文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术综述
碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术

1.概述

1991年,Iijima在石墨电弧放电产物中发现了碳纳米管(CNTs),从此碳纳米管成为碳家族的一个新成员。CNTs是纳米科学的一颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨大的应用前景吸引了大批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。尤其是单壁碳纳米管的发现和研究被科学界权威杂志《Science》评为1997年世界十大科技成果之一。

2.碳纳米管的结构和性能

2.1碳纳米管的结构

碳纳米管是由多个碳原子六方点阵的同轴圆柱面套构而成的空心小管,相临的同轴圆柱面之间的距离与石墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原子组成,每个碳与周围的三个碳原子相邻,碳/碳间通过sp2杂化键结合。管的直径为零点几纳米到几十纳米,管的长度为微米级。管的直径和长度随不同的制备方法及条件的变化而不同。管的端部由五边形排列的碳原子封顶。碳纳米管绝大多数两端是封闭的,并且这种封闭与碳纳米管圆管平滑连接,较小直径的碳纳米管的封闭形式一般呈半圆状,这对应于半个富勒烯(Fullerence)笼。

依据组成碳纳米管的石墨片层数的不同,碳纳米管可分为单壁碳纳米管即含一层石墨片的碳纳米管以及由一层以上石墨片组成的多壁碳纳米管。碳纳米管结构示意图如图1所示。

图1 碳纳米管结构示意图(a)四层碳纳米管结构(b)单层碳纳米管结构

2.2碳纳米管的性能

碳纳米管具有独特的电子结构和物理化学性质,可以在许多方面得到广泛的应用。碳纳米管的直径-长度比很大,一般情况下,长度都是直径的几千倍,远远大于普通的纤维材料;它的强度比钢高约100倍,而重量仅仅为钢材料的六分之一,有可能成为一种新型的高强度碳纤维材料。这种“超级碳纤维”材料既具有碳素材料的固有本性,又具有金属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及高分子材料的轻质、易于加工性,因而具有极大的应用潜力。

由于碳纳米管具有纳米尺度的尖端曲率半径,在相对比较低的电压下就能够发射大量的电子,因此,碳纳米管材料能够呈现出良好的场致发射特性,非常适

合于用作各种场致发射器件的阴极,其中包括了场致发射平板显示器以及微波功率放大器和纳米肖特基二极管在内的众多电子器件。碳纳米管这些特性引起了诸多学者的关注并开展了广泛的研究,使其在许多方面显示出重要的应用前景,尤其是在场致发射显示器方面更为明显,并在最近的一段时间内取得了极大的进展。场致发射显示器是一种新兴的器件,它将阴极射线管(CRT)的高清晰度图像质量,液晶显示器的薄度以及电致荧光显示器件的牢固性等优点集于一身,从而成为最有希望的大屏幕高清晰度显示器件。场致发射平板显示器,因其结构的薄型化,并具有高清晰度、低能耗、高稳定性和大平面显示的特点,一直是纳米电子学领域研究的热点。

3.碳纳米管的制备

3.1.传统制备技术

高纯度和高产率碳纳米管的制备是碳纳米管研究的一个重点,目前大量的碳纳米管的传统制备方法主要采用电弧放电法、化学气相沉积法(又称催化裂解法)及激光蒸发法来制备。

3.1.1 电弧放电法

电弧放电法是最早用于制备碳纳米管的方法,也是最主要的方法之一。其原理为石墨电极在电弧产生的高温下蒸发,在阴极沉积出纳米管。传统的电弧法是在真空的反应容器中充以一定量的惰性气体,在放电过程中,阳极石墨棒不断消耗,同时在阴极石墨电极上沉积出含有碳纳米管的结疤。制备装置示意图如图2所示。电弧放电的设备主要由电源、石墨电极、真空设备和冷却系统。阴极采用厚度为10mm、直径为30mm的高纯高致密的石墨片,阳极采用直径为6mm的石墨棒。为了有效地合成CNTs,需要在阴极上掺入催化剂,有时还须配有激光蒸发。在电弧放电过程中反应室内温度可达到3000℃一3700℃,生成的CNTs

高度石墨化,接近或达到理论预想的性能。

图2 电弧放电法制备碳纳米管装置示意图

电弧法具有简单快速的特点,而且制得的碳纳米管管直,结晶度高。但该法所产生的碳纳米管缺陷较多,且碳纳米管烧结成束,束中还存在很多非晶碳杂质。究其原因是电弧温度高达3000℃一3700℃,形成的碳纳米管被烧结于一体,造成较多的缺陷。但在化学气相沉积法发现前电弧放电法仍是合成碳纳米管的主要方法。

