,煤气化采用GSP 粉煤加压气化工艺,预计2016 年建成。 7. 神华宁煤167 万吨/年甲醇制50 万吨/年丙烯项目——已于2011 年试车成功,并于2011 年5 月开始产品外售。二期再建一套50 万吨/年MTP 装置,预计2014 年建成。 8. 神华宁煤100 万吨/年双烃项目——一期工程总投资约128 亿元,以煤制油和煤制烯烃副产品石脑油、LPG 为原料,主要建设140 万吨/年裂解制烯烃装置、40 万吨/年聚乙烯装置、45 万吨/年聚丙烯装置、15 万吨/年合成氨装置、35 万吨/年芳烃抽提装置等,计划2017 年建成投产。 9. 新疆黑山300 万吨/年煤制油项目——落户乌鲁木齐甘泉堡工业区,一期投资200 亿元,建设100万吨/年直接液化、50 万吨/年间接液化。 10. 神华集团内蒙古鄂尔多斯10 万吨/年CCS项目——2011 年,CCS项目实现全年稳定生产与注入。 11. 神华陕西榆林180 万吨/年甲醇制60 万吨/年烯烃项目——神华收购陕西咸阳和神木2 个60 万吨甲醇项目,以及外购60 万吨甲醇在榆林建设60 万吨/年DMTO 项目。

神华煤直接液化项目的综合评价

摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价

Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment recoupment period of project were 13.13% and 7.73 years respectively.The internal rate of return was more than the one for petrochemical industry which was 10%. From the economic aspect, the project was profitable. Technical analysis, mainly studied from coal direct liquefaction technical scheme, engineering enlargement and project construction. The core technology liquefaction process - HTI process employing the America technology, catalyst preparation process - using new efficient "863" synthesis catalyst, coal liquefaction process for hydrogen production unit by adding pressurized gasification - employing Shell advanced pressurized gasification technology were emphatically analyzed. Shenhua coal to oil project in product separation unit, hydrogenation modification uint,air

煤直接液化工艺技术及工程应用

石油炼制与化工 。oo。年,月reTRc,-euM!竺!!!!!!!竺!兰!!!二!竺里!竺!!兰!!——兰!!兰竺:塑———————————————————————————————————————一 煤直接液化工艺技术及工程应用 范传宏 (中国石化工程建设公司,北京1000¨) 摘要介绍了目前世界上比较典型的煤直接液化工艺技术(IGOR+工艺、NEDOL工艺和HTl工艺)的特点。结台各工艺的特点,对工艺流程中循环溶剂的选择、各单元流程的选择和设计 进行了探讨,提出r合理建议。 美键词:煤液化工艺设计工程述评 l前言 煤炭的化学成分类似于石油,是含氢少,杂质多的固体燃料,可以通过在高温高压下的裂姆、加氢和分解等过程,直接转化成液体产品。自20世纪70年代以来,世界各国相继研究开发了多种煤直接液化新工艺,其中不少新工艺已发展到每天处理几十吨至几百吨的工业性试验装置,但由于80年代石油降价,各国均没有进行商业化煤液化装置的建设。但我国,煤炭保有储量远比石油丰富,价格便宜,采用煤直接液化技术制取各种油品是一种比较适合我国国情的能源途径,可以充分利用我国丰富的煤炭资源,调整我国能源消费结构,缓解石油进口压力。为加快我国煤直接液化工业化的步伐,应在充分r解和研究煤直接液化工艺的基础上,合理地在工程中加以优化和运用,降低技术风险和经济风险,提高工业化装置长周期稳定运转的可靠性。 2煤直接液化工艺技术 2.1煤炭液化原理 煤加氢液化的反应过程可分为两个步骤”]:第一步是通过加热使煤的结构单元之间的桥键断裂,形成以单个结构单元为主体的自由基;第二步是在催化剂的作用下通过加氢使自由基在溶剂中保持稳定,因此溶剂应具有较好的重质芳烃溶解性,并能够提供氢给自由基以阻止自由基聚合。另外,通过加氢还可使各结构单元继续脱除氧、氮、硫等杂原子,并使结构单元进一步裂解,使芳烃部分饱和以降低相对分子质量、提高氢碳原子比,从而得到与石油馏分十分相似的低相对分子质嚣的油品。 煤液化所得的油品含有较多的杂原子及芳烃,一般还要经过加氢精制或加氢裂化工艺才能得到台格的油品。 2.2典型的煤液化工艺技术 煤直接液化工艺的主要过程是把煤先磨成粉,再和自身产生的液化重油(循环溶剂)配成煤浆,在高温(430~470℃)和高压(15~30MPa)下直接加氢,将煤转化成液体产品。整个过程可分成4个主要工艺单元: (1)煤浆制备单元:将煤破碎至小于o.2mm以下,并与溶剂、催化剂一起制成煤浆; (2)反应单元:煤在高温、高压的反应器内进行加氢反应,生成液体产物; (3)分离单元:将反应生成的残渣、液化油、反应生成气分离; (4)稳定加氢单元:液化油加氢,提供供氢溶剂,并使液化油加氢稳定。 目前世界上典型的煤直接液化技术主要有德国IGoR+工艺、日本NEDOL工艺和美国H—CoAI。及HTI工艺。 2.2.1德国IGoR+工艺IGOR+(IntegratedGrossoilRe“ning)工艺是在德国原IG工艺基础上开发出的新一代煤炭液化技术。该液化工艺将反应压力由70MPa降低到30MPa,将煤的加工量提高了50%,此外在残渣处理方面,用现代蒸馏法取代了从环保和技术角度都有缺陷的机械分离 收稿日期:200303¨;修改稿收到H期,2003一04一02。 作者简介:范传宏,工程师.硕士,1996年毕业于石油大学,从事石油化工的工艺研究和工程设计工作,曾负责设计多套加氢裂化装置,班正负责煤液化工业装置的工艺设计工作。 万方数据

