文档视界 最新最全的文档下载
当前位置:文档视界 › 全氟离子交换膜材料

全氟离子交换膜材料

全氟离子交换膜材料
全氟离子交换膜材料

山东东岳集团成功攻克氢燃料电池生产的重大瓶颈——磺酸树脂离子膜技术,中国由此成为世界第二个拥有该项技术和产业化能力的国家。

2006年3月19日,“东岳”承担的国家863计划“全氟离子交换膜材料研究”课题,经过3年艰苦攻关,通过了专家验收。项目负责人张永明与张恒,一个是上海交通大学的博士生导师、业内知名专家,一个只是自学成才的企业技术负责人。可是在张永明眼中,缺了张恒,离子膜项目不会成功。

全氟磺酰单体的生产是全氟离子交换膜生产过程中的重要一环。东岳集团神舟新材料有限公司副总经理高洪光说:“在这个全氟磺酰单体的生产过程中,张恒根据他多年的经验,以及查阅大量的资料,自行设计、自行画图、安装,攻克了磺酰单体这个重要的设备,才使下面我们有了高纯的单体,做出了好的树脂。如果说没有这一步,那么离子膜的成功是不可能的。因为国外只出售给中国全氟磺酸树脂,不出售生产全氟磺酸树脂的原料,所以没有这个设备,就没有这个原料的生产,也就谈不上全氟磺酸树脂的生产成功。”

为了氯碱产业的“中国心”东岳全氟离子膜产业化历程

日期:2010-08-20

中国是当今世界氯碱产能第一大国,但全球第一的光环并不能掩饰中国氯碱人的一块心病。

离子膜电解法是目前最先进的氯碱生产工艺,离子膜电解槽是氯碱工业的核心装置,而其中发挥关键作用的是安装在电解槽上的全氟磺酸羧酸离子膜(简称全氟离子膜)。这张薄如蝉翼的离子膜被认为是氯碱装置的“心脏”。一直以来,全氟离子膜生产技术被美国和日本垄断,中国氯碱装置安装的只能是洋“心脏”。从“六五”时期起,我国一代代化工人开始了漫长的离子膜国产化征程。

全氟离子膜,这枚化学工业“皇冠上的明珠”,曾是共和国几任化工部长、几代化工人未偿的夙愿。

全氟离子膜,这张含金量极高的薄膜,曾经阻滞了多少氯碱人自主自强、实现完全国产化的脚步。

直到2010年6月30日,一个民营科技化工企业——山东东岳集团100%国产化的全氟离子膜,在万吨级氯碱装置上一次通电成功。从此,中国氯碱行业终于有了“中国心”!

一次偶然的相遇开创了一段艰辛的探索

东岳集团与离子膜结缘始于一个偶然。2003年,在杭州的一次会议上,东岳集团总裁

刘传奇作了一个报告,介绍了东岳集团聚四氟乙烯产品的发展情况。当时中国聚四氟乙烯还徘徊在低档次、小规模水平,能大规模涉足的企业并不多。听着刘传奇的报告,有一个人心潮澎湃,他就是当时上海交通大学化工学院张永明博士,如今的上海交通大学教授和东岳集团离子膜项目首席专家。当时张永明正在从事全氟离子膜研究,东岳集团要做的聚四氟乙烯的单体四氟乙烯也正好是离子膜的关键原料之一。并且张永明觉得刘传奇“这个山东人讲话很实在,掷地有声”,而且东岳集团还有一位退伍军人——张建宏任董事长,合作干一番事业的念头已然在胸中升起。

2003年7月12日,张永明怀着试试看的心情给刘传奇打电话,谈了自己想与东岳集团合作搞离子膜研发的想法。没料到第二天,东岳集团的刘传奇总裁和张恒副总裁就代表公司来到了上海,邀请张永明去东岳集团进行离子膜产业化工作。张永明提出了几个去东岳的前提条件,包括为其准备实验室和实验条件等。当时东岳的科研基础条件比较艰苦,张永明认为要达到他提出的实验要求,东岳怎么也得准备几个月。再次出乎意料,东岳在一星期内打电话来,说筹建好了他要求的实验室。张永明半信半疑地第一次来到东岳。当他看到东岳为他创造的科研条件,特别是感受到张建宏那种爱才惜才的热情时,心里便认定要在东岳把离子膜的产业化进行到底。

说起两人的第一次会面,张永明教授记忆犹新:“董事长给我的见面礼很大,一个是让我享受国家的部长生活待遇。再一个是给我‘三定大权’:项目研发用什么样的人、安排什么工作岗位、给予什么样的工资待遇,完全由我决定。”2003年8月,张永明在第一次接触刘传奇短短的20多天后,便满怀激情地来到了东岳投身离子膜事业。

有了这个一拍即合的开始,接下来的路怎么走?为了争取国家方面的支持,2003年底,张建宏、张永明、张恒等赴京参加科技部的专家项目论证会。也正是在这次会议上,张建宏进一步了解了离子膜项目科技攻关的难度之大、意义之重。上世纪八九十年代,我国也曾尝试引进国外技术,但遭到断然拒绝。外国公司看家的本领怎能轻易转让给中国?自己攻克难关,成为中国人唯一的选择。当时,这个项目已经由国家组织了“六五”、“七五”两个5年重大科技攻关计划,由于技术和工程难度实在太大,一直没能成功产业化。会上,很多专家善意提醒张建宏放弃,不要冒这个险。因为“一个民营企业想攻下离子膜项目,简直比登天还难”。

一时间,外界也出现了众多质疑的声音。有人说这是东岳打着科技创新旗号的一次自我炒作。质疑,东岳的当家人张建宏和刘传奇并非第一次遇到。他们的几次重大决策,几乎都饱受争议。1998年,当他们与清华大学合作,开发环保型制冷剂时,被人称为“老乡结皇亲”,但事实证明,他们的决策是正确而超前的。由于抢先一步,东岳成为全球最大的环保制冷剂生产企业。2000年,东岳决定要上3000吨/年“塑料王”——聚四氟乙烯项目时,有人竟说“东岳要建3000吨的聚四氟乙烯,我还要造原子弹呢”。但2002年4月,经过仅仅11个月的建设,东岳3000吨/年聚四氟乙烯装置投产了。第二年,东岳就把产能规模扩大到了6000吨/年。张建宏欣慰地说:“我们一举走了中国聚四氟乙烯过去50年的路。”

正是有了之前每次决策的底气,这次张建宏认准了全氟离子膜项目。因为一方面全氟离子膜是四氟乙烯的下游高端产品,符合东岳延伸产业链实现高附加值的发展思路;另一方面中国是氯碱生产第一大国,其核心材料全氟离子膜掌控在外国人手里是可怕的,中国市场迫切需要国产的离子膜。“因此离子膜是个好东西,一定要做。”

尽管饱受质疑,但事情还是有了转机。由于离子膜项目事关中国氯碱产业的自主性,所以为了明确全氟离子膜项目的可行性,科技部专门派人到东岳进行现场考察,当他们看到东岳已经取得的成果和科技人员的艰苦攻关时,还是对这个项目给予了肯定。2004年1月,这一项目成为紧急启动的国家“863”重大项目。