3.2.2 化学气相沉积法

其基本原理为含有碳源的气体(或蒸气)流经催化剂表面时分解,在有催化剂一侧生成碳纳米管。典型的化学气相沉积装置如图3所示。在CNTs的催化合成过程中,选择合适的催化剂十分关键。研究表明:载体的选择、催化剂的制备温度和反应气体种类及流量对CNTs的生长有较大影响,常用的催化剂有过渡族金属元素铁、钴、镍及其化合物等。

图3 化学气相沉积法制备碳纳米管的装置示意图

用CVD方法制备CNTs,催化剂载体的制备对于所获得的CNTs的结构形态是非常重要的。载体的重要性在于使金属颗粒能更好地分散,减小金属颗粒的粒度,增大其活性;同时载体中较小的孔隙加大了碳蒸气的饱和蒸气压,促进了碳蒸气的凝固,有利于达到CNTs生长所需的碳浓度,减慢CNTs的封口。研究表明,表面积大、孔隙率高、超低密度材料的基体有利于获得高质量的CNTs。

化学气相沉积法具有成本低、产量大、试验条件易于控制等优点,适于工业大批量生产,而且通过控制催化剂的模式,制备出了定向阵列的CNTs,引起了人们极大的研究热情。但该制备方法的缺点是催化剂粒子在高温下有聚集的趋势,CNTs存在较多的结晶缺陷,管径不均匀,容易发生弯曲变形,石墨化程度较差。这会影响到CNTs的力学性能和物理性能,因此必须采取一些措施:如采用表面活化剂,调整催化剂及合成条件。对制备的CNTs采取一定的后处理等。

3.2.3 激光蒸发法

激光蒸发法是一种简单有效的制备CNTs的新方法。图4为用激光蒸发法制备单层CNTs的基本原理示意图。其基本原理为用高能量密度激光照射置于真空腔体中的靶体表面,将碳原子或原子集团激发出靶的表面,在载体气体中这些原子或原子集团相互碰撞而形成CNTs。该方法中:CNTs的生长主要受到激光强度,生长腔的压强以及气体流速等因素的影响。

图4 激光蒸发法制备碳纳米管原理图

激光蒸发法虽然具有一定的普适性,能够制得高产率的SWNTs,但该方法限于设备原因,制备的规模不能很大。另外高温下生成的杂质多,对以后的分离提纯不利,所以近年来研究不多。

3.2其他制备技术

3.2.1太阳能法

太阳能法的原理与激光蒸发法相似,它是将阳光聚焦于含有石墨粉和金属催化剂粉末的靶材上,最高温度可以达到3000K,蒸发的碳蒸气在低温区沉积,生成CNTs。此方法虽然经济易行。但由于太阳能反应炉功率低,生产率低,所以没有大规模应用。

3.2.2火焰法

通过燃烧低压碳氢气体可得到宏观量的C60/C70等富勒碳,同时也发现了CNTs及其他纳米结构。该方法基本以本身释放出来的热量加热,减少了能源的消耗,但对火焰法中纳米结构的生长机理目前还设有很明确的解释。

3.2.3增强等离子体热流体化学蒸气分解沉积法

通过等频磁控管喷镀法将金属镍涂敷在玻璃上,厚度为40nm,以乙炔气体作为碳源,同时以氨气作为催化剂,在939K下,通过等离子体热流体化学蒸气分解沉积法(又称PE-HF-CVD法),制备出了在镀有镍层的玻璃上整齐排列的由多根CNTs组成的管束,其直径和长度分别为20~40nm和0.1-50nm。通过考查镍膜在CNTs形成过程中所起的催化作用以及镍膜的厚度与管束直径的关系发现,镍膜越厚,管束的直径越大。

3.2.4等离子体法

用等离子体喷射分解沉积法,将苯蒸气通过等离子体分解后产生的碳原子簇沉积于水冷铜板上,得到长度达200微米的CNTs。在该方法中多壁CNTs的生长按外延生长模式进行,其生长速率为0.1nm/s,但此方法设备复杂,造价昂贵。

