文档视界 最新最全的文档下载
当前位置:文档视界 › 第三章_随机过程教案

第三章_随机过程教案

第三章_随机过程教案
第三章_随机过程教案

第三章随机过程

本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。

一、均匀分布的随机数

利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下:

1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。

2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。

3)x=rand;产生一个随机数。

举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。

x=rand(5)

2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。

x=rand(5,3)

二、高斯分布的随机数

randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下:

1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。

2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。

3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。

举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。

x=randn(5)

2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。

x=randn(5,3)

3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。

x=2×randn(5,3)

三、蒙特卡罗仿真

1、蒙特卡罗算法

蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以

N表示事件A发

A

生的次数。若将A发生的概率近似为相对频率,定义为

N N。

A

这样,在相对频率的意义下,事件A发生的概率可以通过重

复无限多次随机实验来求得,即:

()lim

A N N P A N

→∞

=

在二进制数字通信系统中,若N 是发送端发送的总码元数,A N 是差错发生的次数,则总误码率可通过蒙特卡罗算法计算。 2、举例

本节用蒙特拉罗仿真研究一个简单的二进制双极性数字基带通信系统的误比特率。数字基带信号传输系统模型如图1所示:

图1 数字基带信号传输系统模型

假设该通信系统满足以下条件:

① 信源输出的数据符号是相互独立和等概的双极性基带信号

② 发送端没有发送滤波器,接收端没有接收滤波器,满足无码间串扰条件

③ 信道是加性高斯白噪声信道,即只考虑噪声对误比特率的影响。 ⑴理论分析:

由通信理论可知,对于二进制双极性数字基带通信系统,当1,0出现概率相同,即

()()1012P P ==

时,最佳判决门限: 0d V *=

误码率:1

122e P erfc erfc ??==

,利用2/2

()t x

Q x e

dt ∞

-=

?

,2

()t x

erfc x e dt ∞

-=

?

,可得

1()2Q x erfc =,

故可用Q

函数表示误码率e P Q =。

此时,在接收端,抽样判决器输入信噪比:22

n r E σ=

抽样判决器输入信号为:111000r E n r E n =+??=-+?

,发,发

E ±为判决器输入有用信号电压,1n ,0n 为信道输入的均值为0,方差为2

n σ高斯噪声。

依据上述分析,可得通信系统的蒙特卡罗仿真模型如图2所示。

图2 通信系统的蒙特卡罗仿真模型

⑵仿真流程:

①规定信号电压E=1

②将信噪比从dB数转化为信号与噪声的功率比

③计算噪声方差

④用均匀分布的随机数产生二进制数字信号,若随机数大于或等于0.5,则产生1,用高电平表示;否则产生0,用低电平表示

⑤将所产生的数字信号送入信道,叠加高斯白噪声(均值为0,方差由③产生)

⑥在接收端,对收到的信号按最佳判决门限进行判决

⑦比较原始数字信号和判决后的数字信号

⑧计算不一样的码元的个数,得到误比特率

⑨设定不同的信噪比,重复②~⑧,得到不同信噪比下的误码率,画出曲线,并和这些信噪比下的理论误码率相比较。

⑶源代码:

function [p]=smldPe54(snr_in_dB)%计算误码率

%信噪比与误码率的互换

E=1;

SNR=10^snr_in_dB/10;

sgma=sqrt(1/SNR);

%二进制序列的产生

N=10000;

for i=1:N

temp=rand;

if(temp<0.5)

dsource(i)=0;

else

dsource(i)=1;

end

end;

%计算误码率

numoferr=0;

for i=1:N

if(dsource(i)==0)

r=-E+gngauss(sgma); else

r=E+gngauss(sgma); end

if(r<0)

decis=0;

else

decis=1;

end

if(decis~=dsource(i))

numoferr=numoferr+1;

end

end

p=numoferr/N;

高斯随机数发生器

function [gsrv1,gsrv2]=gngauss(m,sgma) if nargin==0

m=0;

sgma=1;

elseif nargin==1

sgma=m;

m=0;

end

u=rand;

z=sgma*(sqrt(2*log(1/(1-u))));

gsrv1=m+z*cos(2*pi*u);

gsrv2=m+z*sin(2*pi*u);

理论误码率计算

function [y]=Qfunct(x)

y=(1/2)*erfc(x/sqrt(2));

主程序:

echo on;

SNRindB1=0:1:10;

SNRindB2=0:0.1:10;

