文档视界 最新最全的文档下载
当前位置:文档视界 › 第八章 细胞核与染色体

第八章 细胞核与染色体

第八章 细胞核与染色体
第八章 细胞核与染色体

第八章细胞核与染色体

一、间期核的性质

(一)形状:一般来说,间期核的形状是与细胞形状相对应的。当细胞呈等直径形(圆球形、立方形、对称多角形),核呈圆形;当细胞呈长形(柱状、管状、棱状)核则呈椭圆形;当细胞是扁平状,核呈扁盘形。另外,亦有细胞核呈不规则形的,例如:白血细胞(核呈多叶形),纤毛虫(核呈链珠形),蚕丝腺细胞(核呈分枝形)、胚乳细胞(核呈网状)。

(二)大小:一般来说,间期核的体积与细胞体积成正比关系,但不同发育时期也有变化。

(三)数量:通常细胞中都是单核,但也有双核或多核的。例如。乳管细胞(菊科植物)及骨藻细胞中,核有几百个。动物横纹肌细胞及骨骼内的破骨细胞中,核也达一百个左右。这些多核细胞是由于核分裂次数多于胞质分裂所导致的,或者是由于天然发生的细胞融合所造成的(合胞体)。此外,还有少数类型细胞是无细胞核的,例如人的成熟红细胞及植物的成熟筛管细胞,皆是由于分化而丧失了核,故不能分裂增殖,寿命亦有限。

(四)位置:胚胎细胞和幼龄细胞内,细胞核居中,但随着细胞生长和分化,有时核会移位和变形。例如成熟植物细胞之中,细胞核常被中央液泡挤到一侧。

二、间期核的结构

(一)核膜nuclear envelope

1.形态结构:电镜下观察,核膜是由两层平行排列的单位膜组成,即核外膜和核内膜,每层膜的厚度约7.5nm,在

内、外膜之间有宽为20-50nm的间隙,称为核周隙(perinuclear space)。核外膜的外表面附有核糖体,其部分区域与糙面内质网膜相连,∴核周隙与内质网腔是连通的。核内膜上无核糖体附着,其内侧有一层纤维网状结构。称为核纤层nuclear lamina,核纤层的厚度因细胞而异,一般在30nm以下,组成核纤层的蛋白纤维是由3种多肽——核纤层蛋白A、B、C(MW60—75KD)装配而成,这种纤维可与核内膜中的laminB受体结合,又可与染色质的特定区段(异染色质)连接,∴核纤层是维系核膜及染色质的结构支架。核内、外膜在部分区

域相互连接形成贯通内

外的孔道,称为核孔

nulear pore,核孔在核

膜上的数量和密度因细

胞类型和生理状态而异,

凡代谢旺盛、转录活跃的

细胞则核孔多而密。核孔

中有复杂结构,故统称为

核孔复合体nuclear pore

complex,动、植物细胞核

膜上都具有此结构。其具

体构型为:在核孔外缘和

内缘各有一胞质环和核质

环,由这两环分别朝核内

外各伸出8条纤丝,胞质纤丝短而卷曲,核质纤丝细长伸入核内,末端还形成一小环(由8个颗粒组成),型似捕鱼笼。此外,在核孔复合体内部又有一平面对称分布的8个颗粒及1个中央颗粒(或称中央栓,或transporter),这些结构物

皆是核糖核蛋白构成。总之,核孔复合体的基本结构特点是:对垂直于核膜的中心轴是呈八重对称分布格局,而对核膜内外则是不对称分布。应用电镜免疫测定,核孔复合体的标志蛋白是gp210(跨膜糖蛋白),是起锚定核孔复合体作用。另外,中央颗粒上还有一种P62蛋白。从酵母到人,各类生物细胞的核孔蛋白都具有同源性,说明核孔复合体在进化上高度保守。

2、核膜的主要功能

(1)是核内外隔离屏障,使细胞核成为相对独立、稳定的生理功能系统。核内的渗透压、pH值,电位差、化学成分和电磁效应,均有别于细胞质且维持相对恒定,因而细胞核内的生理生化活动能实现专门化。该屏障功能,除依靠核内、外膜之外,还有核周隙和核纤层的作用不应忽视,核周隙是介于核质与胞质之间的生理缓冲区;核纤层能配合核膜维持核的完整性,纤层蛋白对分裂时核膜解体及分裂后核膜重建起调控作用。

(2)控制核内外的物质和信息交换。以核孔复合体通道进行的双向选择性物质运输方式有两种:被动扩散和主动运输。经微量注射胶体金测试,核孔通道有效直径约9nm,离子、小蛋白分子代谢物皆由此通道进行自由扩散,而大分子物质则需主动运输。但也有些直经小于9nm的物质并不能自由扩散过膜,反而直径达26 nm的物质经主动运输却顺利通过,这是因为核孔复合体中的有效通道直径会自行调节,能有选择性地控制穿过核孔的物质双向运输。