3.2.5水热法

水热法是Qian等研究出的一种新的制备CNTs的方法,它是将一定量的原料置于高压中,在573K反应得到多壁管及少量的单壁管。该方法的主要特点是大大降低了制备CNTs的反应温度。

3.2.6超临界流体技术

Motiei等报道了采用超临界CO2与金属镁反应制备CNTs,将一定量的超临界CO2和金属镁置于封闭的反应器中,在1273K下加热3h,得到的产物主要有CNTs、富勒烯及氧化镁。而超临CO2化学反应法则打破了CNTs的生长需用过渡金属作催化剂这一普遍观点。

3.2.7固相复分解反应制备法

固相复分解反应制备法是以氯化钴作催化剂,卤代烷和乙炔锂之间发生固相复分解反应来制备CNTs。该方法优点是设备简单、源丰富、能耗低、产品分离提纯容易。

除上述简单介绍的几种新型制备方法外。人们还尝试了许多其他的方法,如水中电弧法、气相反应法、电解法、原位催化法、球磨法、微孔模板法和本体聚合物合成法等。

4.碳纳米管的应用

碳纳米管的优异机械性能使其可作为金属表面上的复合层,从而获得超强的耐磨性和自润滑性,其耐磨性比轴承钢高100倍,摩擦系数为0.06-0.1,且还发现该复合镀层还具有高的热稳定性和耐腐蚀性等性能。用碳纳米管装饰的针尖观察到了原子缝底的情况,将其用于生物分子的研究,解决了许多STM针尖无法

解决的问题,提高了分辨率。利用碳纳米管的高耐腐性,还可制造刀具和模具等,这不仅提高了产品的耐磨性,还提高了产品期限。在化学工业方面,碳纳米管具有更加宽广的应用空间。由于它具有良好的嵌锂稳定性和较好的嵌锂容量,作为锂离子电池的电极材料,能够使电池寿命长,充放电性能好。

CNTs具备耐酸碱、耐高温的能力,而且可以生物化,成为可溶性物质。由于其具有较好机械强度和优异电性,因此可用于制备复合材料、传感材料和人工肌肉。

CNT还可用作场效应三极管,场发射电子源及分子开关等,碳纳米管具有较大的比表面积,是理想的催氢材料、催化载体和吸波材料。

5.结语

以上所描述的几种碳纳米管的制备方法,很难对它们的结果做一直接比较。用电弧放电法可同时制备单壁和多壁碳纳米管,但管壁经常有非晶碳包覆,而且有金属粒子存在。激光蒸发法碳纳米管的产率较高,较纯净,很少发现有非晶碳包裹层。化学气相沉积法简单,容易重复,极有可能提高碳纳米管的产率,但制备出的碳纳米管直径分布较大。总而言之,所有上述方法都需改进,若能探索出一种成本低、产量高、纯度好、结构均匀、生长可控且石墨化程度高的制备方法,对其研究和应用将具有十分重要意义。

参考文献

[1]卢锦花,阎鑫.碳纳米管制备技术的最新进展[J].

[2]张璐.碳纳米管的制备技术[J].

[3]安会芬,王现荣.碳纳米管制备技术进展[J].

[4]蒋美丽.碳纳米管的制备[J].

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532 班级:高材 1313

潜在的碳纳米管场效应晶体管的模拟电路 介绍 在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪 里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。 这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFET) 已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[, 因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用 于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。 CNFETS础知识 场效应管的结构和MOSFE样的CNFETs 在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到 栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。 另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFE样的CNFE■之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳

