文档视界 最新最全的文档下载
当前位置:文档视界 › 光学测距原理

光学测距原理

光学测距原理
光学测距原理

光学测距原理

1.利用红外线测距或激光测距的原理是什么?

测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c = 299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000

需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。

建筑行业有一种手持式的测距仪,用于房屋测量,其工作原理与此相同。

2.被测物体平面必须与光线垂直么?

通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。

3.若被测物体平面为漫反射是否可以?

通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。

4.若以超声波测距代替是否可以让物体延一墙壁运动并测出与对面墙的距离?

此问题搞不懂你的意图,超声波测距精度比较低,现在很少使用。

激光测距(即电磁波,其速度为30万公里/秒),是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。

激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。相位测距技术的测距精度高,但作用距离有限,主要用于高精度大地测量。众所周知,光在给定介质的传播速度是一定的,因此,通过测量光在参考点和被测点之间的往返传播时间,即可给出目标和参考点之间的距离。

相位测距法是通过强度调制的连续光波在往返传播过程中的相位变化来测量光束的往返传播时间,其计算公式如下:

t=Φ/2πf

式中,t为光波往返传播时间(s);Φ为调制光波的相位变化量(rad); f为调制频率(Hz)。

光的往返传播时间得到后,目标至参考点的距离可由下式求得

R=(c/2)×(Φ/2πf)=(λ/2)×(Φ/2π)

式中,R为目标至参考点距离(m);c为光波传播速度(m/s);λ为调制光波波长(m)。

相位位移是以2π为周期变化的,因此有

Φ=(N+△n).2π

式中,N为相位变化整周期数;△n为相位变化非整周期数。

由以上两式可知

R=λ/2×(N+△n)

上式表明,只要测出发射和接收光波的相位差,即可得到目标的距离。因此相位测距可理解为以调制光波半波长为“测量尺度”的距离测量方法。

激光测距。这是利用激光的单色性和相干性好、方向性强等特点,以实现高精度的计量和检测,如测量长度、距离、速度、角度等等。激光测距在技术途径上可分为脉冲式激光测距和连续波相位式激光测距。脉冲式激光测距原理与雷达测距相似,测距仪向目标发射激光信号,碰到目标就要被反射回来,由于光的传播速度是已知的,所以只要记录下光信号的往返时间,用光速(30万千米/秒)乘以往返时间的二分之一,就是所要测量的距离。现在广泛使用的手持式和便携式测距仪,作用距离为数百米至数十千米,测量精度为五米左右。我国研制的对卫星测距的高精度测距仪,测量精度可达到几厘米。连续波相位式激光测距是用连续调制的激光波束照射被测目标,从测量光束往返中造成的相位变化,可换算出被测目标的距离。为了确保测量精度,一般要在被测目标上安装激光反射器。它测量的相对误差为百万分之一。激光测距仪与微波雷达结合,还可以发挥激光波速窄的特长,弥补微波雷达低仰角工作时受地面干扰的不足。激光测距与光学经纬仪、红外及电视跟踪系统相结合,组成光电跟踪测量系统,既可作为靶场试验的测量设备,又常用作武器的光电火力控制系统。这种激光测距仪已广泛用于地面火炮、坦克炮的火控系统,大大提高了命中率。

光学测距原理

光学测距原理 1.利用红外线测距或激光测距的原理是什么? 测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c = 299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000 需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。 建筑行业有一种手持式的测距仪,用于房屋测量,其工作原理与此相同。 2.被测物体平面必须与光线垂直么? 通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。 3.若被测物体平面为漫反射是否可以? 通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。 4.若以超声波测距代替是否可以让物体延一墙壁运动并测出与对面墙的距离? 此问题搞不懂你的意图,超声波测距精度比较低,现在很少使用。 激光测距(即电磁波,其速度为30万公里/秒),是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。相位测距技术的测距精度高,但作用距离有限,主要用于高精度大地测量。众所周知,光在给定介质的传播速度是一定的,因此,通过测量光在参考点和被测点之间的往返传播时间,即可给出目标和参考点之间的距离。 相位测距法是通过强度调制的连续光波在往返传播过程中的相位变化来测量光束的往返传播时间,其计算公式如下: t=Φ/2πf 式中,t为光波往返传播时间(s);Φ为调制光波的相位变化量(rad); f为调制频率(Hz)。 光的往返传播时间得到后,目标至参考点的距离可由下式求得 R=(c/2)×(Φ/2πf)=(λ/2)×(Φ/2π) 式中,R为目标至参考点距离(m);c为光波传播速度(m/s);λ为调制光波波长(m)。 相位位移是以2π为周期变化的,因此有 Φ=(N+△n).2π 式中,N为相位变化整周期数;△n为相位变化非整周期数。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