例如:输出核外的物质,有在核内组装的核糖体亚单位(RNP颗粒)、mRNA和tRNA前体等。在核内加工完毕的mRNA 可通过核孔输到细胞质中去,而核内不均一RNA(hnRNA,即mRNA的前体)却不能穿过,这是由于mRNA的5,端加上了m7GPPPG帽子的选择信号。另外,还有些蛋白具有核输出信号NES序列。再例如输入核内的物质,有在细胞质中合成的DNA聚合酶、RNA聚合酶、以及组装染色质的组蛋白和非组蛋白,组装核糖体的蛋白质,还有激素受体复合体蛋白等等亲核蛋白质,它们之所以都能被选择性地主动运输进入核内,是由于皆含有一段核定位信号nuclear localization signal ,NLS序列,这是定向进入核孔和在核内定位的信号序列。NLS序列与信号肽及导肽不相同,它可存在亲核蛋白

质的不同部位,并且在引导蛋白质输入后不会被切除,NLS

序列是被核孔复合

体中的NBP s受体蛋

白所识别、结合及

介导穿过核孔的。

总之,核孔复合体

上主动运输的特点

可归纳为:○①信号识别;○②载体介导;○③需GTP供能;○④双向选择;○⑤具饱合动力学规律。

(3)蛋白质合成作用:核外膜外表附着核糖体,其合成产物由核周隙与内质网相连通的管道输走。

(二)核仁nucleolus

核仁是间期核中的重要结构之一。其形状、数目和大小在不同生物细胞中表现不同。一般是圆球形,也有呈不规则形的;有的是单个,也有的呈多个的;凡蛋白质合成旺盛的细胞中核仁明显偏大,而蛋白质合成差的细胞中核仁小。此外,核仁在细胞周期过程中表现出周期性的消失和重现规律,这是进行rRNA合成、加工及核糖体亚单位装配的动态表现。

核仁中,蛋白质占80%,RNA占10—15%,另外还有5—10%的DNA和微量脂类。

核仁无膜包围,其内可大致分三种区域:纤维中心FC,致密纤维组分DFC,颗粒组分GC。纤维中心区域有10nm粗的纤丝,是含有rRNA基因的染色质纤丝。在此区域外围的致密纤维组分区域由大量2—5nm的细纤丝交织成海绵状,这些细纤丝是结合了蛋白质的45S rRNA前体。而在颗粒组成区域则含有许多直径10—20nm的颗粒,这是正在装配中的成熟程度不同的核糖体亚单位,主要是大亚单位。细纤丝和颗粒皆是核糖核蛋白RNP s,除去这些结构物剩下的是以可

溶性蛋白质组成的核仁基质。

核仁组织区nucleolus organizing region ,NOR,是指某一对(或某几对)同源染色体上的一种特殊区域,含有许多rRNA基因拷贝。在间期核中,染色体解螺旋时,NOR

区域的染色质纤丝就是插入核仁中纤维

中心区的10nm粗纤丝;而到分裂期,核

仁中的染色质纤丝螺旋化再重新形成染

色体上的NOR区段。有些生物的NOR是位于染色体的次缢痕,例如玉米的NOR在第6对染色体短臂的次缢痕上,人的NOR 在第13、14、15、21、22这五对染色体的次缢痕处(不过,也有部分生物的NOR不在染色体次缢痕位置)。具有NOR的染色体可统称为核仁染色体。

间期核内核仁明显,是由于编码rRNA 基因的10nm粗的染色质纤丝解螺旋,在活跃转录,指导核仁内rRNA合成、加工及核糖体大、小亚单位装配。

分裂期时,rRNA转录停止,那段10nm粗的染色质纤丝螺旋化卷到核仁染色体上去,并且原已合成及装配的核糖体亚单位都从核孔输出到细胞质中了,∴核仁变小而消失。

核仁的主要功能有:(1)是rRNA前体的转录合成及加工场所,(2)是核糖体亚单位的组装场所。

以染色质铺展技术在电镜下观察rDNA转录情况(非洲爪蟾、蝾螈、伞藻等的核仁中):

伸展的DNA纤维上间隔分布有若干段由平行细丝组成“圣诞树”状结构,这每一段即是rDNA的一个转录单位,而那些细丝即是由RNA聚合酶Ⅰ附着在DNA上的新转录合成rRNA 链,RNA聚合酶Ⅰ从基因起始端开始边读码转录边向基因终止端移动(每段上约有100—200个RNA聚合酶Ⅰ在依次移动工作)因此形成顺转录方向细丝逐渐增长的“圣诞树”。在RNA细丝的游离端可见球状的RNP颗粒。在基因终止端已完成转录的RNA细丝即脱离DNA链,游离至核仁基质中。

rRNA基因属于中等重复序列DNA,非洲爪蟾的含600个拷贝,人的有200个拷贝,这种串联重复排列的rRNA基因,可保证RNA聚合酶能连续高效大量转录,以便大量装配核糖体。∵每个细胞需有107个核糖体才能确保其蛋白质合成运转。