东岳集团全氟离子膜项目正式上路了……

一段艰辛的探索换取了一个难忘的时刻

全氟离子膜从一块普通的萤石开始,到能够满足氯碱生产选择性要求,中间要经历氢氟酸、四氟乙烯、全氟磺酸单体和树脂、全氟羧酸单体和树脂,再到全氟离子膜的过程,这需要进行几十步的复杂反应和分离过程。张永明说:“全氟离子膜的生产设备摆起来有几千米长。”

高自宏,北京大学化学专业的博士后,5年前从北京来到东岳离子膜项目组做研究工作。她只是东岳离子膜项目上百人研发团队中的一员。当记者问起她的研发经历,她没有惊人之语,只说自己年复一年、日复一日总是在一遍遍摸索实验条件,一次次改变反应路径,一点点提高产物收率。她早已记不清自己做了多少次尝试,记不得实验失败了多少回。以至于最后的成功在她看来就是“水到渠成的事”。“因为我们上百人的科研团队的探索,早已摸清了复杂反应的每一个环节。”

张永明数不清自己在实验室度过了多少个不眠之夜,自己遇到了多少棘手的难题。他感到自己时常会遇到一个个难以迈过去的坎儿,自己总是在黑暗中摸索、时常碰壁。他每每带着负疚的心情去见张建宏,张建宏总是安慰他说:“做成了算你的,做不成算东岳的。”

张建宏把压力揽到了自己身上,是想让科研团队放下思想包袱。他自己承受的压力无疑是巨大的,难怪他说:“有几次我也不想干了,感到特别孤立无援,找不到出路,很痛苦。”在全氟离子膜关键材料羧酸树脂试车时进展很不顺利,头三批料都没有成功。一天晚上,在试车现场的车间里,员工们看见张建宏在墙角一直用力地踢墙壁,可想而知他的压力有多大。张建宏坦言,在离子膜研发和产业化过程中,自己每天就像走在钢丝上。

在一次次的探索中,东岳离子膜研发的环境也有改善。2005年9月8日,山东省人民政府召开东岳集团离子膜项目产业化现场办公会,离子膜项目被列为举全省之力支持的山东省高新技术一号工程;2006年3月19日,东岳离子膜研究项目顺利通过国家“863计划”验收;2006年12月18日,全氟离子膜工程技术研究被列为国家“十一五”科技支撑计划重大项目。胡锦涛、温家宝、李克强、李源潮等党和国家领导人先后视察东岳,对东岳自主创新特别是离子膜研发给予充分肯定。

2009年9月22日,是值得东岳人铭记的日子。这一天凌晨2点,1.35米×2.65米工业规格的全氟离子膜在东岳集团成功下线。当看见离子膜缓缓走下生产线时,东岳人眼里充满了喜悦的泪水。这时候,所有的科研人员体力已经完全透支。张永明更是由于长时间的科研工作,眼睛已经看不清东西,当产品成功下线时,他已经晕倒在地。

一个难忘的时刻成就了一桩伟大的事业

离子膜下线后,东岳集团对产品的性能进行了全面检测分析,同时为大规模工业化应用作准备。张永明说:“2009年9月22日之后,我们在工程化、标准化过程中又解决了48个难题,其中主要是设备难题。由于中国设备制造水平有限,有的这儿不合适,有的那儿不合适,所以我们一直在改造。”

当然,国产离子膜最关键的还是要在氯碱工业装置上获得应用。2010年5月,同样经过艰苦努力将离子膜电解槽成功国产化的蓝星(北京)化工机械有限公司,同意在其设在中化集团沧州大化黄骅氯碱公司5000吨级的实验装置上试用东岳离子膜,做了“第一个吃螃蟹”的人。

当时在黄骅氯碱公司现场5000吨级装置上主持试验工作的蓝星(北京)化机公司服务总监苏克勤心里也是犯嘀咕的:此前20多年,曾有科研机构和企业为此做过不懈努力,但由于诸多原因未能工业化。这次东岳做出来的离子膜,真的就能成?苏克勤坦言,为了防止发生意外,确保实验装置和整个厂区的安全,他们做好了最坏的打算和最周全的预案。

2010年5月14日,黄骅氯碱厂采用东岳离子膜的氯碱生产装置正式开车。开车的结果,大大出乎所有人的意料。东岳离子膜在黄骅氯碱公司实验装置上一次通电成功,并且生产出合格的工业产品。从运行的结果来看,东岳离子膜与某外国公司的同类型离子膜性能相当。苏克勤长长地松了一口气,他说:“开车成功的那一刻,先前的担心被巨大的开心和喜悦取代了。”

此后,东岳集团又花一个多月时间,在集团内自建了一套万吨级氯碱生产装置。万吨级已经是氯碱装置的最大单套生产规模。该生产装置采用的是蓝星(北京)化机公司的离子膜电解槽和东岳集团的离子膜,实现了所有的装备、原料、技术的100%国产化。2010年6月30日晚9点48分,东岳离子膜在完全国产化的万吨级工业氯碱生产装置上一次通电成功,产出合格的工业产品。

至此,我国成为除美国、日本外世界上第三个掌握离子膜电解法烧碱整套复杂生产技术的国家。

全氟离子交换膜材料

山东东岳集团成功攻克氢燃料电池生产的重大瓶颈——磺酸树脂离子膜技术,中国由此成为世界第二个拥有该项技术和产业化能力的国家。 2006年3月19日,“东岳”承担的国家863计划“全氟离子交换膜材料研究”课题,经过3年艰苦攻关,通过了专家验收。项目负责人张永明与张恒,一个是上海交通大学的博士生导师、业内知名专家,一个只是自学成才的企业技术负责人。可是在张永明眼中,缺了张恒,离子膜项目不会成功。 全氟磺酰单体的生产是全氟离子交换膜生产过程中的重要一环。东岳集团神舟新材料有限公司副总经理高洪光说:“在这个全氟磺酰单体的生产过程中,张恒根据他多年的经验,以及查阅大量的资料,自行设计、自行画图、安装,攻克了磺酰单体这个重要的设备,才使下面我们有了高纯的单体,做出了好的树脂。如果说没有这一步,那么离子膜的成功是不可能的。因为国外只出售给中国全氟磺酸树脂,不出售生产全氟磺酸树脂的原料,所以没有这个设备,就没有这个原料的生产,也就谈不上全氟磺酸树脂的生产成功。” 为了氯碱产业的“中国心”东岳全氟离子膜产业化历程 日期:2010-08-20 中国是当今世界氯碱产能第一大国,但全球第一的光环并不能掩饰中国氯碱人的一块心病。 离子膜电解法是目前最先进的氯碱生产工艺,离子膜电解槽是氯碱工业的核心装置,而其中发挥关键作用的是安装在电解槽上的全氟磺酸羧酸离子膜(简称全氟离子膜)。这张薄如蝉翼的离子膜被认为是氯碱装置的“心脏”。一直以来,全氟离子膜生产技术被美国和日本垄断,中国氯碱装置安装的只能是洋“心脏”。从“六五”时期起,我国一代代化工人开始了漫长的离子膜国产化征程。 全氟离子膜,这枚化学工业“皇冠上的明珠”,曾是共和国几任化工部长、几代化工人未偿的夙愿。 全氟离子膜,这张含金量极高的薄膜,曾经阻滞了多少氯碱人自主自强、实现完全国产化的脚步。 直到2010年6月30日,一个民营科技化工企业——山东东岳集团100%国产化的全氟离子膜,在万吨级氯碱装置上一次通电成功。从此,中国氯碱行业终于有了“中国心”! 一次偶然的相遇开创了一段艰辛的探索 东岳集团与离子膜结缘始于一个偶然。2003年,在杭州的一次会议上,东岳集团总裁