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中 C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

神华集团煤直接液化示范工程

综 述 神华集团煤直接液化示范工程 叶 青 (神华集团有限责任公司,北京 100011) 摘 要:简叙了神华集团有限责任公司煤直接液化示范工程的意义、资源状况、技术特点和管理模式。神华煤直接液化示范工程是利用世界上煤直接液化新技术建设商业化工程的首例,该工程建设本身也是煤直接液化技术应用和工程再开发的过程,其成功实施对中国能源结构的战略调整,对中国煤直接液化产业化发展具有非常重要的示范作用。 关键词:神华集团;煤直接液化;示范工程 中图分类号:T Q52911 文献标识码:A 文章编号:0253-2336(2003)04-0001-03 Shenhua demo project of coal direct liquefaction YE Qing (Shenhua Group Corp.Ltd.,Beijing 100011,China) Abstract:The paper stated the significance,res ource status,technical features and management m ode of Shenhua dem o project of coal direct liq2 uefaction1The Shenhua dem o project is the first case with w orld advanced technology of coal direct liquefaction to build a commercialized project1 The construction of the project itself is als o a procedure of the coal direct liquefaction technology application and the engineering redevelopment1 The success ful practice of the project will have very im portant dem o functions to the strategic adjustment of the Chinese energy structure and the in2 dustrial development of the Chinese coal direct liquefaction technology1 K ey w ords:Shenhua G roup;coal direct liquefaction;dem o project 1 煤直接液化工程项目的重大意义 (1)中国有着丰富的煤炭资源,到1999年末,累计探明煤储量为10018亿t,煤储量占已探明的各种能源(煤炭、石油、天然气及水电)总储量的90%。充分利用储量丰富的煤炭资源,大力开发替代石油的技术,多元化降低能源风险,及早考虑能源的多样化是普遍共识。 中国石油资源有限,到1999年末,累计探明石油地质储量203亿t,石油剩余可采储量仅为24亿t。而中国又是一个石油消费大国,石油供需矛盾日益突出。最近几年中国的原油年产量一直徘徊在116亿t左右,资源品位不高,难开采资源比重较大,主要油区生产已处于高含水、高采出阶段,原油开采效果变差,增产难度较大。1993年以后一直靠不断增加进口来弥补国内石油产量的不足。1992年中国成为成品油净进口国,1993年成为石油(原油加成品油)净进口国,1996年又成为原油净进口国。1999年中国原油产量为116亿t,而需求量为2亿t,原油和成品油的净进口量已突破了4000万t,约占总消费量的20%。随着中国经济的稳步发展,这种供小于求的态势还将进一步发展,石油消费量还将猛增。预计2010年中国石油的进口量将可能高达消费总量的40%,净进口量为112亿t左右。预计2015年,中国石油需求量为316亿t,缺口达119亿t左右,石油自给率仅为47%,而建设煤液化项目必将对缓解石油产品的供需矛盾开辟一条新的途径。 (2)煤直接液化示范工程项目建在神华集团所属的神东矿区,该矿区地处石油资源贫乏的山西、陕西、内蒙古、宁夏和甘肃等省(区)中间地带, 1