注意! 上述在核仁中的rRNA基因转录单位,仅包含

18S、5.8S和28S rRNA,而5S rRNA基因不在NORs区域,其转录亦不在核仁之中。人约有2000个5S rRNA基因拷贝,也是成簇串联排列,由RNA聚合酶Ⅲ转录,转录后经加工进入核仁颗粒区参与核糖体大亚单位组装。

rRNA前体(45S)合成后,须经过一系列的加工修饰(甲基化、切割降解),才能分成18S、5.8S、28S。注意此加工的对象都不是游离状态的rRNA,而是RNP复合物,经过多步骤剪切,加工组装成核糖体的大、小亚单位,由核孔复合体输出到细胞质中去,小亚单位组装快,大亚单位组装较缓慢。∴颗粒区所见的颗粒主要是大亚单位。

(三)染色质chromatin

1、概念及类型

染色质:是分裂期染色体的组成物质,也是间期核内能被碱性染料(即胞核染料,如:苏木精、卡红、甲绿、碱性品红等)染色的物质。是由DNA、组蛋白、非组蛋白以及少量的RNA所组成的串珠状复合物。通常分为两大类型:常染色质euchromatin 是在分裂间期能正常解螺旋,而被染色较淡的染色质部分。这种状况是其中的基因能进行转录的必要条件。

异染色质heterochromatin 是在分裂间期保持凝缩状态而被浓染的染色质部分。无转录活性,其DNA复制行为比常染色质的复制较晚,而凝缩较早。可分为两种类型:结构异染色质constitutive heterchromatin,是在各种细胞类型和发育阶段都呈凝缩状态的异染色质,分布于染色体的着丝粒区、端粒区、次缢痕及某些染色体的特定区段。

兼性异染色质facultative heterochromatin ,是在某种特定组织细胞里或某个发育阶段,由常染色质转变成的异染色质,其丧失了转录活性。例如:正常女性的体细胞中两条X染色体的染色质原本都是具转录活性的常染色质(追溯其来源分别是来自父母双亲),但受精后16—18天时,其中一条随机性失活凝缩为异染色质,即成为体细胞间期核中呈现的巴氏小体。Lyon 理论(1960年)解释,X染色质失活是剂量补偿效应。

活性染色质:具转录活性的常染色质。非活性染色质:是不转录的染色质,既包括异染色质,也包括基因处于暂时关闭状态的常染色质。∴分裂期染色体上都是非活性的。

2 染色质的组分

DNA:组蛋白:非组蛋白:RNA

1:1: 0.6 : 0.1

(1)染色体DNA

(a)单一序列:不重复(即单拷贝),序列长度>103bp,能转录,大多数结构基因都是单一序列。但是,也有许多单一序列并不是结构基因。

(b)中度重复序列:重复频率为10—105,重复单位平均长度为300bp。多数是不编码序列,起基因调控作用。例:人基因组中的Alu序列家族。但是,也有部分中度重复序列是能转录的,例:编码5种组蛋白的组蛋白基因、rRNA基因、5S rRNA基因和tRNA基因。

(c)高度重复序列:重复频率为105—107,重复单位长度为5—300bp,皆不能转录,主要分布在染色体的着丝粒区和端粒区,构成结构异染色质。大多数高度重复序列由于富含AT碱基,因此在氯化铯密度梯度离心中,会在DNA主带附近形成次要带,故称为卫星DNA satellite DNA。但也有些高度重复序列不能形成次要带。根据串联重复单位长度,还可分出小卫星DNA minisatellite DNA 和微卫星DNA microsatellite DNA,可用于遗传谱系分析和亲子鉴定的DNA指纹分析。

(2)组蛋白

是在染色质中与DNA结合的碱性蛋白质。所有真核细胞中都含有5种蛋白质类型,即H1、H2A、H2B、H3和H4(只有两个例外:①鱼类精子中以鱼精蛋白替代组蛋白,②鱼类和鸟类红细胞中H1被H5所替代)。原核细胞中没有组蛋白,而各种真核细胞中的组蛋白成分、含量都相似,∴组蛋白无种属和组织特异性(H1除外,略有差异)是进化保守的物质。