%计算实际误码率

for i=1:length(SNRindB1)

smld_err_prb(i)=smldPe54(SNRindB1(i)); end

%计算理论误码率

for i=1:length(SNRindB2)

SNR=exp(SNRindB2(i)*log(10)/10);

theo_err_prb(i)= Qfunct(sqrt(SNR));

end

semilogy(SNRindB1,smld_err_prb,'r*');

hold

semilogy(SNRindB2,theo_err_prb);

仿真结果:

012345678910

10

10

10

10

10

解法:2 clear all close all clc

EbN0dB=1:0.5:10 N0=10.^(-EbN0dB/10); sigma=sqrt(N0/2); %理论计算的误码率 Pb=0.5*erfc(sqrt(1./N0)); %仿真误码率

numberror=zeros(1,length(EbN0dB)) for n=1:length(EbN0dB)

a=sign(rand(1,100000));%产生等概信源+1,-1

rk=a+sigma(n)*randn(1,100000);%离散等效接收模型dec_a=sign(rk);%判决

ber(n)=sum(abs(a-dec_a)/2)/length(a);

end

semilogy(EbN0dB,Pb);

hold;

semilogy(EbN0dB,ber,'rd-');

legend('理论值','仿真结果');

xlabel('Eb/N0(dB)');

Ylabel('Pb');

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

第三章随机过程作业

第三章随机过程作业 1.设A、B是独立同分布的随机变量,求随机过程的 均值函数、自相关函数和协方差函数。 2.设是独立增量过程,且,方差函数为。记随机过程 ,、为常数,。 (1)证明是独立增量随机过程; (2)求的方差函数和协方差函数。 3.设随机过程,其中是相互独立的随机变量且均值为 0、方差为1,求的协方差函数。 4.设U是随机变量,随机过程. (1) 是严平稳过程吗为什么 (2) 如果,证明:的自相关函数是常数。 5.设随机过程,其中U与V独立同分布 。 (1) 是平稳过程吗为什么 (2) 是严平稳过程吗为什么 6.设随机变量的分布密度为, 令, 试求的一维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令 试求:的一维分布函数 8.设随机过程, 其中是相互独立的随 机变量 , 且, 试求的均值与协方差函数 . 9.设其中为常数 , 随机变量 , 令 , 试求 :和 。 10.设有随机过程,并设x是一实数,定义另一个随机过程 试证的均值和自相关函数分别为随机过程的一维和二维分布函数。11.设有随机过程,,其中为均匀分布 于间的随机变量,即试证: (1)自相关函数 (2)协相关函数 12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作 一个单位距离的随机游动。若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即

,且各次游动是相互统计独立的。经过n 次游动,质点所处的位置为。 (1)的均值; (2)求的相关函数和自协方差函数和。 13.设,其中服从上的均匀分布。试证 : 是宽平稳序列。 14.设其中服从上的均匀分布. 试 证 :既不是宽平稳也不是严平稳过程 . 15.设随机过程和都不是平稳的,且 其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证 是平稳过程。 16.设是均值为零的平稳随机过程。试 证 : 仍是一平稳随机过程 , 其中为复常数,为整数。 17.若平稳过程满足条件,则称是周 期为的平稳过程。试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲 课程代码:090541007 课程英文名称:Applications Stochastic Processes 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。 (二)知识、能力及技能方面的基本要求 1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。 2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。 3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。 (三)实施说明 本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。在制订过 程中参考了其他学校相关专业应用随机过程教学大纲。 本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解 释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。本课程内容分概率论与数理统计两部分,在教学中应充分注意两者之间的联系,重视基本概念,讲清统计思想。 (四)对先修课的要求 本课的先修课程:数学分析,高等代数,概率论。 (五)对习题课的要求 由于本课程内容多学时少,习题课在大纲中未作安排,建议教师授课过程中灵活掌 握;对于学生作业中存在的问题,建议通过课前和课后答疑解决。通过习题课归纳总结章节知识解决重点难点内容。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生解决实际问题的能力。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩20-30%;期末成绩70-80%; 平时成绩构成:出勤,测验,作业。其中测验为开卷,随堂测验。