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGO R工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t /d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。

神华集团公司煤液化项目情况

神华集团公司煤液化项目情况 就目前了解的情况,神华在国内煤制油领域在投资和技术方面均处于领头羊的位置。在煤制油的两条技术路线上,神华均有所动作。 神华企业概况 神华集团有限责任公司(简称神华集团)是于1995年10月经国务院批准组建的国有独资公司,前身为华能集团属下的华能精煤公司(1985年成立)。中央直管的53户国有重要骨干企业之一。在国家计划和中央财政实行单列,享有对外融资权、外贸经营权、煤炭出口权。神华集团以能源为主业,集煤矿、电厂、铁路、港口、航运为一体,实施跨地区、跨行业、多元化经营,是我国最大的煤炭企业。 神华集团负责统一规划和开发经营神府东胜煤田的煤炭资源和与之配套的铁路、电厂、港口、航运船队等项目。神府东胜煤田位于中国陕西省榆林地区和内蒙古伊克昭盟境内。属世界八大煤田之一,已探明煤田含煤面积3.12万平方公里,地质储量2236亿吨。 目前,神华集团拥有全资及控股子公司30家,职工约9万人。截止2002年底,总资产1026亿元。神华集团目前拥有银行信贷额度超过1500亿元。 2002年,神华集团商品煤销售7773万吨,主营业务收入258亿元,还本付息56.02亿元,利润总额23.19亿元。集团综合实力大幅度提高。神华集团已连续两年在国务院五部委对全国169家中央企业进行

综合效绩考评中,位居全国煤炭行业第一。 中国神华煤制油有限公司作为神华集团的全资企业,经国家工商行政管理总局批准,于2003年6月12日在北京成立,公司注册资金为20亿元人民币。 神华煤液化项目情况 1. 神华的直接煤变油项目 2004年8月,获得国家发改委批准的神华集团内蒙古直接液化项目破土动工,2005年4月18日核心装置开始建设,这是世界上唯一的大型煤直接液化项目。项目地址:内蒙古伊金霍洛旗乌兰木伦镇,建设总规模为年产油500余万吨,分两期建设,其中一期工程由三条主生产线组成,包括煤液化、煤制氢、溶剂加氢、加氢改质、催化剂制备等14套主要生产装置。一期工程建成投产后,每年用煤970万吨,可生产各种油品320万吨。 神华煤制油自备电站5×100mw工程可行性研究报告也已由北京华北电力设计院编制完成,并通过审查。计划于05年10月动工建设。神华煤直接液化项目一期工程设计规模为年产成品油300万吨,用电负荷420mw,需工业蒸汽1200t/h,年排出油灰渣180万吨、洗中煤100万吨,可燃性化工尾气4.2—9万nm3/h。该工程分三条生产线建设,先期建设第一条生产线规模为年产成品油100万吨,用电负荷142mw,需工业蒸汽400t/h,年排出油灰渣60万吨、洗中煤33万吨,可燃性化工尾气1.4—3万nm3/h。该电站的燃料主要来源于煤直接液化所