(3)非组蛋白

是能与染色体上特异DNA序列相结合的酸性蛋白质,具

有种属和组织特异性,非组蛋白种类众多,其功能为:○①控制基因转录和复制;○②协助DNA分子折叠成结构域;○③调节基因表达;○④组成染色体骨架。

组蛋白和非组蛋白都在细胞质之中合成,经核孔进入细

胞核内。但不同之点:组

蛋白仅在细胞周期的S

期合成,而非组蛋白则是

在多个时期都能合成。

序列特异性DNA结合

蛋白的结构模式:①α螺

旋—转角—α螺旋;②锌

指;③Leu拉链;④螺旋

—环—螺旋;⑤HMG蛋白

3、染色质的结构

(1)解聚的染色质结

构:电镜下观察,未经处

理的染色质自然结构为

30nm的纤丝,但经盐溶

液处理的染色质呈现直

径10nm的串珠状纤丝。用微球菌核酸酶消化染色质,若完

全酶解,片段是200bp,若不完全酶解,则片段是200、400、600、800bp。1974年kornberg把这种小球颗粒定名为核小体nucleosome。

(2)核小体结构要点

a)包括200bp左右的DNA、一个组蛋白八聚体及一个组蛋白H1分子;

b)H2A、H2B、H3、H4各两个分子构成扁粒状的核小体核心颗粒(组蛋白八聚体)

c)146bp的

DNA片段在核心颗

粒外盘绕1.75圈

d)组蛋白H1

位于核心颗粒侧

边与DNA结合,锁

住DNA进出端(约

遮盖20bp);

e)相邻核小体之间的连接DNA长度为0(酵母)——80bp (海鞘)不等。

(3)DNaseⅠ超敏感位点(hypersensitive site)与核小体分布的关系

用微量DNaseⅠ处理染色质时,切割处将首先发生在少数特异位点上,被称为超敏感位点,它只出现在基因活跃表达的细胞中,是活性染色质区段的特征。现已知这些位点区域缺少核小体结构,即该区域的DNA序列不受组蛋白八聚体所保护,∴对核酸酶的敏感性是其它染色质区域的100倍以上。活性基因的超敏感位点常在其启动子附近,可能是为RNA 聚合酶、转录因子或其它调控因子提供了结合位点。

(4)核小体结构与DNA复制及转录的关系

核小体是染色质的基本结构,那么当DNA复制时核小体是否必须解体?伴随DNA复制,核小体的组蛋白八聚体又是如何“复制”呢?现已知,复制期(S期)核小体的组蛋白八聚体并不完全解聚,而是以一个中央的四聚体(H3-H4)2和两侧的两个二聚体(H2A/H2B)为基本单元,进行全保留合成,且以随机组合方式重新组装。即DNA复制后的两条子链上的核小体皆由(H3-H4)2和(H2A/H2B)的新、老元件随机组合而成。

至于DNA

①核小体相位改变②核心组蛋白乙酰基化③H1磷酸化④HMG影响⑤“核小体犁”

(四)核基质nuclear matrix

间期核中除了核被膜、核纤层、染色质和核仁之外的基质部分,称为核基质。现已知其中有以蛋白质纤维构成的网络结构,故又称为核骨架nuclear skeleton,这是由10多

H 1螺旋 种非组蛋白纤维蛋白及少量RNA 构成,该结构的外形大小与细胞核基本一致,其外缘与核纤层相连接。核骨架的功能是:①维持细胞核形态;②对DNA 、染色质纤维的核内空间排列起支撑附着作用;③与DNA 复制、转录以及核内大分子物质加工、运输等功能有关。另外,新近还发现“核体”(nuclear bodies )可能是核组分的“分子货仓”。

三、染色体chromsome

(一)中期染色体的形成

间期核中由核小体组成的染色质基本结构,在分裂期是如何浓缩形成染色体呢? 现普遍公认的理论解释是四级螺旋模型。该模型可用简式来表示:

一级结构 二级结构 三级结构 四级结构

DNA 核小体 螺线管 超螺线管 染色单体 (10nm 纤维) (30nm 纤维) 压缩为1/7压缩为1/6 压缩为1/40 压缩为1/5

组蛋白 八聚体

螺旋

折叠

螺旋

解螺旋

由DNA螺旋浓缩到染色体单体,其长度总共被压缩了8400倍。人类体细胞单倍体基因组含3×109bp 的DNA,∵相邻碱基间距离为0.34nm∴其DNA总长度约1米,压缩后约100μm,按23个染色体平均,则为4μm,即与光镜下所见的人类染色体平均长度一致。

关于染色体的内部结构,现已知每条染色体中都有一个由非组蛋白构成的染色体骨架scaffold。即对中期染色体标本采用NaCl或硫酸葡聚糖加肝素处理,去除组蛋白和部分非组蛋白后,在电镜下可发现有一个形态、长度都与原染色体相似的网状纤维骨架。经凝胶电泳分析表明其中有30多种非组蛋白,主要是三种(例如DNA拓扑异构酶Ⅱ)。电镜下还可见染色体骨架上有许多松展裸露的DNA侧环,侧环基