光学测量复习题

1.光学测量:对光学材料、零件及系统的参数和性能的测量。 2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。 3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。 4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。 5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。 6.精度:反应测量结果与真实值接近程度的量。 7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的...... 8.偶然误差的评价:(标准偏差)(极限误差)。 9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。 10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。 11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。 12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。 13..对准误差:对准残留的误差。 14.调焦误差:调焦残留的误差。 15.常用调焦方式:(清晰度法)、(消视差法)。 16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。 17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。 18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。 19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。 20.自准直仪:(自准直望远镜)(自准直显微镜)。 21.自准直目镜是一种带分划板和分划板照明装置的目镜。一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。它们统称自准直仪。 22.常用自准直目镜:(高斯目镜)、(阿贝目镜)、(双分划板式自准直目镜)。 23.剪切干涉法常见的平板式横向剪切干涉仪,它是以干涉条纹成无限宽,即干涉场中呈均匀一片作为判别光束准直性基准的。 24.双楔板剪切干涉法的原理? 解:假设楔板的棱边平行于x轴(棱边呈水平状态),并倾斜至于光路中。一离焦板的光波Kd(x2+y2)经楔板前,后面反射,则反射波沿x方向被横波向剪切。干涉条纹是一组与x轴倾斜的直线簇,在重叠区域形成的条纹可表示为(nkβ)y+(KDs)x=mπ 25.V棱镜法的检测原理:当单色平行光垂直的入射到V棱镜的ED面时,若被检玻璃折射率n与V棱镜折射率n0完全相同,则出射光不发生任何偏折的射出;若n与n0不等,则出射光相对入射光有一偏折角θ,若测出θ,就可计算出折射率。 26.V棱镜折光仪:主要用于平行光管、对准望远系统、读数显微镜系统和标准V块组成。 27.V棱镜折光仪的使用方法:平行光管分划板的刻线是在水平透光宽缝中间刻一细长线。由平行光管射出的单色平行光束经V棱镜和待检试样后,产生偏折角θ,转动望远镜对准平行光管的刻线象。当望远镜对准时,带动度盘转动。有读数显微镜读得角θ,其整数部分由度盘读出,小数部分由测微目镜读出。 28.最小偏向角法的测量原理:单色平行光沿MP方向射出,入射光与出射光的夹角δ为偏

红外线测距仪测量原理

红外线测距仪测量原理 测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测量的仪器。 红外测距仪的分类有激光红外,红外和超声波三种,目前测距仪主要是指的激光红外测距仪,红外测距仪和超声波测距仪由于测量距离有限,测量精度很低目前已经被淘汰。激光红外测距仪是利用激光对目标的距离进行准确测定的仪器。激光红外测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 测距仪有测量距离和测量精度,同时又是电子设备,所以品牌的选择非常重要,国际知名品牌的测距仪,在性能上会远优于杂牌的激光红外测距仪。 一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。 目前市面上主流的都是激光测距仪,手持式激光测距仪全球前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。 望远镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上各有特点,2013年,美国激光技术杂志公布的数据,2013年全球单品销售冠军是图雅得SP1500,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪

