文档视界 最新最全的文档下载
当前位置:文档视界 › 数字图像处理实验报告--边缘检测

数字图像处理实验报告--边缘检测

数字图像处理实验报告--边缘检测
数字图像处理实验报告--边缘检测

数字图像处理实验报告

实验名称:边缘检测

姓名:

班级:

学号:09045433

专业:电子信息工程(2+2)

指导教师:陈华华

实验日期:2012年5月17日

边缘检测

一,原理

本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。首先,了解一些术语的定义:

边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。

边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。

边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。

轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。

边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。

边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。

边缘就是图像中包含的对象的边界所对应的位置。物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。

边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。由于边缘的灰度不连续性,可以使用求导数的方法检测到。最早的边缘检测方法都是基于像素的数值导数的运算。本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。

边缘检测有三个共性准则,

1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。

2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。

3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。二,对图像进行各种算子运算

本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace 算子和Canny算子运算。

Matlab代码:

clear all;

close all;

warning off all;

I=imread('cameraman.tif');

%%没有噪声时的检测结果

BW_sobel=edge(I,'sobel');

BW_prewitt=edge(I,'prewitt');

BW_roberts=edge(I,'roberts');

BW_laplace=edge(I,'log');

BW_canny=edge(I,'canny');

figure(1);

subplot(2,3,1),imshow(I),xlabel('原始图像');

subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');

subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');

subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');

subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');

subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');

%%加入高斯噪声(μ=0,σ^2=0.01)检测结果

I_g1=imnoise(I,'gaussian',0,0.01);

BW_sobel=edge(I_g1,'sobel');

BW_prewitt=edge(I_g1,'prewitt');

BW_roberts=edge(I_g1,'roberts');

BW_laplace=edge(I_g1,'log');

BW_canny=edge(I_g1,'canny');

figure(2);

subplot(2,3,1),imshow(I_g1),xlabel('加入高斯噪声(μ=0,σ^2=0.01)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');

subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');

subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');

subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');

subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');

%%加入高斯噪声(μ=0,σ^2=0.02)检测结果

I_g2=imnoise(I,'gaussian',0,0.02);

BW_sobel=edge(I_g2,'sobel');

BW_prewitt=edge(I_g2,'prewitt');

BW_roberts=edge(I_g2,'roberts');

BW_laplace=edge(I_g2,'log');

BW_canny=edge(I_g2,'canny');

figure(3);

subplot(2,3,1),imshow(I_g2),xlabel('加入高斯噪声(μ=0,σ^2=0.02)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');

subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');

subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');

subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');

subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');

实验结果:

原始图像sobel检测prewitt检测

roberts检测laplace检测canny检测

加入高斯噪声(μ=0,σ2=0.01)图像sobel检测prewitt检测

roberts检测laplace检测canny检测

加入高斯噪声(μ=0,σ2=0.02)图像sobel检测prewitt检测

roberts检测laplace检测canny检测

实验分析:

通过对上述几种算子的研究,我们可以发现,Prewit t算子和Sobel算子都是对图像进行差分和滤波运算,仅在平滑部分的权值选择上有些差异,但是图像产生了一定的模糊,而且有些边缘还检测不出来,所以检测精度比较低,该类算子比较适用于图像边缘灰度值比较明显的情况。

Robert s算子检测精度比较高,但容易丢失一部分边缘,使检测的结果不完整,同时图像没经过平滑处理,不能抑制噪声,所以该算子对具有陡峭的低噪声图像响应最好。

Laplace算子通过高斯函数对图像进行了平滑处理,对噪声的抑制作用比较明显,但处理的同时也可能将原有的边缘平滑,造成某些边缘无法检测到。此外,噪声对其影响也较大,检测到的图细节很丰富,同时就可能出现伪边缘。但是,如果要降低伪边缘的话,又可能使检测精度下降,丢失很多真边缘。因此,对于不同图像应选择不同参数。