全氟膜的安全操作和使用(中文)

全氟膜的安全操作和使用(中文) 介绍 编写该手册的目的是为了给杜邦全氟膜的安全操作和使用提供指导。在全氟膜用于高温环境以前应该审核完所有的内容。对于一般条件下的氟聚合树脂的使用,可参照塑胶产业协会出版的“含氟聚合物安全操作指南”。 全氟膜是由四氟乙烯和含磺酸基团的单体组聚合而成。其安全因素主要取决于热量和聚合物氧化分解的产物。 全氟膜以碳氟为主链,其全氟侧链上包含着一个磺酸基团。其化学结构如下: 聚四氟乙烯相似的结构如下: 全氟膜相对于聚四氟乙烯有着特别的化学稳定性和热力学稳定性。聚四氟乙烯是疏水性最强的物质之一,而全氟膜是亲水性最强的物质之一。即使在室温下,它们也能迅速的吸收水和一些极性有机物,其总量大小取决于磺酸基团的数量。聚四氟乙烯具有化学惰性,全氟膜是强高分子酸,它能和有机碱以及无机碱发生反应。而聚合物上的磺酸基团基本稳固在含氟聚合物有机质上。因此,膜可以接触皮肤而不会造成刺激。 由于全氟膜技术的发展,几千米长的膜已经被用于许多领域。在此期间,并没有由于操作或者暴露产品而造成伤害的案例。 摄入 全氟膜中的全氟磺酸聚合物被口服时表现出非常低的毒性。半致死量超过20000mg/kg相对于人体体重。

皮肤接触 用兔子测试时,全氟膜中的全氟磺酸共聚物对皮肤没有刺激。该实验设计是为了确定这些材料的皮肤刺激性和致敏性,同样也在志愿者身上进行。结果表明,对于非服装业的膜的正常使用预期不会有不寻常的皮炎危害。然而,对于部分个体,长时间的接触可能会对皮肤有刺激。 高温下的全氟膜 几乎无一例外,在高温环境中,这些物质分解时有烟气产生,好比全氟磺酸,四氟乙烯和其他塑料,从健康和安全的角度来说,这些烟气是很令人讨厌的。然而,四氟磺酸和其他含氟聚合物在高温时比其他大多数热溯性塑料更耐分解。 在无水环境中全氟膜的最高持续操作温度为175℃。在含水或有机溶剂中,最高温度更高,比如,已经证实在含水系统220到240℃时,全氟膜可稳定数日。聚合物烟热 暴露于全氟膜热分解产物中可能造成暂时的类似于感冒的症状。这种症状在几小时内一般不会产生,而且产生后的24到48小时就会消退,甚至不需要治疗。观察表明,对于其他聚四氟乙烯这种疾病发作并没有持续效果,而且效果不会累积。这种疾病在暴露在烟气中会发作,而烟气来自处于250℃以上高温的聚合物,或者来自于吸烟,或者来自于被聚合物污染的烟草。 热分解产物 全氟磺酸聚合物的废水的组成是用杜邦公司标准的热敏废水红外分析设备,在下列条件下测定的:空气环境下,流速13ml/min,取样0.5g。样品在不锈钢管中先以10℃/min的速度加热到200℃,再以20℃/min的速度升到400℃,放置20分钟,总共运行时间大约75分钟。结果如下所示: 全氟磺酸聚合物的分解产物 组分转变温度℃每克样品中含量/mg SO2 280 15 CO2 300 30 HF 400 -* CO 400 3 RfCOF 400 10** COF2 400 3 COS 400 微量

全氟离子交换膜项目可行性研究报告

全氟离子交换膜项目可行性研究报告 泓域咨询丨规划设计·投资分析

第一章项目绪论 一、项目名称及建设单位 (一)项目名称 全氟离子交换膜项目 (二)项目建设单位 某某有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在某某工业园区。 (二)项目用地性质及用地规模 1、该项目计划在某某工业园区建设,用地性质为工业用地。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积110000.6 平方米(折合约165.0 亩),代征地面积990.0 平方米,净用地面积109010.6 平方米(折合约163.5 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照全氟离子交换膜行业生产规范和要求进行科学设计、合理布

局,符合全氟离子交换膜制造和经营的规划建设需要。 (三)项目用地控制指标 1、该项目实际用地面积109010.6 平方米,建筑物基底占地面积74781.3 平方米,计容建筑面积123073.0 平方米,其中:规划建设生产车间100071.8 平方米,仓储设施面积13735.3 平方米(其中:原辅材料库房8284.8 平方米,成品仓库5450.5 平方米),办公用房4796.4 平方米,职工宿舍2725.3 平方米,其他建筑面积(含部分公用工程和辅助工程)1744.2 平方米;绿化面积7194.7 平方米,场区道路及场地占地面积27034.6 平方米,土地综合利用面积109010.6 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3226.5 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目建设的理由 随着国务院常务会议审议通过《中国制造2025》,中国制造