测距仪的原理及分类

文章简介测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来 测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测 量的仪器文章详细内容 那什么是测距仪呢?原理是什么?市面上有哪些测距仪,下文将详细进行介绍。一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在 工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时 器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持 式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。目前市面上主流的都是激光测距仪,手持式激光测距仪全球 前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。望远 镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光 测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上 各有特点,2011年,美国激光技术杂志公布的数据,2011年全球单品销售冠军是图雅得YP900,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声 波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和 接收到回波的时间差T,然后求出距离。超声波测距仪,由于超声波受 周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范 围不是很广阔,但价格比较低,一般几百元左右。 3. 红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红 外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长 距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测 距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受 到的时间及红外线的传播速度就可以算出距离

光学测量应用举例

1、激光三角法测距。 利用激光良好的方向性,以及几何光学成像的比例特性,将一束激光照射到物体上,在与激光光束成一定角度的位置用光学成像系统检测照射到物体的光斑,这样镜头-光斑、镜头平面到激光光束的连线、光斑到镜头平面与激光光束交点构成一三角形,而镜头-光斑的像、镜头平面以及过光斑的像的激光光束平行线与镜头平面的交点成一个与前面所描述的三角形相似的三角形。用光电传感器阵列检测到光斑的像的位置,则可以根据三角形性质计算出光斑位置。这种测量方法适合距离较短的情况。 目前的激光三坐标测量机(抄数机)一般都采用激光三角法测距。 2、光速法测距。 利用光速不变原理,检测激光发射与反射光反射回来的时间差,从而计算出距离。为了提高精度,可以将激光调制上一个低频信号,利用测量反射光的相位差来测得反射时间差。这种方法一般用于远距离测量。 目前各种激光测距仪一般用这种方法测量。 3、激光干涉法测距。 这是一种相对测量,它无法测得一个物体离仪器的绝对距离,但可以测得两被测物体的相对距离。它的原理是一台迈克尔逊干涉仪,利用反射镜距离变化时干涉条纹的变化来测量,反射镜从物体A运动到物体B,干涉条纹变化的数量反映了其距离。这种测量要求条件较高,但是可以精确测量,它也是目前所有测量手段中最精确的一种。 4、光学图象识别技术测量位移。 其所用原理与三角法相似,但是可以不用激光,而是直接对移动物体拍照,利用前后两幅图片中物体在图片中的位移来计算物体真实的位移。、 这种技术在光电鼠标中大量使用。 5、光栅测量位移。 利用光栅形成的莫尔条纹,计算莫尔条纹变化量即可计算出位移量。 这是目前应用最多的技术,光栅尺大量应用于工业上的行程测量。 6、激光衍射法测量细丝、小孔直径和狭缝宽度。 测量衍射斑的大小就可以计算出孔或缝的尺寸。

测距原理

现在市面上的测距仪主要分为三类:激光测距仪、超声波测距仪、红外测距仪,我们介绍对测距仪原理的分析也主要介绍这三种。1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-3000米)。 激光测距原理就是激光发射机发出一束激光,激光遇到物体后反射回来,接收机收到反射回来的激光,计算自发出激光到收到激光的时间,用此时间乘以激光的速度再除以2就是测距仪到被测物体见的距离 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。 超声波测距仪,由于超声波受周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范围不是很广阔,但价格比较低,一般几百元左右。 3.红外测距仪 用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受到的时间及红外线的传播速度就可以算出距离