碳纳米管的结构_制备及修饰

科 ● 自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。纳米中空结构使得它有可能作为一种纳米反应器[5]。作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。 1 碳纳米管的性质 1.1 碳纳米管的结构 碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。1.2碳纳米管的制备 电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。电弧法多用来制备多璧碳纳米管(MWNTs )但制备的碳纳米管缺陷多,且与其他的副产物如无定形碳、纳米微粒等杂质烧结于一体,对以后的分离和提纯会有不利的影响。 催化裂解法(CVD 法)是目前应用最广泛的方法之一,该方法所用的关键设备就是可加热反应腔。反应腔可以分为立式固定床和卧式磁舟两种。其基本原理是:在中等温度下(800-1200K 左右),含碳化合物如烃、金属有机化合物、CO 等在金属催化剂的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解、扩散进入金属体相,最后析出生长成为碳纳米管。可以认为实现可控制技术的一个可能的途径是通过控制催化剂颗粒的大小和分布间接控制碳管的生长,因此有关CVD 技术的催化剂问题受到广泛关注。可以用于合成碳管的催化剂一般为过渡金属元素:Fe 、Co 、Ni 、Cr 、Mo 、Mg 和Si 等。同电弧法相比,催化裂解法制得的CNTs 缺陷较多,但是此法制得的碳纳米管产量大且易提纯,还可通过催化剂颗粒的大小控制碳纳米管的粗细。 激光蒸发法是制备碳纳米管的重要方法之一。它是利用激光对石墨进行蒸发并利用专门设计的收集器来收集合成的碳管。其基本原理是:在惰性气体流中用激光蒸发含有金属催化剂的石墨靶表面,在石墨上生长碳纳米管,随后收集于铜水冷器。激光束的宽度为6至7个毫米,经过计算机的精确引导,激光束持续而定量地蒸发含有金属催化 剂的石墨靶,再由流动的Ar 气将碳物质送到蒸发炉外的水冷铜收集器处,在那里就能找到碳管,该方法首次得到相对较大数量的单壁碳纳米管。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低、易缠结。 1.3碳纳米管的修饰 碳纳米管的修饰共分为两类,分别为共价修饰和有机化学修饰。其中碳纳米管的共价修饰共有三种途径:自由基加成法、电化学氧化法、化学试剂氧化法这三种。 自由基加成法是一种碳纳米管共价修饰的方法,CNTs 管壁上存在很大的自由基加成的可能性。在碳纳米管璧原位上的重氮化可以是碳纳米管有效地溶解在水中,增大碳纳米管的溶解度。Sinnott [15]采用经典分子动力学模拟方法构建了碳自由基与碳纳米管的加成模型,通过模型的建立发现带羧基的烷基自由基可以有效地加成到碳纳米管管壁上,得到功能化的碳纳米管。 通过电化学氧化法可以制得大量的碳纳米管修饰电极,将CNTs 固定于电极材料上,加压条件下用NaOH 溶液处理。万谦等[16]碳纳米管经过纯化、浓酸回流处理后与DMF 分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。 化学试剂氧化法是一种较为普遍的方法,以浓硝酸或者硝酸和硫酸的混酸作为强氧化剂,经过处理后使得碳纳米管表面具有大量的羧基和羟基基团,这种方法简单易行,很多文献对碳纳米管修饰都是采用此方法,但是表面羧基化后的CNTs 其表面羧基之间存在氢键作用,碳纳米管分散性和溶解性还是仍然较差,还需要进一步对CNTs 表面的COOH 进行反应,破坏羧基之间的氢键作用。 CNTs 的化学修饰共分为三类,包括酸碱中和反应、酰化反应、胺化反应,其中酸碱中和反应是认为羧基化后的CNTs 可以与带碱性基团的聚合物发生类似于酸碱中和反应的反应,在上个世纪90年代,Chen 等以羧基化后的碳纳米管与带碱性基团的聚合物十八胺发生中和反应,第一次得到了可溶性CNTs 为SWNTs 在各种生物及超分子领域的应用提供了依据。Banerjee 等用Wilkinson 催化剂[RhCl(PPh 3)3]与羧基化SWNTs 反应,发现修饰后的SWNTs 溶解度显著增大在二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)等有机溶剂中,从而证明金属离子可通过离子作用与羧基化CNTs 反应。 酰化反应如酰胺化反应和酰氯化反应等,酰氯化反应是碳纳米管在加热条件下在硝酸中回流后,以亚硫酰二氯(SOCl 2)作酰化剂,得到含有酰基氯的碳纳米管。由于含有酰基氯的碳纳米管具有更高的活性,可以与苯胺发生酰胺化反应进一步得到含有酰基苯胺的碳纳米管。 2结论 多壁碳纳米管是一类新奇碳素纳米材料。典型的CNTs 具有纳米级管状结构。鉴于这类新奇管状纳米碳材料具有独特的结构和物化性质,作为一种新型碳素催化剂载体或促进剂,较之一些常规载体材料更具特色,近年来引起国际催化学界的日益注意,所涉及用CNTs 作为新型催化剂载体或促进剂的研究领域包括:选择加氢、氢甲酞化、选择脱氢、氨合成、FT 合成、甲醇/低碳醇合成等。【参考文献】 [1]Iijima S.Helical microtubules of graphitic carbon .Nature ,1991,354:56-58.[2]Kogak,Gao G T ,Tanaka H ,et al.Formation of ordered ice nanotubes inside carbon nanotubes[J].Nature ,2001,412:802-805.(下转第38页) 碳纳米管的结构、制备及修饰 赵健勇(山东师范大学化学化工与材料科学学院 山东济南250014) 【摘要】本文详细介绍了碳纳米管的特殊结构,各种不同的制备方法,以及在共价修饰和化学修饰的各种方法,对碳纳米管应用作出展 望。 【关键词】碳纳米管;结构;制备;修饰