Canny算子也采用高斯函数对图像进行平滑处理,也具有较强的去噪能力,但同样可能会丢失一些边缘信息,但是,从图中可以看出,Canny算子比Laplace算子的检测边缘的精度要高些。通过实验结果可以看出,该算子在上述几种边缘检测算子当中效果最好。

通过上述实验结果我们可以发现,在加入高斯噪声以后,canny算子的去噪能力减弱,对边缘检测的效果不太明显。相反,从图中可以发现sobel算子和prewitt算子对噪声的过滤

作用较为明显。基本上能够检测出较为完整的边缘信号。

自编代码:

clc;

close all

%图读取显示

c=imread('cameraman.tif');

subplot(1,3,1);

imshow(c)

[M,N]=size(c);

%得到一个M+2*N+2的矩阵,为模板卷积做准备

cc=zeros(M+2,N+2);%初始化矩阵

for i=1:M

for j=1:N

cc(i+1,j+1)=c(i,j);

end

end

cc(1,1)=c(1,1);%四个角的赋值

cc(1,M+2)=c(1,M);

cc(M+2,1)=c(M,1);

cc(M+2,N+2)=c(M,N);

for i=1:M%四边的赋值

cc(i+1,1)=c(i,1);

end

for i=1:N

cc(1,i+1)=c(1,i);

end

for i=1:N

cc(M+2,i+1)=c(M,i);

end

for i=1:M

cc(i+1,N+2)=c(i,N);

end

c1=zeros(M,N);%初始化一个新矩阵,用来存放水平模板卷积后的值

c2=zeros(M,N);%初始化一个新矩阵,用来存放垂直模板卷积后的值

c3=zeros(M,N);%初始化一个新矩阵,用来存放以2为范数(欧式距离)计算的值c4=zeros(M,N);%初始化一个新矩阵,用来存放以1为范数(城区距离)计算的值%差分模板

d1=[-1,0,1;-1,0,1;-1,0,1];%水平模板

d2=[1,1,1;0,0,0;-1,-1,-1];%垂直模板

%水平方向

for m=2:M+1

for n=2:N+1c1(m-1,n-1)=(d1(1,1)*cc(m-1,n-1)+d1(1,2)*cc(m-1,n)+d1(1,3)*cc(m-1,n+1)...

+d1(2,1)*cc(m,n-1)+d1(2,2)*cc(m,n)+d1(2,3)*cc(m,n+1)+...

d1(3,1)*cc(m+1,n-1)+d1(3,2)*cc(m+1,n)+d1(3,3)*cc(m+1,n+1))/9;

end

end

%垂直方向

for m=2:M+1

for n=2:N+1 c2(m-1,n-1)=(d2(1,1)*cc(m-1,n-1)+d2(1,2)*cc(m-1,n)+d2(1,3)*cc(m-1,n+1)+...

d2(2,1)*cc(m,n-1)+d2(2,2)*cc(m,n)+d2(2,3)*cc(m,n+1)+d2(3,1)*cc(m+1,n-1)+d2(3,2)*cc(m+1,n) +d2(3,3)*cc(m+1,n+1))/9;

end

end

%以2为范数(欧式距离)计算的值

for i=1:M

for j=1:N

c3(i,j)=abs(c1(i,j))+abs(c2(i,j));

end

end

%结果显示

subplot(1,3,2);

imshow(uint8(c3));%由于之前已经转化为双精度,所以要用uint8显示。

%以1为范数(城区距离)计算的值

for i=1:M

for j=1:N

c4(i,j)=((c1(i,j))^2+(c2(i,j))^2)^(1/2);

end

end

%结果显示

subplot(1,3,3);

imshow(uint8(c4));%由于之前已经转化为双精度,所以要用uint8显示。

实验结果:

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

数字图像处理和边缘检测

中文译文 数字图像处理和边缘检测 1.数字图像处理 数字图像处理方法的研究源于两个主要应用领域:为便于人们分析而对图像信息进行改进;为使机 器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数(,)f x y ,这里x 和y 是空间坐标,而在任何一对空间坐标(,)x y 上 的幅值f 称为该点图像的强度或灰度。当,x y 和幅值f 为有限的、离散的数值时,则图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人 类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有 一致的看法。有时用处理的输入和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输入采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢的多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。 从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可 以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。 低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。 根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或 物体的识别这一领域。这样,在研究中,我们界定数字图像处理包括输入和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。

数字图像处理实验报告--边缘检测

数字图像处理实验报告 实验名称:边缘检测 姓名: 班级: 学号:09045433 专业:电子信息工程(2+2) 指导教师:陈华华 实验日期:2012年5月17日

边缘检测 一,原理 本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。首先,了解一些术语的定义: 边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。 边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。 边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。 轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。 边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。 边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。 边缘就是图像中包含的对象的边界所对应的位置。物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。 边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。由于边缘的灰度不连续性,可以使用求导数的方法检测到。最早的边缘检测方法都是基于像素的数值导数的运算。本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。 边缘检测有三个共性准则, 1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。 2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。 3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。二,对图像进行各种算子运算 本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace 算子和Canny算子运算。 Matlab代码: clear all; close all; warning off all; I=imread('cameraman.tif'); %%没有噪声时的检测结果 BW_sobel=edge(I,'sobel'); BW_prewitt=edge(I,'prewitt');

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

文字识别开题报告

太原理工大学信息工程学院 本科毕业设计(论文)开题报告 毕业设计(论文)题目 基于边缘检测的文字图像识别 学生姓名导师姓名 专业信息 报告日期 班级07-1 指导教 师意见 签字年月日 专业(教 研室)主 任意见 年月日系主任 意见 年月日

1. 国内外研究现状及课题意义 文字图像信息是人类获取外界信息的主要来源,在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多的利用图像信息来识别和判断事物,解决实际问题。例如:由于空间技术的发展,人造卫星拍摄了大量地面和空间的照片,人们要分析照片,获得地球资源、全球气象和污染情况等;在医学上,医生可以通过X射线分析照像,观察到人体个部位的多次现象;在工厂,技术人员可以利用电视图像管理生产;生活中,交通管理部门也要利用文字图像识别技术确定违章车辆的牌照,对其进行监督管理,由此可见文字图像信息的重要性【1】。 获得文字图像信息非常重要,但更重要的是对文字图像进行处理,从中找到我们所需要的信息,因此在当今科学技术迅速发展的时代,对文字图像的处理技术提出了更高的要求,能够更加快速准确的获得有用信息。 1.1国内外研究现状 20世纪20年代文字图像处理首次得到应用。20世纪60年代中期,电子计算机的发展得到普遍应用,文字图像处理技术也不断完善,逐渐成为一个新兴的科学。从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理技术也向更高、更深的层次迈进。到了20世纪90年代,机器人技术已经成为工业的三大支柱之一,人们已经开始研究如何用计算机系统解释图像,实现类似人类视觉系统来理解外部世界,这被称为图像理解活计算机视觉。很多国家,特别是发达国家投入更多的人力、物力道这项研究,取得了不少重要的研究成果。 数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提取有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。目前,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。数字图像处理因易于实现非线性处理,处理程序和处理参数可变,故事一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。主要用于图像变换、测量、模式识别、模拟以及图像产生。广泛应用在遥感、宇宙观测、影像医学、通信、刑侦及多种工业领域【2】。1.2文字图像识别面临的问题 文字图像识别的发展经历了三个阶段:文字识别、图像处理和识别、物体识别。现在对于文字图像识别技术的研究,还面临几个问题,一是图像数据量大,一般来说,要取得较高的识别精度,原始图像应具有较高的分辨率,至少应大于64×64。二是图像污

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

数字图像处理实验报告

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

susan算子图像分割开题报告

西安邮电大学 毕业设计(论文)开题报告自动化学院专业级02班 课题名称:基于SUSAN算子的图像分割 学生姓名:学号: 指导教师: 报告日期: 2014年3月21日