全氟磺酸树脂Nafion_NR50溶液的制备

第18卷第10期2001年10月应用化学 CHIN ESE J O U RN A L O F AP PL IED CHEM IS T RY V o l.18N o.10O ct.2001 全氟磺酸树脂Nafion R ○NR50溶液的制备 王 海 王建武 徐柏庆*  邱显清 (清华大学化学系,一碳化学与化工国家重点实验室 北京100084) 摘 要 研究了全氟磺酸树脂N afio n R ○N R 50溶液的制备过程.通过考察不同的溶剂体系,得到了5种对N afio n R ○N R50具有良好溶解作用的溶剂体系,即40%~70%水+60%~30%乙醇、40%~70%水+60%~ 30%正丙醇、10%~70%水+90%~30%异丙醇、30%~70%水+60%~20%正丙醇+10%甲醇和10%~70%水+80%~20%异丙醇+10%甲醇.适宜的溶解温度为230~250℃,溶解时间为4h .在溶解的过程中,N R50催化醇发生异构化、醚化和脱水等反应.甲醇起到促进N R50溶胀进而加速其溶解的作用.关键词 全氟磺酸树脂,溶解,醇溶液 中图分类号:O 632.32 文献标识码:A 文章编号:1000-0518(2001)10-0798-04 2001-01-20收稿,2001-07-02修回 中国石油化工股份有限公司石油化工科学研究院资助项目 Nafion R ○N R 50(简称N R 50),凝胶型全氟磺酸树脂,由美国杜邦公司研究开发,具有以下结 构: [(CF 2 CF 2)n CF CF 2]x (O C F CF)m CF 3 O CF 2CF 2SO 3H 其中:m =1~3;n =6~7;x ≈1000 Nafion R ○N R 50具有高热稳定性(<280℃)、化学惰性和超强酸性(H 0=-12),近年来在许多领域都得到广泛应用,如电解池膜分离器、气体扩散膜、燃料电池质子交换膜、超强酸催化剂和催化剂载体等 [1~3] .但由于其通常呈致密无孔状态, 表面积很低(≤0.02m 2 /g ),使得大量埋没的酸性中心得不到有效利用,这些不足使得本已昂贵的它实际应用受到很大限制[4,5].目前,N R 50溶液的制备只有杜邦公司1篇专利报道[6],且其未能对诸多影响N R50溶解性能的因素(如溶剂组成、 温度、时间等)进行细致讨论,国内尚未见有关报道.本文考察了不同溶剂体系(单一组分溶剂、双组分溶剂和多组分溶剂)和溶解条件(溶解温度和溶解时间)对N R50溶解性能的影响. 1 实验部分 全氟磺酸树脂N R 50从Lanca ster 化学公司购得,平均粒径约0.9mm ,酸量为0.89mmol /g .试剂甲醇、乙醇、正丙醇、异丙醇和正丁醇由北京 化工厂购得,均为分析纯. 溶解过程在25m L 高压釜中进行,电加热套加热,磁力搅拌,在一定温度下保持数小时,然后停止加热和搅拌,并在室温下自然冷却;分别收集 上下层溶液,下层为所要溶液.N R50如未全溶,用表面皿将残渣及溶液全部收集,在110℃烘箱 中烘干,对未成膜部分进行称重(溶解的N R 50经烘干后成膜),以此计算N R 50的溶解量.准确移取1m L 下层液体于称量瓶中,在110℃烘箱中烘干、称重,以此计算溶液的浓度. 2 结果与讨论 2.1 溶剂的选择 高聚物的溶解是比较复杂的过程,选择合适 的溶剂体系一般遵循3个原则:极性相近原则、溶解度参数相近原则、溶剂化原则.N R50含有极性较强的—SO 3H 基团,不能通过简单计算溶解度参数来选择合适的溶剂体系.根据极性相近原则,选择极性溶剂将有利于其溶解.这里将重点考察水、甲醇、乙醇、正丙醇、异丙醇和正丁醇对它的溶解.2.1.1 单一组分溶剂 分别以10m L 水、甲醇、乙醇、正丙醇、异丙醇和正丁醇为溶剂考察其对0.1g N R50的溶解作用,溶解温度和时间分别为230℃和4h .实验表明:异丙醇作溶剂时,NR 50基本全溶,但溶液呈浑浊状态;甲醇作溶剂时,所得溶液量很少且几乎不含NR50,这是因为甲醇在N R50催化作用下生成大量二甲醚,打开高压

全氟离子交换膜

世界上现有3家主要公司生产全氟离子交换膜,即:美国杜邦公司、日本旭硝子公司和旭化成公司。它们的离子交换膜产品均为四氟纤维增强的全氟磺酸、全氟羧酸树脂复合膜,只是在膜结构设计上略有差异。 1.美国杜邦公司全氟离子交换膜。美国1966年开发出具有良好化学稳定性、用于燃料电池的全氟磺酸离子交换膜NAFION膜。1981年,杜邦公司与日本旭硝子公司交换全氟离子交换膜专利许可证,即美国杜邦公司用全氟磺酸离子交换技术换取了日本旭硝子公司的全氟羧酸离子交换膜技术,从而相得益彰,使杜邦公司的全氟离子交换膜真正进入氯碱工业大规模应用的时代。Nafion900系列全氟磺酸与全氟羧酸高性能复合膜具有高电流效率、较低的膜电阻、膜的耐久性良好等优点,适于较高浓度碱的生产。目前,已得到广泛应用,已推广到包括我国等30多个国家、150多个工厂。 杜邦公司全氟离子交换膜起始电流效率很高,有的高达97%,运转3~4年其电流效率仍可保持在95%以上,膜的机械强度高,但槽电压比旭硝子、旭化成膜略高(同一槽型比较)。因此,杜邦膜今后改进的重点是如何进一步降低膜电压,此外,在抗杂质污染膜的开发方面尚有大量工作要做。 2.旭硝子公司的全氟离子交换膜。旭硝子作为日本主要两家生产有机氟化物的公司之一,在已实现了各种氟化学品研究开发及生产的基础上,1974年开始深入地进行了生产氯碱用的全氟离子交换膜的开发工作。1975年,由羧酸型全氟聚合物制备的高性能离子交换膜开

发成功,同年制备该种离子膜的中试工厂投产。1978年开始了名为FIEMION离子膜电解槽的开发。1978年工业FIEMION氯碱电解装置也投产运行。1978~1979年,旭硝子公司先后试制生产了F1emion 一230、250、330、430膜。1981年9月与杜邦公司交换离子膜专利许可证,同年11月高性能F1emion DX膜实现工业生产,并用FIEMION DX膜装备了AZEC新型电解系统(窄极距电槽),这标志旭硝子公司全氟离子交换膜取得了极大的成功。1982年以来相继开发成功F1emion一700系列和800系列膜,又经改型制成Flemion723、725、733、753等多种牌号膜。 FLEMION DX753是具有羧酸基团层压的离子膜,电化学性能均匀,有亲水性的表面涂敷了耐腐蚀和非异电性的无机化合物,更适于窄极距电解槽(如AZEC),另外,还在本体聚合物中加入特殊纤维,使离子膜强度增强。 旭硝子公司当前最新产品有;F795、893、865、892以及FX50。F795为高低交换容量的全氟按酸复合膜,F一893为全氟竣酸与全氟磺酸复合膜,二者均用在AZECF2槽上,F865为大型电槽用膜;F892为全氟羧酸与全氟磺酸复合膜;FX-50为生产50%高浓度烧碱用膜。此外,磺酸/羧酸双层复合膜已多有问世。 旭硝子公司最终目标是提供一种能耗低、机械强度适用于任何一种电解槽及膜性能稳定、长寿命的全氟离子交换膜。 3.旭化成膜。旭化成公司对氯碱生产用离子膜的研究始于1966年,1975年建成了世界第一家离子膜烧碱工厂,规模为4万吨/年,