部固定在骨架内,由此有人提出“玫瑰花环”的放射环模型。关于这种染色体骨架——放射环的发现,解释了染色体空间构型的支撑问题,也解释了染色体中非组蛋白的结构作用。现一般认为,四级螺旋模型中所说的二级结构的30nm染色质纤维进一步螺旋折叠,就是在这种非组蛋白支架上卷曲完成的,但对3—4级结构的认识尚未统一。

(二)染色体的外形结构

中期染色体是由两条染色单体所组成,它们互称为姐妹染色单体,在着丝粒之处相连。每条染色体从着丝粒处分为两个臂,两臂等长的称为等臂。两臂长度不等则分别称为长臂(q)和短臂(p)。染色体着丝粒处的缢痕称为主缢痕,而其它部位的缢痕都称为次缢痕。有

少数染色体在短臂末端附近有一次缢

痕,次缢痕外端连一球形结构,称为

(染色体)随体。在有些动物细胞中,

这种带随体的次缢痕是核仁组织区

(NOR)所在部位,这种具NOR的染色体也可称为核仁染色体(例如人的13、14、15、21、22号染色体)。每条染色体臂的末端区域称为端粒,起维持染色体结构稳定作用。着丝粒的英文名称是centromere 或kinetochore,前者是表示姐妹染色单体的连接部位,后者则表示上述部位两侧附着纺锤丝微管区域。现把前者仍翻译为着丝粒,后者翻译为着丝点或动粒。电镜下观察动粒是由蛋白质构成的三层盘状结构,外层和内层的电子密度深,而中层较浅,染色体上有环形的染色质纤维伸入内、中层,纺锤丝微管与外层相连接。

(三)染色体的类型

根据着丝粒所处位置

不同,可将染色体分为四

类:①中部着丝粒染色体(M);②亚中着丝粒染色体(SM);

③亚端着丝粒染色体(ST);④端部着丝粒染色体(T)。

决定性别分化的染色体称为性染色体,而其它染色体相对称为常染色体。

(四)染色体数目变化

在真核生物的体细胞(即非生殖细胞)中,染色体组为二倍体diploid(2n),即染色体都是成对存在,每对互称为同源染色体,即追溯来源,其一来自父方,另一来自母方。而在成熟的生殖细胞中,由于经过了减数分裂,染色体组为单倍体monoploid。如果某物种的染色体数是在基数(n)上整倍数增加,则称为整倍体,例如三倍体(3n),四倍体(4n)等,凡超过二倍以上均可称为多倍体。多倍体中又有同源多倍体和异源多倍体之分,例如前者可是AAAA或BBBB,而后者是AABB。另外,还有非整倍体存在,例如单体2n-1;三体2n+1,缺体2n-2。

(五)染色体的半保留复制

DNA是半保留复制的,而染色体也同样是半

保留复制的。有一种BudR——Giemsa实验能证

明,BudR是5—溴脱氧尿苷,它能替代胸腺嘧啶

核苷参于DNA复制,然后对染色体用Giemsa染

色时,凡DNA双链都含BudR的染色浅,而若DNA

双链中仅单股含BudR的则染色深,因此依据染

色单体上着色深浅便清楚看出其半保留复制的

特征。其原因是因为每条染色单体实质都是由一条DNA双链经过螺旋浓缩而成的。

(六)染色体DNA的关键序列

染色体结构和行为能保证细胞分裂中遗传物质传递的

稳定性和连续性。现已知染色体中有三个必备的结构要素:

○①自主复制DNA序列(ARS);是一段富含AT的序列,是DNA 复制的起点,能确保染色体的自我复制,维持细胞上下世代的遗传物质完全一致;○②着丝粒DNA序列(CEN):是染色体着丝粒中关键序列,能确保染色体遗传物质在细胞分裂中均等分配到两个子细胞中去;○③端粒DNA序列(TEL);端粒由TEL序列和端粒蛋白(包括有端粒酶telomerase)所构成;TEL序列是含(T2G4)n的重复序列,它的存在能避免核酸酶对染色体末端DNA序列的切割,而端粒酶则是由RNA 和蛋白质组成的逆转录酶,它能以其内含的RNA为模板,合

成 (T2G4)n DNA序列,去填补染色体端粒序列复制时5,端RNA 引物切除所留下的缺口。生殖细胞、干细胞、肿瘤细胞中的端粒酶活性高。

根据对染色体上这三种关键序列的认识,现成功构建了酵母人工染色体YAC,用它作为外源DNA的载体,可克隆很大的DNA分子。这是应用细胞生物学知识来解决分子生物学

研究手段的一个典型例子。

(七)多线染色体和刷形染色体

对染色体结构和功能研究中,常遇到一个难题:染色体结构与其表达功能的时相不一致的矛盾,即当分裂期染色体形态结构清晰时,偏偏无转录活性;而到分裂间期转录活跃时,染色体却又处在解螺旋阶段。幸好科学家找到多线染色体和刷形染色体这两种巨大的染色体,它们的结构与其转录功能是同时显现的,∴为染色体研究提供了大量有意义的资料,至今它们仍不失为研究基因表达的好材料。