AOI光学检测仪的原理

由于对AOI光学检测仪的原理不是很理解,有哪位高手帮忙翻译一下以下的原理与简介?在这里先说声谢谢了! 悬赏分:20 |提问时间:2008-12-2 10:42 |提问者:hamigua200708 人认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI与人判断原理相同。AOI通过人工光源LED灯光代替自然光,光学透镜和CCD代替人眼,把从光源反射回来的量与已经编好程的标准进行比较、分析和判断。目前最常用的图像识别算法为灰度相关算法,通过计算归一化的灰度相关(normalized greyscale correlation)来量化检测图像和标准图像之间的相似程度。灰度相关的取值介于“0”和“1000”之间,“1000”代表图像完全相同,“0”代表图像完全不同,一般通过设定一个临界相关值(如650)来判断检测图像是否发生变化。相关值大于或等于临界相关值的为正常图像(元件或焊点正常),而小于临界相关值的为异常图像(元件或焊点异常)本社导入的AOI设备采用归一化的彩色相关算法(normalized color correlation),以RGB三基色的阶调度进行计算相似度。 AOI简介 ( 1)强大的检测功能 Otek 自动光学检测仪采用自主开发的归一化的彩色相关算法(normalized color correlation) 来代替一般使用的灰度相关算法。由于彩色相关算法充分利用彩色图像中的红绿兰(RGB)三基色的全部信息,所以比灰度相关算法具有更高的识别准确性和稳定性。彩色相关算法所利用的信息量比灰度相关算法多2倍,所以彩色相关的运算速度也减慢2倍,但是通过采用专门为多媒体应用所开发的专门运算指令集(MMX)技术使得Otek自动光学检测仪可以在同样或者更短的时间内搜索更多的图像信息。该设备依靠特殊的光源设置,可以使焊点在少锡和多锡时的图像与正常情况时图像的明暗程度发生明显变化,从而可以检测出焊锡错误。Otek的焊锡检测算法具有检测准确度高、误检低的特点。 推荐答案 1 引言 在激烈的市场竞争中,电子产品制造厂商必须确保产品的质量,为了保证产品的质量,在产品制造过程中对各个生产环节半成品或成品进行质量监测尤为重要,随着表面组装技术(SMT)中使用的印制电路板线路图形精细化、SMD元件微型化及SMT组件高密度组装、快速组装的发展趋势,采用目检或人工光学检测的方式检测已不能适应,自动光学检测(AOI)技术作为质量检测的技术手段已是大势所趋。 2 AOI工作原理 SMT中应用AOI技术的形式多种多样,但其基本原理是相同的(如图1所示),即用光学手段获取被测物图形,一般通过一传感器(摄像机)获得检测物的照明图像并数字化,然后以某种方法进行比较、分析、检验和判断,相当于将人工目视检测自动化、智能化。 2.1 分析算法

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光电测距仪测距误差分析

光电测距仪测距误差分析 武汉大学电子信息学院湖北武汉 摘要:本文指出了光电测距仪测距误差的主要来源,对测距误差及其影响进 行了分析,并给出精度评定的方法。 关键词:光电测距仪测距误差精度评定 一、引言 光电测距仪自问世以来,以其操作方便、快捷、高效、精密、自动化、智能化等特点,被广泛应用于工程测量、控制测量、地形测量、地籍与房产测量、施工放样、工业测量及近海定位等领域。数字地球的建设,也以其为基本的数字采集设备之一。作为一种被多种领域频繁使用的长度计量仪器,光电测距仪测距误差的分析与测距精度的定期评定始终是用户和承包方关心的问题。因为仪器能否在要求的精度下可靠地工作,是测量工作能否保质保量完成的前提条件。 国家技术监督局对光电仪器(全站仪、测距仪)测距系统的检定目的、项目和方法作了具的规范要求,本文就光电仪器的测距误差及精度评定进行分析。 测距精度是光电测距仪的重要技术指标之一,其测距精度不但与仪器的性能有关,同时也取决于使用方法和实测时外界因素的影响。分析测距误差的来源和影响程度,找出消除或减弱误差的措施和方法,对于正确、合理地使用仪器和维护仪器,以便测出精度较好的距离成果和分析测距成果质量等都是很有必要的。按照规范要求,对仪器进行检定,客观地评定仪器测距的实际综合精度,对了解仪器性能指标,验收新购和修理后的仪器以及合理使用仪器尤为重要。 欲达到系统客观地评定一台光电测距仪的测距精度这一目的,一方面应严格地按照规范要求对仪器进行检定,另一方面还需具备有关测距原理及相关的误差理论知识,以便找出测距误差的主要来源,再进行测距误差分析,作为综合评定仪器精度的依据。 二、光电测距原理 1.光电测距仪按仪器测程分类: 短程光电测距仪:测程在3Km以内,测距精度一般在1cm左右。 中程光电测距仪:测程在3~15Km左右,适用于二、三、四等控制网的边长控制, 精度一般可达±(10mm+6- ?)。 10 远程激光测距仪:测程在15Km以上的测距仪,精度一般可达±(5mm+16- ?), 10 满足国家一、二等控制网的边长控制。 2.测尺频率的选择: 直接测尺频率方式:直接使用各测尺频率的测量结果组合成待测距离的方式。