离子交换膜

离子交换膜的研究进展与工业应用 摘要:简要介绍了离子交换膜的发展背景及工业应用,主要介绍了均相离子交换膜,也是未来离子交换膜的主要研究发展方向 关键词:离子交换膜、发展背景、工业应用、均相离子交换膜 1 离子交换膜技术 1.1离子交换膜的基本概念 离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。因为一般在应用时主要是利用它的离子选择透过性,所以也称为离子选择透过性膜。[1]离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。根据膜体结构(或按制造工艺)的不同,离子交换膜分为异相膜、均相膜和半均相膜三种。无论是均相膜还是非均相膜,在空气中都会失水干燥而变脆或破裂,故必须保存在水中[2]。 1.2离子交换膜的原理[3] 和粒状离子交换树脂一样,离子交换膜中的功能团在水溶液中会发生离解,产生阳(或阴)离子进入周围的溶液,致使膜带有负(或正)电荷,为保持电性中和,膜就会吸引外部溶液中的阳(或阴)离子,通过膜的离解和吸引作用全过程,使得外部溶液中的阳(或阴)离子从膜的一侧选择透过到另一侧,而不会或很少使溶液中与膜带同性电荷的离子透过。如果使用阴离子交换膜,因为膜孔骨架上的正电基构成强烈的正电场,就使得只准阴离子透过,而阳离子不会透过。同时,阳极 2-)来说,区产生的H+不能进入阴极区。对于溶液中各种不同的反电离子(OH-;S0 4 由于它们在膜中的扩散系数各不相同(例如水合离子半径不同),以及膜中空隙筛过离子的能力不同,因此,采用离子交换膜能够进行分离,正是利用这种选择透过性。从以上膜的工作原理看,外部溶液与膜之间的离子传递,并不是真正的离子交换,而是选择渗析,这两者的工作原理差别很大。粒状离子交换树脂在使用上需要分为吸附一淋洗(解吸)一再生等步骤。而离子交换膜不需再生等步骤,可以连续作用,同时,两者在工业上的使用范围也有很大的不同,前者主要用于富集和分离相似元素,后者主要用于渗析、电渗析和作为电解过程的隔膜等。 1.3离子交换膜的发展背景 Juda[1]在1949年发明了离子交换膜,并于1950年成功地研制了第一张具有商业用途的离子交换膜,1956年首次成功地用于电渗析脱盐工艺上[4]。从此离子交换膜成为一个新的技术领域受到日本及欧美等国的充分重视。50余年来,在应用过程中对离子交换膜做了很多改进,从初期性能差的非均相发展到适合于工业生产的、性能较好的均相离子交换膜,从单一电渗析水处理用膜发展到扩散渗析用膜、离子选择透过性膜和抗污染用膜.应用方面除了通常的电渗析外,还拓展到电解、渗透蒸发、质子燃料电池及其电渗析为基础的过程集成[6]。 我国离子交换膜的研制始于20世纪60年代,当时研制的是非均相膜,主要用于苦

C-P-020-全氟磺酸离子膜树脂的挤出流延薄膜成型研究-苑会林

C-P-020 全氟磺酸离子膜树脂的挤出流延薄膜成型研究 苑会林1,王婧2 1 北京化工大学 新型高分子材料的制备与加工北京市重点实验室 北京 100029 2 山东东岳高分子材料有限公司淄博 256401 关键词:全氟磺酸离子膜 熔融挤出 流延 工艺 性能 全氟磺酸树脂具有热塑性,起始分解温度较高,可供熔融加工的温度范围相对较宽,并具有良好的热稳定性。本论文主要讨论了全氟磺酸离子膜的熔融挤出流延成型工艺。 下图展示了全氟磺酸薄膜的成型工艺 Fig.1 Flow chart of processing art of plasticized PFSIEM 全氟磺酸离子树脂的流变特性 首先,测定该树脂的MI值为3.3g/10min,这样的熔体流动速率满足了挤出流延薄膜成型的要求。图3为树脂的熔融流动曲线。由图可见,该树脂熔体流动呈假塑性,属切力变稀流体。图4为熔体的表观粘度与切变速率的关系曲线,也可看出熔体具有切力变稀的流动特性,并且,在切变速率达到约200s-1前,熔体流动有着明显的切敏性,在这一范围内熔体粘度随切变速率的增加显著下降。切变速率超过200s-1后,熔体粘度随切变速率的增加略有下降,降幅较小。

050100 150 200250 300 ηa / P a ·s γ/s -1 Fig.4 The dependence of viscosity on shear rate 挤出机螺杆转速与三辊机线速度的选择 Table 1 The effect of screw revolution and linear speed of three-roll glazer on the molding process of membranes 挤出机螺杆转速 三辊上光机线速度 薄膜厚度 (r/min ) (cm/min ) (μm ) 30 45 230±3 30 72 130±2 30 96 58±0.5 30 >100 薄膜断裂 35 45 280±3 35 72 160±2 35 96 86±1 35 >108 薄膜断裂 45 60 难以塑化成膜 表1列出了挤出机螺杆转速与牵引辊转速对膜成型加工过程的影响,实验是 在片材模具狭缝宽度不变的情况下进行的。结果表明,在挤出速度不变的情况下,当牵引速率较快时很容易发生薄膜的断裂,这是由于PFSR 是具有一定的结晶性的线型高聚物,大分子晶格排列整齐紧密,并且PFSR 中包含有极性较大的磺酸基团,分子间的相互作用力较大 。结果还表明,挤出速度太快时,薄膜也会因容易断裂而难以成型,这是挤出速度太快造成树脂在挤出机中停留时间过短,塑化不好的原因。

氯碱工业用全氟离子交换膜 通用技术条件(标准状态:现行)

I C S83.120 G31 中华人民共和国国家标准 G B/T30295 2013 氯碱工业用全氟离子交换膜 通用技术条件 P e r f l u o r i n a t e d i o n-e x c h a n g em e m b r a n e f o r c h l o r-a l k a l i i n d u s t r y G e n e r a l t e c h n i c a l s p e c i f i c a t i o n s 2013-12-31发布2014-08-01实施中华人民共和国国家质量监督检验检疫总局

前言 ‘氯碱工业用全氟离子交换膜“系列国家标准包括以下3个标准: G B/T30295 2013‘氯碱工业用全氟离子交换膜通用技术条件“; G B/T30296 2013‘氯碱工业用全氟离子交换膜测试方法“; G B/T30297 2013‘氯碱工业用全氟离子交换膜应用规范“三 本标准按照G B/T1.1 2009给出的规则起草三 本标准由全国分离膜标准化技术委员会(S A C/T C382)提出并归口三 本标准起草单位:山东东岳高分子材料有限公司二上海交通大学二蓝星(北京)化工机械有限公司二中盐常州化工股份有限公司二沧州大化集团黄骅氯碱有限责任公司二沈阳化工集团有限公司二山东东岳氟硅材料有限公司二青岛海晶化工集团有限公司二营口三征新科技化工有限公司二天津膜天膜工程技术有限公司三 本标准主要起草人:张永明二张恒二王学军二王婧二王伟红二杨振伟二孙国庆二黄海涛二张英民二张佳兴二陈越二陈庆芬二于海涛三

氯碱工业用全氟离子交换膜 通用技术条件 1范围 本标准规定了氯碱工业用全氟离子交换膜(以下简称氯碱离子膜)的术语和定义二分类和型号二技术要求二测试方法二检验规则以及标志二包装二运输和贮存三 本标准适用于以全氟磺酸树脂二全氟羧酸树脂二增强网布和亲水涂层为主要原料制得的氯碱离子膜的通用技术条件三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T191包装储运图示标志 G B/T7284框架木箱 G B/T9174一般货物运输包装通用技术条件 G B/T20103膜分离技术术语 G B/T30296氯碱工业用全氟离子交换膜测试方法 3术语和定义 G B/T20103界定的以及下列术语和定义适用于本文件三 3.1 氯碱工业c h l o r-a l k a l i i n d u s t r y 采用氯化钠溶液(氯化钾溶液)生产氢氧化钠(氢氧化钾)二氯气二氢气及相关产品的产业三 3.2 全氟磺酸树脂p e r f l u o r o s u l f o n i c a c i d r e s i n 以四氟乙烯和全氟磺酰基乙烯基醚为主要单体进行共聚而成的二元或多元全氟聚合物三 3.3 全氟羧酸树脂p e r f l u o r o c a r b o x y l i c a c i d r e s i n 以四氟乙烯和全氟羧酸酯乙烯基醚为主要单体进行共聚而成的二元或多元全氟聚合物三 3.4 全氟离子交换膜p e r f l u o r i n a t e d i o n-e x c h a n g em e m b r a n e 由全氟离子交换树脂制得的对离子具有选择性透过功能的膜三 3.5 亲水涂层h y d r o p h i l i c c o a t i n g 由无机化合物和含氟聚合物粘结剂组成的氯碱离子膜表面涂层三