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

统计学一级学科硕士研究生培养方案

统计学一级学科硕士研究生培养方案(年修订) 专业代码: 一、培养目标 为适应教育面向现代化、面向世界、面向未来的目标,培养社会主义建设事业需要的高层次专门人才,要求统计专业的硕士研究生: 1.应具有较扎实的统计学理论基础; 2.应系统地掌握本专业基本理论、基本研究方法和技巧; 3.应具有较强的学术沟通能力和良好的团队协作精神; 4.应具备创新意识和独立科研能力; 5.应该熟练掌握一门外语,具有阅读外文资料和用外文写作论文的能力; 6.应具有熟练地使用计算机进行科学计算以及借助互联网查阅专业资料的能力; 7.身心健康,德才兼备。 二、培养方式与学习年限 .培养方式 采用导师指导为主,导师与指导小组集体培养相结合的模式,通过课堂授课、专题讨论班、专家讲学、课题研究、参加学术报告(会议)等培养方式,使学生成为有学习积极性、主动性和创造性的高层次专门人才。 .学习年限 本专业的硕士研究生学制为三年。 三、研究方向 实验设计,非参数估计,金融统计,风险管理。 四、课程设置

.课程学习要求 要求每位研究生至少修满学分,其中学科基础课至少修满学分,专业主干课至少修满学分。考核分为考试与考查。必修课进行考试,选修课进行考试或考查。考试成绩按百分制计分,考查成绩采用五级记分制。 2.实践环节要求 实践容包括教案实践(为本科生授课、辅导、批改作业、指导大学生毕业论文等)与科研实践(参与具体的科研项目、科研咨询、课题调研,参加学术报告或学术会议等)。相关的要求见本培养方案有关条目。 3.科研成果数量要求 本专业的硕士研究生在学习期间至少发表(含录用)篇专业学术论文(除导师外,申请者须排名第一)。特殊情况下,经导师同意并经学院学术委员会认定达到毕业水平

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

应用统计学本科专业人才培养方案

应用统计学本科专业人才培养方案专业代码授予学位理学学制四年 一、培养目标: 本专业培养具备统计学、数学和计算机基础知识,掌握统计学的基本思想、基本原理与方法以及相关的计算机技术,有较强的计算机应用能力,具有发现问题、分析问题的能力,能在企事业单位、金融机构、各级政府部门及相关研究机构从事统计核算、质量管理、市场调查分析、统计信息管理和数量分析等工作,或者在科研、教育部门从事研究和教案工作的复合型统计应用人才。 二、培养要求: 本专业学生主要学习统计学和数学的基本理论和基本知识,接受理论研究、应用技能和 使用计算机的基本训练,具有数据处理和统计分析的基本能力。 毕业生应获得以下方面的知识和能力: .具有良好的政治、思想、文化、道德、身体和心理素质,具有社会责任感; .具有扎实的数学基础,受到较严格的数学思维训练; .掌握扎实的统计学的基本理论、基础知识、基本方法和统计思想; .掌握数据搜集、整理、处理和分析的方法; .能够应用统计软件分析数据并正确解释计算结果; .了解熟悉社会经济统计、金融统计、企业统计等某一领域的基本知识,具有运用所学的理论知识分析和解决该领域实际问题的初步能力; .具有较高的外语水平,掌握中外文资料查询及文献检索及运用现代信息技术获取相关信息的基本方法; .具有一定的科学研究和实际工作能力; .具有较强的组织管理、交流沟通、环境适应和团队合作的能力。 三、修业年限 四——六年 四、主干学科: 数学、统计学。 五、主要课程: 数学分析、高等代数、概率论与数理统计、应用回归分析、应用时间序列分析、应用随 机分析、统计应用软件与统计分析,应用多元统计分析。 六、主要实践教案环节:

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意0 12 ≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 6 18}4)3(|6)5({-===e X X P 15 3 2 6 2 3 2 92! 23 ! 2)23(! 23 }2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=? ?? ==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 6 6 2 18! 26 }2)3()5({}4)3(|6)5({--== =-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ????? ? ?? ? ????? ??? ?=434 10313131 04341 1)(P ,则167)2(12 =P ,16 1}2,2,1{210= ===X X X P

???????? ? ????? ????=48 3148 1348 436133616367164167165)1()2(2 P P 16 7)2(12= P 16 1314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 4 2++= ωωω ωS ,则)(t X 的均方值 = 212 1- 222 22 2 11221)2(2 221 1 1 22 )(+??-+?? = +- += ωωωωωS τ τ τ--- = e e R X 2 12 1)(2