汽车倒车测距仪原理及电路分析

汽车倒车测距仪原理及电路分析 汽车倒车测距仪能测量并显示车辆后部的障碍物离车辆的距离,同时可根据报警“嘟嘟”声的间隙来判断距离的远近。主要技术指标:最大探测距离5m;测距相对误差〈士5%;工作环境:-10~55C。雨、雪、雾及黑夜均不受影响。 汽车倒车测距仪电路图a为汽车倒车测距仪电路原理图。IC1、IC2、IC3组成单片机的最小系统。IC3为CPU芯片,IC1为接口电路,IC2为EPROM,内存汽车倒车测距工作程序。仪器有3位LED数码管显示距离,小数点固定在第一位数字后.显示单位为米。IC3的P1 口输出7段显示信号,低电平有效。IC3第10~12脚为数显控制端,低电平有效。数显系统采用扫描显示。IC3第14脚为发射电路控制端,卨电平有效。 汽车倒车测距仪电路图b为40kHz超声波发射电路,IC4为2输人端4与非门,其中两个门组成多谐振荡器.调冇RP1可调节其振荡频率。IC3第13脚为接收信号输人端,低电平有效。汽车倒车测距仪电路图c为音频报警电路。 汽车倒车测距仪电路图d为反射信号接收电路,第二级放大器反馈回路采用LC并联谐振,以提高整机抗干扰性能.U采用收录机陷波线圈,调谐在40kHZ频率上。放大后的反射信号,经VD2、C12整流滤波后输入IC6第4只运放进行电压比较.调节R17,即能调节整机接收距离。当信号有效时,VT5管输出一个低电平脉冲。系统软件根据发射信号和接收信号之间的时间差计算并转换成距离信号予以显示报警。IC3第15脚为报警信号控制端,髙电平有效。图3-10(c)为音频报警电路,IC4另两个门组成音频振荡器,振荡频率约800HZ,由C3耦合至IC5 (LM386)音频放大后驱动扬声器发出“嘟嘟”间隙报警声。当探测到车后有障碍物时,即IC3第13脚有低电平信号输入时,系统软件根据障碍物距离远近输出不同频率的控制方波,距离远方波频率低,嘟声间隙时间长;距离近,方波频率髙,嘟声间隙时间短。因此,驾驶员可以不看数显也能判断出距离障碍物的远近。1C3第16脚输出STOP报警灯信号,当距离障碍物在30cm以内时,输出高电平. VT4导通,发光二极管VD1导通发光,表示应迅速停止倒车。此高电平信号也可用于控制自动刹车。

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

超声波测距仪说明书

自动测量及控制综合课程设计说明书 题目超声波测距仪 学院机械工程学院 班级 学生姓名 学号 指导老师 2015年1月18日

目录 1绪论 (3) 1.1课题设计及意义 (3) 1.2设计内容 (3) 2超声波测距设计原理及方案选择 (3) 2.1超声波测距原理 (3) 2.2设计方案 (4) 3硬件选择与设计 (5) 3.1单片机的选择 (6) 3.2超声波模块的选择 (6) 3.2.1 HC-SR04超声波模块时序图 (7) 3.2.2 HC-SR04模块的使用 (8) 3.3数码管的选择 (8) 3.4硬件电路的设计 (9) 4软件部分设计 (9) 5数据处理及误差分析 (11) 6设计体会与总结 (11) 附录 (13) 附录Ⅰ:超声波测距仪系统实物图................ 错误!未定义书签。 附录Ⅱ:程序代码 (13) 附录Ⅲ:参考文献 (15)