燃料电池质子交换膜材料

燃料电池质子交换膜材料 宋润喆10300220029 一、引言 随着对化石燃料的不断开采,化石燃料愈来愈多地面临逐渐枯竭的局面。针对能源的短缺,我们可以采取的措施有,一方面寻找新的替代能源,如太阳能、原子能等等;另一方面则是提高现有的化石能源的使用效率,延缓化石燃料枯竭的速度。由于传统上通过热能为中介,使化学能转化为电能的效率相对较低,而直接将化学能转化为电能可以通过燃料电池来实现。因此,发展燃料电池技术,对节约当前的资源来说,刻不容缓。 燃料电池的基本原理即将燃烧反应分解为氧化与还原的半反应,将其连接构成电池。燃料电池在一些领域已经成功商业化推广。常见的燃料电池包括乙醇燃料电池、甲醇燃料电池、氢氧燃料电池等。如在北京奥运会和上海世博会期间,氢氧燃料电池都成为主要运输工具的能量来源。 然而,燃料电池还有这太多需要改进的地方。如燃料电池的催化问题和电解质膜问题。本文将主要针对燃料电池中的电解质膜展开讨论。 二、质子交换膜的分类 质子交换膜是燃料电池的重要组成部分。质子交换膜不仅仅起到将电池的阴阳极分离开的作用,更重要的是质子交换膜还承担着阴阳极之间离子传递的通道。质子交换膜可分为全氟磺酸膜、非全氟化质子交换膜、复合膜等等。 1. 全氟磺酸膜 全氟磺酸膜是目前应用在燃料电池上最广泛的一种质子交换膜。正如字面上所显示的,全氟磺酸膜的最主要化学组成是带有磺酸基团的醚支链和碳氟元素构成的主链组成的高分子聚合物。Dupont公司生产的全氟磺酸膜(如Nafion系列膜)由于性能稳定仍然是目前最常用的膜。[1] 除了化学稳定高以外,全氟磺酸膜还有机械强度高、质子传导率高等优势。然而全氟磺酸膜依然有着诸多局限性,如在较高温度或较低湿度条件下,由于膜的含水量变化,导致质子的传导性变低;在实际使用过程中甲醇、乙醇等燃料可能出现渗透现象,如Nafion系列膜甲醇的渗透比率高达总量的40wt%,[2] 不仅仅造成燃料的浪费,更影响阴极的进一步反应,严重影响着电池的性能。此外,价格昂贵、合成过程不宜进行也是影响全氟磺酸膜扩大应用范围的另一个重要因素。 2. 非全氟化质子交换膜 非全氟化质子交换膜,就是用取代的氟化物代替纯氟代高分子化合物。相比起全氟磺酸膜,非全氟化质子交换膜往往有着较低的成本和较高的工作效率,但是早期的非全氟化质子交换膜材料往往没有像全氟磺酸膜一样的化学稳定性和优异的机械性能。但是由于非全氟化质子交换膜种类较多,是更有发展前景的水合磺酸膜。解决全氟磺酸膜的种种缺陷,最重要途径即是对全氟磺酸膜进行改性处理和非全氟化质子交换膜的研发。如倪红军等用纳米SiO2对Nafion117进行掺杂改性制膜,得到的60°C硅溶胶处理的Nafion膜的高温保水性能得到提高,乙醇渗透率大大降低。[3] 最后,非全氟化质子交换膜的价格优势,也预示着全氟磺酸膜有朝一日必会走入历史。 3.无氟化质子交换膜 无氟化质子交换膜,即碳氢聚合物膜,由于排除了氟元素,该种质子交换膜拥有价格便宜、环境友好等优势,势必成为未来质子交换膜的重要发展方向。除去以上两点优势外,结构多样、保水性能好、机械强度高也是其重要的优势。其中芳香族聚合物拥有较好的稳定性和机械强度,是理想的质子交换膜材料,受到世界的关注。磺化芳香聚合物主要有磺化聚芳醚酮、磺化聚苯、磺化聚苯并咪唑、磺化聚芳醚砜、磺化聚酰亚胺、磺化聚硫醚砜等等。

氟素膜的性能

氟素离型膜的分类及特点介绍! 氟素离型膜又叫氟塑离型膜,是以PET为基材,在其表面涂上离型剂。合格的氟素离型膜表面平整光滑、涂布均匀,无颗粒、气泡等缺陷。该产品具有物理机械性能优良、厚度公差小、透明度高、热收缩率低、柔韧性好等优点。适用于高温有机硅压敏胶带复合模切冲型,使用后容易剥离。 氟素离型膜的应用原理跟离型膜一样,主要是起到一个防粘的作用,但是跟硅油离型膜又不一样,氟在氟素离型膜里面是以一种氟化物的形式存在的,大部分的胶带都是基材加胶水的形式存在。耐高温胶带的基材分很多种(PET,聚酰亚胺)亚克力胶水的温度没办法耐到硅胶胶水的温度、硅胶的胶水跟硅油离型膜同属矽利康的类别,时间长了会产生各方面的反应就是贴死。 氟素离型膜主要应用于:用于高温胶,硅胶双面胶贴合;用于金手指,绿胶,AB胶,3M硅胶贴合等;模切加工成其它任何形状,用于一些特殊用途。 氟素离型膜的特点:

一、氟素离型膜不易产生化学反应,良好的耐温耐湿性,防潮、防油,起到产品的隔离作用。 二、良好的耐高温性能、平滑度和强度。 三、氟素离型膜可以防止预浸料粘连,又可以保护预浸料不受污染。 四、离型纸能粘住预浸料,但又易于使两者分离,具有足够的致密性,防止水分通过它进入预浸料中。 根据氟素离型膜的不同应用,将产品分成如下三类: 一、湿涂 氟素离型膜离型面为基材均匀涂布硅胶,并连同硅胶进入烘箱高温固化成型,称之为湿涂。 二、热贴 氟素离型膜放置于贴合处,PET或PI涂布硅胶后仍有余温时与氟素离型膜 贴合,氟素离型膜不需进入烘箱经高温,但硅胶胶带带有余温时与氟素离型膜紧密贴合,称之为热帖。