金融随机过程-教学大纲

《金融随机过程》教学大纲 课程编号:111012A 课程类型:专业选修课 总学时:32 学分:2 适用对象:金融工程专业 先修课程:数学分析、线性代数、概率论 一、教学目标 本课程面向具有一定的金融学和数学基础,并对金融量化分析方法感兴趣的金融工程专业高年级学生。本课程在介绍金融随机过程基础理论同时,联系并且生动的分析金融建模中的实例,从量化的角度研究金融学中的一些问题,本课程亦可视为金融风险测度与管理的先导课程。 通过本课程教学,主要实现以下几个目标: 目标1:帮助学生了解金融学(特别是在金融衍生品定价及其风险管理领域)中的重要量化工具,例如:随机过程,随机微积分和偏微分方程,以及Monte Carlo 模拟等模型的数值实现方法。 目标2:通过金融案例教学的方式讲解量化方法在金融建模中的应用; 目标3:帮助学生从量化分析的角度理解金融学中的一些问题,为学生未来继续学习金融工程相关知识或者从事金融量化研究打下基础。 二、教学内容及其与毕业要求的对应关系

本课程在介绍金融随机过程基础理论同时,联系并且生动的分析金融建模中的实例, 各部分穿插进行,整体课程自成体系。同时,如果时间允许我们将邀请来自量化金融业界的专家结合课程进度为同学们做精彩的报告。我们将根据课程的进展选取如下所列举的内容: 量化工具部分主要介绍条件数学期望、随机过程,鞅、Markov过程,随机游动、Brownian运动、Poisson过程、以及Ito随机积分, Ito公式,随机分析中的一些重要工具(例如Girsanov变换测度等),随机微分方程;偏微分方程相关内容以金融衍生品定价为动机介绍其应用,数学方法方面我们将初步介绍偏微分方程随机微积分的联系(Feynman-Kac定理) 等,抛物型方程初值问题的求解方法。 数值实现方法部分将生动的穿插在理论工具的介绍中,主要介绍Monte Carlo 模拟(随机数产生,重要分布的模拟,随机过程的模拟,提高模拟性能的方差降低方法,随机微分方程的离散模拟等),二项(或多项)格点方法,偏微分方程的数值解等。 量化方法在金融建模中的应用实例大致涉及随机建模和数值方法在金融衍生品定价中的应用。如时间允许我们将从量化原理的角度探讨近期金融衍生品(例如Stocks Index Futures和Credit Default Swap)在我国的发展。 该课程在继概率论与数理统计后,进一步介绍金融领域的随机过程知识,不仅强化与完善了金融专业学生的数理知识体系;而采用结合金融案例的方式进行讲解,更能使学生在充分夯实数理功底的基础上,结合金融实际问题进行思考学习,训练了学生应用数理思维分析金融问题的能力,而这恰是金融工程专业学生的毕业要求之一。 三、各教学环节学时分配

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

清华大学计算机系培养方案一

清华大学计算机系培养方案一

信息科学技术学院 本科指导性教学计划 第一学年 课程编号课程名称学分周学时考核方式说明及主要先修课12090043 军事理论与技能训练 3 3 考查 秋季学期 课程编号课程名称学分周学时考核方式说明及主要先修课10720011 体育(1) 1 2 考查 10610183 思想道德修养与法律基础3 2 考查 10640532 英语(1) 2 2 考查 10420874 一元微积分 4 4 考试 10420904 几何与代数(1) 4 4 考试 20130412 工程图学基础 2 2 考试 2选1 20240023 离散数学(2) 3 3 考试 程序设计课组 3 3 考试选1门,详见附录2 30210041 信息科学技术概论 1 1 考查 文化素质选修课≥1 1 合计≥21 注:计算机科学与技术专业必修“离散数学(2)”,其他专业必修“工程图学基础”。 春季学期 课程编号课程名称学分周学时考核方式说明及主要先修课10720021 体育(2) 1 2 考查 10610193 中国近现代史纲要 3 2 考试 10640682 英语(2) 2 2 考查 10420884 多元微积分 4 4 考试先修一元微积分10421002 几何与代数(2) 2 2 考试 大学物理课组1 4 4 考试先修一元微积分20220214 电路原理 4 4 考试 20220221 电路原理实验 1 1 考查 合计≥21 夏季学期 课程编号课程名称学分周学时考核方式说明及主要先修课21510192电子工艺实习(集中) 2 考查2周 程序训练课组 2 考查3周 合计: 4