1绪论 1.1课题设计及意义 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前水平说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为种新型的非常重要的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;降低潜艇噪声,改善潜艇声纳的工作环境。 无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。 1.2设计内容 超声波测距仪的设计,由单片机控制超声发射装置发射超声波,当超声波遇到障碍物时,发生反射,再由接受装置接受超声波,由单片机计算从发射到接受的时间并计算出障碍到超声波发射器的距离。 在理解超声波测距原理的基础上,设计出基于51单片机为核心的超声波测距仪。该超声波测距仪,要求测量距离≤6m,测量精度要求优于1%,显示方式为数码管显示,具有RS-232通信能力,具有较强的抗干扰能力。测量时与被测物体无直接接触,能够清晰、稳定地显示测量结果。 2超声波测距设计原理及方案选择 2.1超声波测距原理

相位式光电测距仪的工作原理

§4.2 相位式光电测距仪的工作原理 相位式光电测距仪的种类较多,但其基本的工作原理是相同的。本节将讨论相位式光电测距仪的工作原理,并着重介绍它的几个主要部件的工作原理。 4.2.1 相位式光电测距仪的工作原理 相位式光电测距仪的工作原理可按图4-4所示的方框图来说明。 图4-4 由光源所发出的光波(红外光或激光),进入调制器后,被来自主控振荡器(简称主振)的高频测距信号1f 所调制,成为调幅波。这种调幅波经外光路进入接收器,会 聚在光电器件上,光信号立即转化为电信号。这个电信号就是调幅波往返于测线后经过解调的高颇测距信号,它的相位已延迟了Φ。 ?Φ+?=ΦN π2 这个高频测距信号与来自本机振荡器(简称本振)的高频信号1f '经测距信号混频器进行光电混频,经过选频放大后得到一个低频(11f f f '-=?)测距信号,用D e 表示。D e 仍保留了高频测距信号原有的相位延迟?Φ+?=ΦN π2。为了进行比相,主振高频测距信号1f 的一部分称为参考信号与本振高频信号1f '同时送入参考信号混频器,经过选频放大后,得到可作为比相基准的低频(11f f f '-=?)参考信号,0e 表示,由于0e 没有经过往返测线的路程,所以0e 不存在象D e 中产生的那一相位延迟Φ。因此,D e 和0e 同时送人相位器采用数字测相技术进行相位比较,在显示器上将显示出测距信号往返于测线的相位延迟结果。

当采用一个测尺频率1f 时,显示器上就只有不足一周的相位差?Φ所相应的测距尾数,超过一周的整周数N 所相应的测距整尺数就无法知道,为此,相位式测距仪的主振和本振二个部件中还包含一组粗测尺的振荡频率,即主振频率 32,f f 和本振频率 32,f f ''。如前所述,若用粗测尺频率进行同样的测量,把精测尺与一组粗测尺的结果组合起来,就能得到整个待测距离的数值了。 4.2.2 相位式光电测距仪各主要部件的工作原理 1.光源 相位式测距仪的光源,主要有砷化镓(GaAs )二极管和氦-氖(He-Ne )气体激光器。前者一般用于短程测距仪中,后者用于中远程测距仪中。下面对这二种光源作一介绍。 (1)砷化镓(GaAs )二极管 砷化镓(GaAs )二极管是一种晶体二极管,与普通二极管一样,内部也有一个PN 结,如图4-5所示。它的正向电阻很小,反向电阻较大。当正向注入强电流时,在PN 结里就会有波长为0.72~0.94μm 之间红外光出射,而且出射的光强会随着注入电流的大小而变化,因此可以简单地通过改变馈电电流对光强的输出进行调制,即所谓“电流直接调制”。这对测距仪用作光源十分有意义,因为能直接调制光强,无需再配备结构复杂、功耗较大的调制器。此外,砷化镓二极管光源与其他光源比较,还有体积小重量轻,结构牢固和不怕震动等优点,有利于使测距仪小型化,轻便化。 图4-5 图4-6 GaAs 二极管有两种工作状态,一种是发射激光,称为GaAs 激光器;另一种是发射红外荧光,称为发光二极管。两者的区别,主要是注入电流强度的不同。由于GaAs 发光管,发射连续的红外光频带较宽(100~500o A ),波长不够稳定,功率较小(约3mW )和发散角大(达50o ),故采用这种光源的测距仪的测程都不远,一般在3km 以内。红外光的波长,因GaAs 掺杂的差异和馈电电流等不同而异。如国产HGC-1红外测距仪的=λ0.93μm ;瑞士DI3和DI3S 的λ分别为0.875μm 和0.885μm ;瑞典AGA-116的