1、多线染色体

存在于双翅目昆虫幼虫的唾腺、气管、肠和马氏管细胞中(唾腺细胞中的又称为唾腺染色体)。多线染色体的体积比体细胞的常染色体大1000倍。在幼虫生长时,具多线染色体的细胞数目不增加,仅增大体积,其内的多线染色体也随之变大。

多线染色体的生理特征为:①是长期处于永久性前期状

态;②同源染色体配对,

∴其染色体数目比其他

体细胞中的减少一半。

多线染色体实质是由

1024条螺旋程度不高的

染色质纤维平行排列组

合而成,每条染色质纤

维上的染色粒又平行排

列构成染色体上的浓染

横带,∴一条多线染色

体上就呈现有许多宽

窄、深浅不同的带纹,

例如果蝇的唾腺染色体上共有近5000条带纹。早期专家认为,每条带纹就标志着一个基因,而后研究得知,带和带间都含有基因,因此现认为每条带纹可视为一个遗传标记。

多线染色体是由核内有丝分裂的结果,即核内染色质纤

维发生多次复制而不分离,故成熟的多线染色体是经过了10次复制:210=1024条染色质纤维组合而成。在果蝇个体发育的某些生理阶段,多线染色体上部分带区会出现局部膨大的胀泡puff或巴氏环Balbiani ring,出现一段时间后又会消失复原。

第八章 群体遗传学(答案)

第八章群体遗传学(答案) 一、选择题 (一)单项选择题 *1. 基因库是: A.一个体的全部遗传信息B.一孟德尔群体的全部遗传信息C.所有生物个体的全部遗传信息D.所有同种生物个体的全部遗传信息E.一细胞内的全部遗传信息 2. 一个有性生殖群体所含的全部遗传信息称为: A.基因组B.基因文库C.基因库D.基因频率 E.基因型频率 *3. 一个遗传不平衡的群体随机交配()代后可达到遗传平衡。 A.1代B.2代C.2代以上D.无数代E.以上都不对 4. 在10000人组成的群体中,M型血有3600人,N型血有l600人.MN型血有4800人,该群体是: A.非遗传平衡群体B.遗传平衡群体C.χ2检验后,才能判定 D.无法判定 E. 以上都不对 *5.遗传平衡定律适合: A.常染色体上的一对等位基因B.常染色体上的复等位基因C.X-连锁基因D.A+B E.A+B+C *6.不影响遗传平衡的因素是: A.群体的大小B.群体中个体的寿命C.群体中个体的大规模迁移 D.群体中选择性交配E.选择 7.已知群体中基因型BB、Bb和bb的频率分别为40%,50%和10%,b基因的频率为:A.0.65 B.0.45 C.0.35 D.0.30 E.0.25 8.先天性聋哑(AR)的群体发病率为0.0004,该群体中携带者的频率是: A.0.01 B.0.02 C.0.0002 D.0.04 E.0.1 9. PTC味盲为常染色体隐性性状,我国汉族人群中PTC味盲者占9%,相对味盲基因的显性基因频率是: A.0.09 B.0.49 C.0.42 D.0.7 E.0.3 *10.下列哪项不会改变群体的基因频率: A.群体变为很小B.群体内随机交配C.选择放松 D.选择系数增加E.突变率的降低 11. 最终决定一个体适合度的是: A.健康状况B.寿命C.性别D.生殖能力E.生存能力 12. 随着医疗技术的进步,某种遗传病患者经治疗,可以和正常人一样存活并生育子女,若干年后,该疾病的变化是: A.无变化 B.发病率降低 C.发病率升高D.突变率升高E.发病率下降到零 13. 选择放松使显性致病基因和隐性致病基因频率: A.同样的速度增加 B. 同样的速度降低 C. 显性致病基因频率增加快,隐性致病基因频率增加慢D.显性致病基因频率降低快,隐性基因频率降低慢 E. 二者那不变 14. 近亲婚配后代常染色体隐性遗传病的发病风险提高的倍数与致病基因频率q的关系是: A. q越大,提高的倍数越多 B. q越小,提高的倍数越多C.提高的倍数与q无关D.无论q的大小,提高的倍数都一样E.以上都不对 *15.遗传平衡群体保持不变的是: A.基因频率B.基因型频率C.群体的大小D.群体的适合范围E.A十B *16.一对夫妇表型正常,妻子的弟弟是白化病(AR)患者。假定白化病在人群中的发病率为1/10000,这对夫妇生下白化病患儿的概率是: A.1/4 B.1/100 C.1/200 D.1/300 E.1/400 17.下列处于遗传平衡状态的群体是: A.AA:0.20;Aa:0.60;aa:0.20 B.AA:0.25;Aa:0.50;aa:0.25 C.AA:0.30;Aa:0.50;aa:0.20 D.AA:0.50;Aa:0;aa:0.50 E.AA:0.75;Aa:0.25;aa:0