神华宁煤400万吨年煤炭间接液化项目煤气化装置四区(气化七区)建筑工程施工技术方案

目录 1 编制说明 (2) 2 编制依据 (2) 3 工程概况 (2) 4 塔吊型号和数量的选择 (2) 5 塔吊选择及部署 (3) 5 塔吊基础施工 (7) 5 塔机安装步骤 (8) 6 顶升步骤 (14) 7 拆搭步骤 (17) 8 安装、拆卸安全注意事项 (19) 9 劳动防护用品的配置和使用 (20) 10、环境/职业健康安全管理措施: (21) 11 附图 (21)

1 编制说明 本方案依据已收到的总平面布置图(图号:WEC-20004-053-DL-0001-B00,版本:0版)编制气化装置七区------塔吊布置及基础施工方案。 2 编制依据 2.1已收到的施工图纸(七区总平面布置图,备煤、气化、黑水框架结构施工图); 2.2塔吊厂家提供的塔吊基础施工图纸; 3 工程概况 煤气化装置七区位于宁夏回族自治区灵武市境内磁窑堡镇马跑泉地区,西北距宁夏回族自治区首府银川市约43km,西距灵武市城区约33km,与银川河东机场相距约35km。基地西邻黎家新庄和矿区中心区,东邻鸳鸯湖矿区,南为灵新井田北界。基地西南距青银高速灵州出口约0.5km,太中银铁路在其西南侧通过,对外交通便利。该装置区域呈现南北长,左右长:310m,宽120m,装置区域厂内坐标A=725.00、B=5335.00(西南角),A=1035.00,B=5455.00(西北角),装置内从南至北分别是备煤框架、气化框架、黑水框架、气化变电所、现场机柜间。 4塔吊型号和数量的选择 该装置的建构筑物内结构形式为框架结构,地面单体较多,整个装置布置5台塔吊可以满足垂直运输需求; 4.1备煤框架(建筑物高度52m): 1、选用TCT5010塔吊,基础大小4600*4600*1000,砼标号C35;采用工作幅度50m,独立高度32m,起重量:4t;塔吊中心距离框架柱(D轴线)4750mm,附着架要

(煤制油)神华煤直接液化项目综合评价

神华煤直接液化项目综合评价 摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技

术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价 Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment

煤间接液化与直接液化区别

甲醇为转化烯烃的反应 (1)酸性催化特征 甲醇转化为烯烃的反应包含甲醇转化为二甲醚和甲醇或二甲醚转化为烯烃两个反应。前一个反应在较低的温度(150-350o C)即可发生,生成烃类的反应在较高的反应温度(>300o C)下发生。两个转化反应均需要酸性催化剂。通常的无定形固体酸可以即作为甲醇转化的催化剂,容易使甲醇转化为二甲醚,但生成低碳烯烃的选择性较低。 (2)高转化率 以分子筛为催化剂时,在高于400o C的温度条件下,甲醇或二甲醚很容易完全转化(转化率100%)。 (3)低压反应 原理上,甲醇转化为低碳烯烃反应是分子数量增加的反应,因此低压有利于提高低碳烯烃尤其是乙烯的选择性。 (4)强放热 在200-300o C,甲醇转化为二甲醚和甲醇转化为低碳烯烃均为强放热反应,反应的热效应显著。 (5)快速反应 甲醇转化为烃类的反应速度非常快。根据大连化物所的实验研究,在反应接触时间短至0.04s便可以达到100%的甲醇转化率。从反应机理推测,短的反应接触时间,可以有效地避免烯烃进行二次反应,提高低碳烯烃的选择性。 (6)分子筛催化的形状选择性效应 原理上,低碳烯烃的高选择性是通过分子筛的酸性催化作用结合分子筛骨架结构中孔口的限制作用共同实现的。结焦的产生将造成催化剂活性的降低,同时又反过来对产物的选择性产生影响。 DMTO工艺的开发过程中已经充分考虑了上述MTO反应的特征。DMTO工艺的设计中,也应时刻牢记这些特征,将这些反应的原理性的特征融入其中 煤间接液化与直接液化的区别 一、煤炭液化发展状况: 1、间接液化技术发展状况 煤的间接液化技术是先将煤气化,然后合成燃料油和化工产品。目前南非萨索尔公司、荷兰壳牌公司、美国美孚公司、丹麦托普索公司都拥有成熟技术,但达到和正在商业化生产的只有南非萨索尔公司。该公司已先后建成了三个间接液化工厂,年产汽油、柴油、蜡、乙烯、丙烯、聚合物、氨、醇、醛、酮等113种化工产品,共计760万吨,其中油品占60%左右。 在我国,科技部863计划和科学院于2001年联合启动了“煤变油”重大科技项目,中科院山西煤化所承担了这一项目的研究。2002年9月,千吨级间接液化中试平台实现了第一次试运转,并合成出第一批粗油品。到2003年底,中试平台已运行4次,使用间接液化技术生产出了无色透明的高品质柴油,这是目前世界上纯度最高、最优质的清洁柴油。山东兖矿集团在煤炭间接液化技术方面也取得了较大进展。神华集团拟在陕西榆林建设煤间接液化项目,以榆神矿区储量丰富、质量优良和便于开采的煤炭资源为依托,建立坑口煤炭间接液