随机过程教学大纲

《随机过程》教学大纲 课程编码:1511104303 课程名称:随机过程 学时/学分:48/3 先修课程:《数学分析》、《概率论与数理统计》 适用专业:数学与应用数学 开课教研室:信息与计算科学教研室 一、课程性质与任务 1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。本课程开设在第6学期。 2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。 二、课程教学基本要求 《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。 本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章 准备知识 1.教学基本要求 复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望

随机过程理论及应用(中英文0600006

随机过程理论及应用(中英文0600006) 一、课程代码:0600006 课内学时: 48 学分: 3 二、适用范围(学科、专业、层次等) 控制科学与工程、控制工程 三、先修课程 线性代数、微积分、概率论 四、教学目标 随机过程理论及应用是自动控制专业研究生所必修的一门基础课程,该课程覆盖了概率论和随机过程的基本知识,包括泊松过程、马尔可夫链、鞅和布朗运动等。在这门课程中,我们旨在讲授随机过程的一些基本理论,并扩展到其在控制、通信、经济和金融等领域的一些应用。通过学习这门课程可以让学生学会以概率的方式来思考问题、看待问题和解决问题。 五、考核与成绩评定: 成绩以百分制衡量。 成绩评定依据:课堂成绩10%,课后作业20%,考试70%。 六、教学方式 课堂讲授、课堂讨论、论文分析 七、教学大纲(大纲撰写人:闫莉萍) 1.预备知识 6学时 1.1概率的公理化定义 1.2随机变量与数字特征 1.3矩母函数与特征函数 1.4条件数学期望 1.5随机过程的基本概念 1.6随机过程的有限维分布和数字特征 1.7随机过程的分类 2.二阶矩过程与均分分析 6学时 2.1基本概念 2.2H空间与均方分析 2.3宽平稳过程的概念和基本性质 3.泊松过程 6学时 3.1定义 3.2与泊松过程相关的若干分布 3.3泊松过程的推广 3.4泊松过程的应用 4. 离散时间马尔可夫过程 8学时 4.1定义 4.2转移概率矩阵 4.3Chapman-Kolmogorov方程 4.4状态的分类与状态空间分解 4.5平稳分布

4.6离散参数马尔科夫链的随机模拟与蒙特卡罗方法 4.7应用 5. 连续时间马尔可夫过程 6学时 5.1定义与基本概念 5.2转移概率矩阵 5.3Kolmogorov微分方程 5.4强马尔可夫性与嵌入马尔可夫链 5.5连续马尔可夫过程的随机模拟 5.6应用 6. 鞅 6学时 6.1基本概念 6.2上(下)鞅及分解定理 6.3停时和停时定理 6.4鞅收敛定理 6.5连续参数鞅 7. 布朗运动 6学时 7.1定义 7.2布朗运动的性质 7.3最大值与首中时 7.4布朗运动的变形与推广 8. 伊藤过程 4学时 8.1伊藤积分 8.2伊藤公式 8.3伊藤微分 8.4应用实例

随机过程第3章

第三章 随机过程 一. 随机过程的基本概念 1.1 随机过程的定义 设(Ω,F ,P )为给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,P ΩF 上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}t X ω,{}t X 或(){}X t 注:随机过程(){}:,t X t T ωω∈Ω∈是时间参数t 和样本点 ω的二元函数,对于给定的时间0t ,是0(,)X t ω是概率空 间(),,P ΩF 上的随机变量;对于给定样本点0ω∈Ω, 0(,)X t ω是定义在T 上的实函数,此时称它为随机过程 对应于0ω的一个样本函数,也成为样本轨道或实现。 E 称为随机过程的相空间,也成为状态空间,通常用 “t X x =”表示t X 处于状态x 1.2随机过程t X 按照时间和状态是连续还是离散可以 分为四类:连续型随机过程、离散型随机过程、连续型随机序列、离散型随机序列

1.3 有穷维分布函数 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值 1,,n t t X X 构成n 维随机向量()1,,n t t X X ,其n 维联合分布 函数为: ()()1 1 ,,11,,,,n n t t n t t n F x x P X x X x =≤≤ 其n 维联合密度函数记为()1 ,,1,,n t t n f x x 。 我们称(){}1 ,,11,,:1,,,n t t n n F x x n t t T ≥∈ 为随机过程 {}t X 的有穷维分布函数。 二.随机过程的数字特征 2.1 数学期望 对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为 ()()t X t t E X xdF x μ +∞ -∞ ==? ()t E X 是时间t 的函数 2.2 方差与矩 随机过程{}t X 的二阶中心矩

相关文档