遗传学名词解释

绪论: 变异:生物亲子代间相似的现象. 遗传:生物亲子代之间以及子代不同个体之间存在差异的现象。 遗传工程:把生物的遗传物质费力出来,在体外进行基因切割、连接、重组、转移和表达的技术。 染色体工程:按设计有计划削减,添加和代换同种或异种染色体的方法和技术。 基因工程:是在分子水平对基因进行操作的复杂技术。将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译、表达的操作。 第一章 同源染色体:形态和结构相同的一对染色体。 非同源染色体:这一对染色体与另一对染色体形态结构不同的染色体。 第二.三章(孟德尔遗传定律) 性状:生物所具有的形态结构和生理生化特性。 单位性状:每一个具体的性状 相对性状:同一单位性状在不同个体上可能表现不同,这种单位性状内具有相对差异的性状。 显性性状:一对相对性状中的F1表现出来的性状。 隐性性状:一对相对性状中在F1没有表现出来的性状。 基因:是遗传的物质基础,是DNA或RNA分子上具有遗传信息的核苷酸信息。 基因座:基因在染色体上所占的位置。 显性基因:控制显性性状的基因。 隐性基因:控制隐形性状的基因。 基因型:是决定生物生长发育和遗传的内在遗传组成。 表型:对某一生物体而言是指它具有全部单位性状的总和,但对于某一性状来说就是该性状的具体表现。 等位基因:二倍体生物中位于同源染色体相同基因座位上,以不同方式影响同一性状的两个基因。 复等位基因:在同源染色体想对应的基因座位上存在两种以上不同形式的等位基因。 纯合体:具有纯合基因型的生物体。 杂合体:具有杂合基因型的生物体 杂交:是指两个不同基因型的个体相交

回交:是指杂交子代与亲代之一相交 测交:是指让未知基因型的个体与隐性类型相交,以测定未知基因型个体基因型。 多因一效;一个性状是由多个基因所控制的许多生化过程连续作用的结果。 第四章(连锁遗传) 相斥相:显性基因和隐性基因联系在一起。 相引相:显性基因或隐性基因联系在一起。 伴性遗传:性染色体上的基因所控制的性状的遗传方式。 连锁遗传:把不同性状常常联系在一起想后代传递的现象。 限性遗传:是指位于Y染色体或W染色体上的基因所控制的遗传性状指限于雄性或雌性上表现的现象。 从性遗传:指场染色体上的基因控制的性状在表型上受个体性别影响的现象。 第五章(近亲繁殖和杂种优势) 近亲繁殖:亲缘关系相近的两个个体间交配。 杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 近交系数:是指个体的某个基因座上的两个等位基因来源于共同祖先某个基因的概率。 第六章基因突变 基因突变:指一个基因变为它的等位基因、或染色体上一个座位内的遗传物质的变化叫基因突变。 第七章(染色体数目和结构变异) 缺失:染色体丢失了带有基因的某一区段。 重复:正常染色体增加了与自己相同的某一区段的结构变异叫重复。 倒位:正常染色体某一区段的基因序列发生了180°颠倒的现象。 易位:两个非同源染色体间发生片段转移的现象称为易位。 顶端缺失:指缺失的区段位于染色体某臂的外端。 中间缺失:指缺失的区段位于染色体某臂的中间 顺接重复:指重复区段的基因序列与原染色体上基因的序列相同的重复。 反接重复:指重复区段内的基因顺序发生了180度颠倒。 剂量效应:同一种基因对表型的作用随基因数目的增多而呈一定的累加增长。 位置效应:基因由于改变了在染色体上的位置而带来表型效应改变的现象。 相互易位:指两个非同源染色体都被折断,两个断片交换重接到两条被折断的非同源染色