2018年石墨烯导电剂和碳纳米管导电剂行业分析报告

2018年石墨烯导电剂和碳纳米管导电剂行业分析报告 2018年10月

目录 一、行业监管体制、法律法规及产业政策 (4) 1、行业主管部门和监管体系 (4) 2、行业主要法律法规及政策 (5) 二、行业发展情况 (6) 1、石墨烯 (6) (1)石墨烯创新成果显著 (6) (2)石墨烯下游应用领域广泛 (8) (3)石墨烯在锂电池领域前景良好 (8) (4)国家关于石墨烯行业的规划 (9) 2、碳纳米管 (11) (1)动力电池市场快速发展带动碳纳米管导电剂需求上升 (11) (2)高能力密度发展趋势加速对常规导电剂的替代 (12) 三、行业主要企业情况 (12) 1、常州第六元素材料科技股份有限公司 (12) 2、鸿纳(东莞)新材料科技有限公司 (13) 3、厦门凯纳石墨烯技术股份有限公司 (13) 四、影响行业发展的因素 (13) 1、有利因素 (13) (1)国家产业政策支持 (13) (2)产业联盟推动行业整体发展 (14) (3)技术进步 (15) (4)原材料供应稳定 (15) 2、不利因素 (15)

(1)产业化应用尚不成熟 (15) (2)石墨烯行业标准尚需进一步规范 (16) 五、行业进入壁垒 (16) 1、技术和经验壁垒 (16) 2、客户及市场开发壁垒 (16) 3、资金壁垒 (17) 六、行业技术特点及技术水平 (17) 1、行业经营模式 (17) 2、行业周期性 (18) 3、行业区域性 (18) 4、行业季节性 (18) 七、行业上下游之间的关联性 (19) 1、行业上游 (19) 2、行业下游 (19)

一、行业监管体制、法律法规及产业政策 1、行业主管部门和监管体系 石墨烯行业的行政监管主体以工信部、国家发改委、科技部为主。工信部拟订并组织实施有关于石墨烯行业的规划、产业政策和标准,同时监测石墨烯行业的日常运行。国家发改委研究分析国内外经济形势和发展情况并制定相关战略外,负责推进产业结构战略性调整和升级。科技部主要工作是研究提出石墨烯行业改革的方针、政策和措施,提高石墨烯行业的科技创新能力。 石墨烯行业自律组织包括中国非金属矿工业协会石墨专业委员会、中国炭素行业协会和中国石墨烯产业技术创新战略联盟。 中国非金属矿工业协会石墨专业委员会:成立于1987年,业务范围包括行业管理、信息交流、业务培训、国际合作、咨询服务;分析研究石墨市场发展形势,解决行业存在的问题,进行信息交流,招商引资,向政府反映企业的呼声等,并及时为企业提供信息和服务,促进企业技术进步和结构调整,增强竞争力,提高管理水平。 中国炭素行业协会:由炭素生产、经营企业和科研、设计院所自愿组成的全国性、行业性的社会团体法人。主要任务包括:开展行业调查研究,向政府部门提出行业政策、立法等方面的建议;研究、制定行业发展规划;进行行业统计,发布行业信息;参与制定、修改行业标准;组织行业产品展览及技术交流与合作;开展国际交流与合作;举办行业情况报告会、研讨会等。