1.本课题所涉及的问题及应用现状综述 图像分割就是指把图像分成各具特性的区域并提取感兴趣目标的技术和过程。它是图像处理、模式识别和人工智能等多个领域中的重要课题,也是计算机视觉技术中首要的、重要的关键步骤。图像分割的目的在于根据某些特征(如灰度级、频谱、纹理等)将一幅图像分成若干有意义的区域,使得这些特征在某一区域内表现一致或相似,而在不同区域间表现出明显的不同。图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域,如:工业自动化、在线产品检验、生产过程控制、文档图像处理、图像编码、遥感和生物医学图像分析、保安监视,以及军事、体育、农业工程等方面。在各种图像应用中,只需对图像目标行提取、测量等都离不开图像分割。虽然人们对图像分割已经进行了大量的研究,但还没一种适合于所有图像的通用的分割算法。所以,图像分割一直以来都是图像技术中的研究热点。 图像边缘是是图像的最基本的特征之一, 边缘是由灰度的不连续性所反映的,有方向和幅度两个特性。边缘中包含着有价值的目标边界信息, 这些信息可以用作图像分析、目标识别。边缘检测基本思想是先检测图像中的边缘点, 在按照某种策略将边缘点连接成轮廓,构成分割域。SUSAN算子是一种基于灰度的特征点获取方法, 适用于图像中边缘和角点的检测, 可以去除图像中的噪声, 它具有简单、有效、抗噪声能力强、计算速度快的特点。SUSAN 算子的模板与常规卷积算法的正方形模板不同, 它采用一种近似圆形的模板, 用圆形模板在图像上移动, 模板内部每个图像像素点的灰度值都和模板中心像素的灰度值作比较, 若模板内某个像素的灰度与模板中心像素(核)灰度的差值小于一定值, 则认为该点与核具有相同(或相近)的灰度。 本课题对基于SUSAN算子的图像分割进行研究,并进行仿真验证。

数字图像处理实验报告

数字图像处理实验 报告 学生姓名:学号: 专业年级: 09级电子信息工程二班

实验一常用MATLAB图像处理命令 一、实验内容 1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 实验结果如右图: 代码如下: Subplot (1,3,1) i=imread('E:\数字图像处理\2.jpg') imshow(i) title('RGB') Subplot (1,3,2) j=rgb2gray(i) imshow(j) title('灰度') Subplot (1,3,3) k=im2bw(j,0.5) imshow(k) title('二值') 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (3,2,1) i=imread('E:\数字图像处理 \16.jpg') x=imresize(i,[250,320]) imshow(x) title('原图x') Subplot (3,2,2) j=imread(''E:\数字图像处理 \17.jpg') y=imresize(j,[250,320]) imshow(y) title('原图y') Subplot (3,2,3) z=imadd(x,y) imshow(z)

title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果') Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果') Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果') 3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (2,2,1) i=imread('E:\数字图像处理 \23.jpg') imshow(i) title('原图') Subplot (2,2,2) J = imadjust(i,[],[],3); imshow(J) title('变暗') Subplot (2,2,3) J = imadjust(i,[],[],0.4) imshow(J) title('变亮') Subplot (2,2,4) J=255-i Imshow(J) title('变负') 二、实验总结 分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。 解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像X、Y的大小类型相同,但是图像减运算imsubtract()有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。 乘运算实际上是对两幅原始图像X、Y对应的像素点进行点乘(X.*Y),将结果输出到矩阵Z中,若乘以一个常数,将改变图像的亮度:若常数值大于1,则乘运算后的图像将会变亮;叵常数值小于是,则图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。 除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进行点(X./Y), imdivide()同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。 加法运算的一个重要应用是对同一场景的多幅图像求平均值 减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的分离。

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.docsj.com/doc/0a10938378.html,

相关文档
相关文档 最新文档