神华宁煤煤化工项目一览

神华宁煤煤化工项目一览 1.神华宁煤集团25 万吨/年甲醇,21 万吨/年二甲醚项目 该项目于2008 年建成投产,采用GE水煤浆气化技术。 2.神华宁煤集团煤制60 万吨/年甲醇项目 采用多喷嘴对置式水煤浆气化炉,该项目已于2010年3 月份投产。 3.神华宁煤集团煤基聚丙烯项目 该项目位于宁夏宁东能源重化工基地。于2005 年底开工,总投资约195 亿元,每年用煤量约526 万吨,每年中间产品甲醇167 万吨,设计规模为年产52 万吨聚丙烯,同时每年副产18.48 万吨汽油、4.12 万吨液态燃料、1.38 万吨硫磺。该项目采用德国西门子GSP 干煤粉气化工艺,设计生产能力为52 万立方米/小时粗煤气。四合一装置采用德国鲁奇公司变换、低温甲醇洗、硫回收、大甲醇合成技术,设计生产能力为中间产品甲醇167 万吨/年。MTP 装置采用德国鲁奇公司MTP 技术,设计生产能力为2 万吨/年乙烯、47.4 万吨/年丙烯。聚丙烯装置采用德国ABB 公司气相法聚丙烯技术,设计生产能力为52 万吨/年聚丙烯。其他如动力站装置为6 台460 吨/小时(高压蒸汽)锅炉及15 万千瓦时电站。空分装置由液化空气集团提供,生产能力为19 万立方米/小时氧气。该项目于2011 年5 月投产。 4.神华宁煤将利用自产甲醇(85 万吨/年)和新建100 万吨/年煤制甲醇装置再建设一套甲醇制50万吨/ 年丙烯项目 目前项目建设已经全面展开,预计2014 年6 月建成,项目计划总投资65 亿 元,仍然采用德国鲁奇公司甲醇制丙烯(MTP)工艺。 5.神华宁煤400 万吨/年间接液化项目 总投资约550 亿元,采用GSP 粉煤加压气化技术,年产405 万吨油品,副产27.5 万标准立方米/小时合成气,计划2016 年建成投产。 6.神华宁煤100 万吨/年双烃项目 一期工程总投资约128 亿元,以煤制油和煤制烯烃副产品石脑油、LPG 为原料,主要建设140万吨/年裂解制烯烃装置、40 万吨/年聚乙烯装置、45 万吨/年聚丙烯装置、15 万吨/年合成氨装置、35 万吨/年芳烃抽提装置等,计划2017 年建成投产。 1-4项已经完成,第5项正在进行,第6项正在规划。

相关文档