三、冷贴 氟素离型膜贴合硅胶类产品,如3M硅胶双面胶9731、3M9119、 3M4377等,予以冲型加工,或者做成客户所需的成品,制成过程中均在室温下进行,不涉及温度,称之为冷贴。 氟素离型膜的常见因素及注意问题 1、离型膜的洁净度,洁净度是目前制约高质量的氟素离型膜,能否广泛用于HDI生产的重要因素;因此,耐用的氟素离型膜的生产商或供应商,在涂覆,卷绕和裁切离型膜时,必须在洁净室内操作。洁净室必须要达到10000级才能确保离型膜的表面洁净度,从而保证RCC压合后的板面品质。 2、注意区分单面离型膜的正反面,由于单面氟素离型膜只有一面离型,另一面为PET基材面,如果离型膜用错面,将会导致压合后下板时,膜粘在板面上,很难撕下来。区分正反面有以下方法:1、用胶纸粘氟素离型膜面,如果能够粘上的,就是PET基材面,不粘的面就是离型面;2、在膜面上做正,反面标志,区分正反面。

燃料电池用质子交换膜产业分析

燃料电池用质子交换膜产业分析 1背景 随着全世界工业化进程不断加快,人类对能源的需求越来越大,传统不可再生化石燃料因此日益枯竭,全球范围内的生态环境也加速恶化。人们正迫切需要找到可替代传统化石燃料的可再生清洁能源。经过多年研究,人们发现燃料电池(FuelCell)正是这样一种非常有前景的清洁可再生能源。它是一种不受卡诺循环限制、能量转化效率高(50%~70%)、环境友好地将储存在燃料中的化学能转化为电能的装置。 质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)正是燃料电池的一种,这类电池具有工作温度低、启动迅速、比功率高、环境友好、使用寿命长等独特的优点,在电动汽车动力能源、移动电话、微型电源及小型发电装置等方面显示出广阔的应用前景。一般而言,质子交换膜燃料电池由涂有催化剂的多孔电极和置于两者之间的质子交换膜(Proton Exchange Membrane,PEM)组成,结构如图1所示。 图1质子交换膜燃料电池结构示意图 显然,质子交换膜是PEMFC的核心组成之一,实际上这种燃料电池就是以质子交换膜的名字命名的。作为电池的电解质,PEM的作用包括:(1)防止电池阴阳极接触,避免两极燃料直接反应,确保能源利用率;(2)传输氢质子,高质子电导率的PEM是电池效率的保证;(3)阻隔电子,确保电子从外电路传输,达到使用电能的目的。因此,PEM实质上是一种致密的选择性透过膜。从所起的作用

和商用的实际需求来看,用于PEMFC的质子交换膜必须满足的条件包括:(1)高的质子传导性能,可以降低电池内阻,提高电流密度;(2)较好的稳定性,包括物理稳定和化学稳定,阻止聚合物链降解;(3)较低的尺寸变化率,防止膜吸水和脱水过程中的膨胀和收缩引起的局部应力增大造成膜与电极剥离;(4)较高的机械强度,可加工性好,满足大规模生产的要求;(5)较低的气体渗透率,防止氢气和氧气在电极表面发生反应,造成电极局部过热,影响电池的电流效率;(6)适当的性价比。 2研发技术 从上述内容可以看出,质子交换膜作为PEMFC的核心元件,其性能对PEMFC 的使用性能、寿命、成本等有决定性的影响。最早用于燃料电池的质子交换膜是美国通用电气公司(GE)为美国国家航空和宇航局(NASA)开发作为双子星(Gmini)宇宙飞船电源的燃料电池中使用的聚苯乙烯磺酸膜。但是这种质子交换膜稳定性较差,致使无法大规模应用。1962年美国杜邦公司(DuPont)开发出新型性能优良的全氟磺酸型质子交换膜,即Nafion系列产品,这种类型的质子交换膜也成为目前为止唯一成功商品化的实际用于PEMFC的质子交换膜。 图2全氟磺酸型质子交换膜化学结构 常见全氟磺酸型质子交换膜的化学结构见图2。其中x、y、n和p值的不同可以衍生出具有不同离子交换容量(指每100克干态聚合物中所含有的磺酸基的毫摩尔数)及侧链长度的聚合物。从化学结构图可以看出,这种全氟磺酸型聚合物的亲水磺酸基在侧链上,而主链是高度疏水的碳氟骨架,使得它具有明显的微相分离结构,接在柔性侧链上的磺酸基容易聚集在一起形成若干富离子区域,这些富离子区域彼此相连形成有利于质子传递的通道,从而形成较高的质子导电能力。而且由于主链是高度疏水的碳氟结构,使得膜具有优异的化学稳定性、水稳定性和较高的机械稳定性。 从结构也不难知道这种全氟磺酸型质子交换膜在PEMFC中参与工作的过程,当阴极发生反应时,-SO3H中离解出H+参与结合成水,H+离去后,-SO3-又因

高考化学中离子交换膜试题

高考中有关离子交换膜的电化学试题 一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: — 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: — 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是() A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应 D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 \2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是() A.放电时正极反应为:NiOOH+H2O+e-→Ni(OH)2+OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H2O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度越高 、 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为2Ag+Cl2=2AgCl。下列说法正确的是() A.正极反应为AgCl+e-=Ag+Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移mol e-时,交换膜左侧溶液中约减少mol离子 - 4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。已知:3I2+6OH- =IO3-+5I-+3H2O 下列说法不正确的是() A.右侧发生的电极反应式: 2H2O+2e- = H2↑+2OH- B.电解结束时,右侧溶液中含有IO3- , C.电解槽内发生反应的总化学方程式: KI+3H2O KIO3+3H2↑ D.如果用阳离子交换膜代替阴离子交换膜,电解槽内发生的总化学反应不变

离子交换膜与离子交换树脂的比较

离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交 换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。 离子交换膜与离子交换树脂 离子交换膜可制成均相膜和非均相膜两类。 而离子交换树脂就属于非均相膜 ①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。 ②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。 下面给一些离子交换树脂的具体资料: 离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。 水通过阳离子交换树脂时变为酸性,再通过阴离子交换树脂变为中性后回到水族箱中,因此使用离子交换树脂时,要强酸性与强碱性、弱酸性与弱碱性配对使用,离子交换树脂依其听附对象的不同又分为H型,OH型CI型和NA型,水族箱适用NA型,(钠型)其目的是软化水质。 阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。离子交换树脂也是一种化学滤材 载体不同 后者属于前者,后者是前者所包含的物质之一。 如果还要细分的话还有正离子交换膜,负离子交换膜等。 水处理设备网讯:离子交换膜和球状离子交换树脂在化学结构上是相同的,所以有人称它为膜状的离子交换树脂。早期是利用粉碎的离子交换树脂加入粘合剂制成薄膜,故称为离子交换(树脂)膜。因为在膜中存在粘合剂,活性基团将会分布不均,故又称为异相(非均质)离子交换膜。随着制膜技术不断发展,近