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术 1.概述 1991年,Iijima在石墨电弧放电产物中发现了碳纳米管(CNTs),从此碳纳米管成为碳家族的一个新成员。CNTs是纳米科学的一颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨大的应用前景吸引了大批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。尤其是单壁碳纳米管的发现和研究被科学界权威杂志《Science》评为1997年世界十大科技成果之一。 2.碳纳米管的结构和性能 2.1碳纳米管的结构 碳纳米管是由多个碳原子六方点阵的同轴圆柱面套构而成的空心小管,相临的同轴圆柱面之间的距离与石墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原子组成,每个碳与周围的三个碳原子相邻,碳/碳间通过sp2杂化键结合。管的直径为零点几纳米到几十纳米,管的长度为微米级。管的直径和长度随不同的制备方法及条件的变化而不同。管的端部由五边形排列的碳原子封顶。碳纳米管绝大多数两端是封闭的,并且这种封闭与碳纳米管圆管平滑连接,较小直径的碳纳米管的封闭形式一般呈半圆状,这对应于半个富勒烯(Fullerence)笼。 依据组成碳纳米管的石墨片层数的不同,碳纳米管可分为单壁碳纳米管即含一层石墨片的碳纳米管以及由一层以上石墨片组成的多壁碳纳米管。碳纳米管结构示意图如图1所示。 图1 碳纳米管结构示意图(a)四层碳纳米管结构(b)单层碳纳米管结构 2.2碳纳米管的性能 碳纳米管具有独特的电子结构和物理化学性质,可以在许多方面得到广泛的应用。碳纳米管的直径-长度比很大,一般情况下,长度都是直径的几千倍,远远大于普通的纤维材料;它的强度比钢高约100倍,而重量仅仅为钢材料的六分之一,有可能成为一种新型的高强度碳纤维材料。这种“超级碳纤维”材料既具有碳素材料的固有本性,又具有金属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及高分子材料的轻质、易于加工性,因而具有极大的应用潜力。 由于碳纳米管具有纳米尺度的尖端曲率半径,在相对比较低的电压下就能够发射大量的电子,因此,碳纳米管材料能够呈现出良好的场致发射特性,非常适

壳聚糖对碳纳米管的表面修饰

许爱民等:堇青石陶瓷表面Ca0.6Mg0.4Zr4(PO4)6涂层的显微结构及耐碱性· 163 ·第36卷第2期 壳聚糖对碳纳米管的表面修饰 刘爱红1,2,孙康宁1,2,王菲1,2,俞中平1,2 (1. 山东大学,液态结构及其遗传性教育部重点实验室;2. 山东省工程陶瓷重点实验室,济南 250061) 摘要:采用表面沉积交联法实现了壳聚糖对碳纳米管的表面修饰,并对所得的复合材料进行了相应的检测。结果表明:得到的复合材料中碳纳米管表面完全被壳聚糖所覆盖,管径变粗,并且由于壳聚糖覆盖层的静电排斥作用,使壳聚糖修饰后碳纳米管的团聚减少。 关键词:碳纳米管;壳聚糖;表面修饰 中图分类号:R318.08 文献标识码:A 文章编号:0454–5648(2008)02–0163–03 SURFACE MODIFICATION OF CARBON NANOTUBES WITH CHITOSAN LIU Aihong1,2,SUN Kangning1,2,WANG Fei1,2,YU Zhongping1,2 (1. Key Laboratory for Liquid Structure and Heredity of Materials of Education Ministry; 2. Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061, China) Abstract: Surface modification of carbon nanotubes (CNTs) with biopolymer chitosan was performed via a controlled surface depo-sition and crosslinking process. The characteristic of modified CNTs was measured The results show that the diameter of CNTs be-comes thicker because the surface of CNTs is covered with chitosan, and the glomeration of the CNTs decreases to improve the dis-persion of CNTs due to static electric repulsive action of chitosan coating. Key words: carbon nanotubes; chitosan; surface modification 近年来,碳纳米管(carbon nanotubes, CNTs)的研究热点转向生物医用材料方面,已在生物医学方面得到广泛应用。用CNTs可制备各种生物传感器,生物医学微电子器件的导线、开关、记忆元件等。[1–4] 由于CNTs的生物相容性较差,常需要对CNTs 进行表面修饰改性。用生物相容性好的天然高分子修饰碳纳米管,制备成CNTs/天然高分子复合材料,是改善碳纳米管生物相容性的一种重要方法。 壳聚糖(chitosan, CS)是甲壳素(chitin)脱去部分乙酰基后的产物,是一种常见的天然高分子,在生物材料的研究中得到了广泛的应用,其良好的生物相容性已经得到认可。[5] 通过壳聚糖对CNTs的表面修饰,有望改善CNTs的生物相容性,更有可能赋予CNTs某些生物学的性质,为扩大CNTs在生物医学领域的应用提供了一种途径。据此,采用表面沉积交联法,由壳聚糖修饰CNTs的表面,并对所得复合材料进行了检测。 1 实验 1.1 CNTs的纯化氧化预处理 实验所用原料为:多壁CNTs,深圳纳米港有限公司产,纯度95%(质量分数)以上;壳聚糖(食品级,脱乙酰度为95%),济南海得贝海洋生物工程有限公司产;其他试剂均为分析纯试剂。 采用混酸液相氧化法对CNTs原料进行纯化氧化预处理。将2g CNTs加入120mL混酸溶液中(浓H2SO4与浓HNO3体积比为3:1),超声分散2~3h,然后在室温磁力搅拌120h,进行氧化。通过0.22μm 的聚碳酸酯滤纸真空抽滤混合物,再由去离子水洗涤至pH值为7。处理后的CNTs在80℃真空干燥 收稿日期:2007–07–27。修改稿收到日期:2007–10–21。 基金项目:国家自然科学基金(50672051,30540061);山东大学大学生科技创新基金资助项目。 第一作者:刘爱红(1981—),女,博士研究生。 通讯作者:孙康宁(1955—),男,教授。Received date:2007–07–27. Approved date: 2007–10–21. First author: LIU Aihong (1981–), female, postgraduate student for doctor degree. E-mail: aihong1981@https://www.docsj.com/doc/068636785.html, Correspondent author: SUN Kangning (1955–), male, professor. E-mail: sunkangning@https://www.docsj.com/doc/068636785.html, 第36卷第2期2008年2月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 2 February,2008