光学测量与光学工艺知识点答案

目录 第一章基本光学测试技术 (2) 第二章光学准直与自准直 (5) 第三章光学测角技术 (9) 第四章:光学干涉测试技术 (12) 第六章:光学系统成像性能评测 (15)

第一章 基本光学测试技术 ? 对准、调焦的定义、目的; 对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。例:打靶、长度度量 人眼的对准与未对准: 对准的目的:1.瞄准目标(打靶); 2.精确定位、测量某些物理量(长度、角度度量)。 调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。 人眼调焦: 调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位 于同一空间深度; 2.使物体(目标)成像清晰; 3.确定物面或其共轭像面的位置——定焦。 12 1'2' 1'P 2' 2' '

?人眼调焦的方法及其误差构成; 常见的调焦方法有清晰度法和消视差法。 清晰度法是以目标与比较标志同样清晰为准。调焦误差是由于存在几何焦深和物理焦深所造成的。 消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。误差来源于人眼的对准误差。 (消视差法特点: 可将纵向调焦转变为横向对准; 可通过选择误差小的对准方式来提高调焦精确度; 不受焦深影响) ?对准误差、调焦误差的表示方法; 对准误差的表示法:人眼、望远系统用张角表示; 显微系统用物方垂轴偏离量表示; 调焦误差的表示法:人眼、望远系统用视度表示; 显微系统用目标与标志轴向间距表示; ?常用的对准方式; 常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。 ?光学系统在对准、调焦中的作用; 提高对准、调焦精度,减小对准、调焦误差。 ?提高对准精度、调焦精度的途径; 使用光学系统进行对准,调焦;光电自动对准、光电自动调焦; ?光具座的主要构造; 平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座 ?平行光管的用途、简图; 作用是提供无限远的目标或给出一束平行光。 简图如下:

激光测距仪的原理和应用讲解

激光测距仪的原理和应用 1、激光测距仪的工作原理是怎样的? 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 2、激光测距仪的应用领域主要是那些方面? 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。 3、为什么激光测距仪还有所谓"安全"和"不安全"的区别? 顾名思义,激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为"安全"的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为"不安全"的。 激光测距仪应用在办案交警中 从交管局了解到,从今天起,可有效提高交通事故现场勘查效率和准确性的激光测距仪将在办案交警中广泛应用,这标志着办案交警将从此告别长期使用皮尺测量交通事故现场的“落后状态”。 据了解,办案交警可手持“莱卡PLUS型”激光测距仪瞄准目标轻轻一按,交通事故现场数据即可搞定。该激光测距仪作为交通事故现场测绘系统辅助设备,将现场测量数据及相关信息自动通过蓝牙无线通信方式输入便携式电脑,借用计算机高速数据运算和图形处理功

光学测试技术复习资料

光学检测原理复习提纲 第一章 基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1 对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 2、常见的五种对准方式。 P2 压线对准,游标对准。。。。 3、常见的调焦方法 最简便的调焦方法是:清晰度法和消视差法。p2 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。P14 作用:提供无限远的目标或给出一束平行光。 组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。 2、什么是自准直目镜(P15)(可否单独使用?),自准直法? 一种带有分划板及分划板照明装置的目镜。Zz 自准直:利用光学成像原理使物和像都在同一平面上。 3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17(概念,填空或判断) 1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。 2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。 主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面 (a )"+"字或"+"字 刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

相关文档