离子交换膜

离子交换树脂的应用 摘要:综述了离子交换树脂在日常生活及工业生产中的应用,从各个方面叙述了离子交换树脂的重要作用,从总体上评述了离子交换树脂的发展现状。还探讨了离子交换树脂合成工艺、应用技术等的发展方向,并对离子交换树脂的应用市场前景作出预测和展望。 关键词:离子交换树脂;应用;展望 前言 离子交换树脂是一类带有活性基团的网状结构高分子化合物。在它的分子结构中,一部分为树脂的基体骨架,另一部分为由固定离子和可交换离子组成的活性基团。离子交换树脂具有交换选择、吸附和催化等功能,在工业高纯水制备、医药卫生、食品行业等领域都得到了广泛的应用。近年来,离子交换树脂无论是从种类、结构还是性能上都出现了很大的变化,其生产和应用也都得到了很大的发展。 我国自 20 世纪 50 年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展国内常规离子交换树脂的制造和应用技术已经较为成熟,水平与国外相当。离子交换树脂主要用于电力、食品、医药、电子和冶金等行业,随着锅炉给水、饮用水和电子用水等对离子交换出水的纯度要求日益提高,促使常规的离子交换树脂生产和应用技术不断完善,同时催生了许多新型的生产工艺不断涌现,使得离子交换树脂产品升级和技术进步的步伐也日益加快。 1 离子交换树脂概述 离子交换树脂是具有反应性基团的轻度交联的体型聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂,是由交联结构的高分子骨架与以化学键结合在骨架上的固定离子基团和以离子键为固定基团以相反符号电荷结合的可交换离子构成的。离子交换树脂根据其基体的种类可分为苯乙烯系树脂和丙烯酸系树脂;根据树脂中化学活性基团的种类分为阳离子交换树脂和阴离子交换树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换,以及二者的转型树脂。 1.1 阳离子交换树脂 阳离子交换树脂分子结构中含有酸性基团,如-SO3H、-PO3H2、-COOH等,能与溶液中阳离子进行交换。根据交换基团酸性的强弱,又可进一步把阳离子交换树脂分成以下几类。 1.1.1强酸性阳离子交换树脂

微诊断 离子交换膜及其作用

微诊断离子交换膜及其作用 新洲一中张新平 [典型案例] [2016·浙江高考T11.]金属(M)–空气电池(如下图)具有原料易得、能量密度高等优点,有望成为新能源汽车和移动设备的电源。该类电池放电的总反应方程式为:4M+nO2+2nH2O=4M(OH) n 已知:电池的―理论比能量‖指单位质量的电极材料理论上能释放出的最大电能。下列说法不正确 ...的是() A.采用多孔电极的目的是提高电极与电解质溶液的接触面积,并有利于氧气扩散至电极表面 B.比较Mg、Al、Zn三种金属–空气电池,Al–空气电池的理论比能量最高 C.M–空气电池放电过程的正极反应式:4M n++nO2+2nH2O+4ne–=4M(OH)n D.在Mg–空气电池中,为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜 [诊断解析] 1.测试正确率为6 2.5%,主要错误集中在误判选项C正确而导致错选D。 2. 从选项C、D的选判过程中,究其本质的原因应该是趋向于对离子交换膜的认识出现偏差所致。 题图中的阴离子交换膜,只允许阴离子通过——此电池中只允许正极区产生的OH-通过阴离子交换膜移向负极区,而不允许负极生成的阳离子M n+移动进入正极区。因此,M–空气电池放电过程中,负极反应:M –ne-+ nOH- =M(OH)n;正极因为没有M n+,其反应式为:O2+2H2O+4e–=4OH-,故选项C不正确。 从―电池放电的总反应方程式为:4M+nO2+2nH2O=4M(OH)n‖不难看出,其实质是源于钢铁的吸氧腐蚀:M类比Fe、取n=2,即4Fe+2O2+4H2O=4Fe(OH)2,简化后得:2Fe+O2+2H2O=2Fe(OH)2,所不同的是,氢氧化亚铁最后都会被氧化为氢氧化铁,再失去部分水而形成铁锈。 选项D.在Mg–空气电池中,为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜。若采用中性电解质,则直接降低生产Mg(OH)2沉淀的氢氧根离子的浓度,能够达到防止负极区沉积Mg(OH)2的目的;若采用阳离子交换膜,则在正极区产生的氢氧根离子就被阻止通过,不能达到负极,也就防止了在负极区沉积Mg(OH)2。故选项D正确。 3. 其它选项略析如下: A.多孔电极如图多孔疏松状的活性炭一样,具有较大的表面积,因此,有利于提高电极与电解质溶液的接触面积,也有利于吸附氧气及氧气在电极表面的扩散,故选项A正

离子交换膜更换前后的效果对比

氯 碱 工 业Chlor - Alkali Industry 第55卷第3期 2019年3月Vol. 55 , No. 3Mar. , 2019 离子交换膜更换前后的效果对比 郭成军'*,周红燕2 * [作者简介]郭成军(1972-),男,高级工程师,现于新疆天业集团天伟化工有限公司从事氯碱与PVC 生产、研究及相 关技术工作。 [收稿日期]2018 -08 -07 (1.天伟化工有限公司,新疆石河子832000; 2.石河子天域新实化工有限公司,新疆石河子832000) [关键词]离子交换膜;工艺技改;烧碱 [摘 要]膜极距离子膜法制碱装置中,膜的破损直接影响产品产量。通过观察pH 值变化、阳极岀口溢流时 间、阳极出口溢流情况,可以检测膜是否破损。根据天伟化工有限公司的生产数据,看出:膜运行2年后,32%片碱 中氯酸盐含量达到0.001% ;运行3年将达到0.003%以上。换膜后,碱中含盐质量分数降至0.000 43%以下,电流 效率明显提高,吨碱耗降低,气体纯度明显升高,各种辅料消耗量减少,对企业节能降耗起到了良好的促进作用。 [中图分类号]TQ114.262 [文献标志码]B [文章编号]1008 -133X(2019)03 - 0014 - 03Effect comparison before and after replacement of ion-exchange membrane GUO Chengjun 1, ZHOU Hongyan 2 (1. Tianwei Chemical Co. , Ltd. , Shihezi 832000, China ; 2. Shihezi Tianyu Xinshi Chemical Co. , Ltd. , Shihezi 832000, China) Key words : ion-exchange membrane ; technological improvement ; caustic soda Abstract : In production of caustic soda by zero-gap ion-exchange membrane electrolyzers , the breakage of the membrane directly affects the output of the product. By observing the change in pH value , the overflow time and overflow situation at the anode outlet , the membrane can be detected whether it is damaged or not. According to the production data of Tianwei Chemical Co. , Ltd. , it can be seen that the chlorate content in 32% flake alkali reaches 0. 001% after 2-year operation and 0. 003% after 3?year operation. After membrane replacement , the salt content in alkali decreased to less than 0. 000 43% . Moreover , the current efficiency is obviously increased , the material consumption per ton of alkali is reduced , the gas purity is obviously increased , and the consumption of various auxiliary materials is reduced. Thus, energy saving and consumption reduction are promoted.随着离子膜法烧碱生产规模的扩大及国内发展 所需,离子膜烧碱技术日益成熟;而生产中离子膜烧 碱生产设备故障、系统生产的不稳定性、生产工艺参 数及指标水平的不确定性,使得目前的烧碱工艺仍 然存在一定的技术瓶颈。因此,天伟化工有限公司 (以下简称“天伟化工”)工程技术人员针对目前生 产现状,对离子膜烧碱生产工艺技术进行了改进及 优化,取得了一些突破性进展及可观的收益。14

相关文档