2019年碳纳米管行业分析报告

2019年碳纳米管行业 分析报告 2019年9月

目录 一、技术替代效应显著,碳纳米管市场进入爆发期 (4) 1、导电剂是碳纳米管材料最常见应用场景 (4) 2、正极材料导电剂更新换代,碳纳米管迎来爆发期 (6) 3、导电剂市场受到新能源汽车产业链强势驱动,增量可观 (11) 4、导电性拓展新的应用场景 (14) (1)硅碳负极 (14) (2)导电塑料 (16) 二、高技术壁垒保证行业高毛利 (18) 1、生产技术难度大,行业毛利率高 (18) 2、产学结合,高研发投入形成高技术壁垒 (21) 三、绑定核心优质客户是快速拓展市场关键 (25) 1、行业扩产较为保守,预计供需偏紧 (25) 2、降价趋势清晰,但幅度受供需限制 (26) 3、客户集中度高,拓展客户是关键 (28) 四、相关企业简况 (32) 1、天奈科技 (32) 2、道式技术 (33)

技术替代效应显著,碳纳米管市场进入爆发期。目前碳纳米管最广的应用范围是作为导电剂加入到锂电池材料中。产业界综合产品性能、经济性等因素逐步选择用碳纳米管代替炭黑,碳纳米管在导电剂中18年占比32%,较14年提升18%,随着技术成熟预计替代效应将会持续且更为显著。增量角度看,受到新能源汽车产业链强势驱动,导电剂市场持续爆发。预计在锂电池正极领域,未来5年全球碳纳米管导电浆料需求量将保持40.8%的年复合增长率,2021年需求量达10.82万吨。 碳纳米管应用有望拓展至硅碳负极和导电塑料。新能源汽车行业对电池的能量密度提出更高的要求,硅碳负极被认为是合理的途径。2018年硅碳负极占负极材料比例仅为2.8%,我们测算未来三年硅碳负极用碳纳米管浆料需求量年复合增长率为97.9%,2021年需求量达1.6万吨。 高技术壁垒保证高毛利。碳纳米管导电剂行业毛利率约为40%。左右,盈利性好。其生产途径包括制粉和混浆两步。制粉工艺关键是催化剂,技术难度高,行业主要采用产学结合方式获得专利,并持续研究开发更新换代,形成较高技术壁垒,保证高毛利。混浆工艺较为简单,溶剂NMP 的成本占比达到总工序的60%左右。业绩弹性大,但作为基础工业品其价格波动较小。 绑定核心优质客户是快速拓展市场关键。行业扩产较为保守,预计短期内供需仍然偏紧。但新能源汽车产业链受到补贴退坡市场化影响,碳纳米管的材料价格下行趋势较为清晰。碳纳米管行业目前体量

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

相关文档
相关文档 最新文档