第十章 细胞核与染色体

第十章细胞核与染色体 一、填空题 1、非组蛋白是指与染色体上特异_____结合的蛋白质,它实质上是基因表达的_____。 2、人工染色体应有的关键序列是_____、_____、_____。 3、核膜在细胞进化上有很大的意义,它具有两大功能:_____、_____。 4、在胞质内合成并输入至核内的亲核蛋白,都含有特殊的_____序列,起_____作用。 5、染色体制备的_____技术是由美籍华人_____于1952年发明的。 6、核小体中几种组蛋白是依赖_____、_____力相互作用的。 7、着丝粒与着丝点是两个不同的概念,化学本质也不相同,前者是_____,后者则是_____。 8、核纤层蛋白含有与核纤层蛋白分子行为有关的序列,其中_____与核纤层蛋白在细胞核 内的定位有关,_____与核膜的结合相关。 9、染色体工程是按照一定的设计,有计划_____、_____和_____同种或异种染色体或其一 部分的方法和技术。 10、核小体是染色质包装的基本结构单位,每个核小体单位包括200bp左右的DNA、1个 _____和一分子的_____。 11、细胞核外核膜表面常附有颗粒,且常常与相连通。 12、核孔复合物是特殊的跨膜运输蛋白复合体,在经过核孔复合体的主动运输中,核孔复合 体具有严格的选择性。 13、是蛋白质本身具有的、将自身蛋白质定位到细胞核中去的特异氨基酸序列。 14、核孔复合体主要由蛋白质构成,迄今已鉴定的脊椎动物的核孔复合物蛋白成分已达到十 多种,其中与是最具代表性的两个成分,它们分别代表着核孔复合体蛋白质的两种类型。 15、细胞核中的区域含有编码rRNA的DNA序列拷贝。 16、染色体DNA的三种功能元件是、、。 17、染色质DNA按序列重复性可分为、、等三类 序列。 18、染色质从功能状态的不同上可以分为和。 19按照中期染色体着丝粒的位置,染色体的形态可分为、、、四种类型。 20、着丝粒-动粒复合体可分为、、三个结构域。 21、哺乳类动粒超微结构可分为、、三个区域, 在无动粒微管结合时,覆盖在外板上的第4个区称为。 22、核仁超微结构可分为、、三部分。 23、广义的核骨架包括、、。 24、核孔复合体括的结构组分为、、、。 25、间期染色质按其形态特征和染色性能区分为两种类型:和,异染色质又 可分为和。 26、DNA的二级结构构型分为三种,即、、。 27、常见的巨大染色体有、。 28、染色质包装的多级螺旋结构模型中,一、二、三、四级结构所对应的染色体结构分别 为、、、。 29、核孔复合物是的双向性亲水通道,通过核孔复合物的被动扩散方式 有、两种形式;组蛋白等亲核蛋白、RNA分子、RNP颗粒等

细胞生物学 第八章 细胞核 知识点

第八章细胞核 粗面内质网(rER)相连; 核纤层),决定细 胞核形态; : 内、外膜相互融合形成的环状开口,嵌有核孔复合体 2.核孔复合物 (1)结构 环:胞质环、核质环(核篮); 辐:柱状亚单位、腔内亚单位、环带亚单位; 中央栓 (2)功能------双向选择性亲水通道 被动运输:孔径10nm,≤60kDa 主动运输:孔径20nm >亲核蛋白的核输入信号:核定位信号(NLS) ;10个氨基酸的短肽,指导亲核蛋白完成核输入后并不切除 (NLS 、NES、信号肽和信号斑) (importinα/β、nucleoporin、Ran—GTP/GDP) >亲核蛋白的入核转运:①亲核蛋白通过NLS识别importin α,与可溶性NLS 受体importinα/β异二聚体结合,形成转运复合物; ②在importinβ的介导下,转运复合物与核孔复合体的胞质纤维结合; ③转运复合物通过改变构象的核孔复合体从胞质面被转移到核质面; ④转运复合物在核质面与Ran-GTP结合,并导致复合物解离,亲核蛋白释放;

⑤受体的亚基与结合的Ran并与importinβ解离,Ran-GDP返回核内再转换成Ran-GTP状态。 >mRNA 、tRNA和核糖体亚基的核输出:核输出信号nuclear export signal (NES)>请说明Ran在亲核蛋白的核输入过程中所起的作用。 ①在细胞质内, 受体(importin)与cargo protein的NLS结合 ②受体/亲核蛋白复合物和Ran-GDP 穿过核孔进入细胞核 ③在核质内,在GEF作用下Ran-GDP 转变为Ran-GTP,并与受体importin结合 ④构象改变导致受体释放出cargo protein ⑤受体-Ran-GTP complex 被运回细胞质, 在GAP 作用下Ran-GTP被水解为Ran-GDP, Ran与受体importin分离 3.核纤层lamina 是位于细胞核内层核膜下的纤维蛋白片层或纤维网络 (1)结构和组成:由核纤层蛋白laminA、B、C组成 (2)功能 在间期细胞中,核纤层为核膜提供一个支架; 在分裂细胞中,核纤层的可逆性解聚调节核膜的崩解和重建; 核纤层蛋白磷酸化时,核膜崩解;核纤层蛋白去磷酸化时,核膜重建; 在间期细胞中,核纤层为染色质提供核周锚锭部位,维持和稳定间期染色质高度有序的结构; 调节基因表达,调节DNA修复 二.染色质和染色体 1.组蛋白和非组蛋白 与染色质DNA结合的蛋白质负责DNA分子遗传信息的组织、复制 (1)组蛋白·构成真核生物染色体的基本结构蛋白 富含Arg和Lys的碱性蛋白质,等电点在pH10.0以上, 可以和酸性DNA紧密结合,分为H1, H2A, H2B, H3, H4五种。H2A, H2B, H3, H4为核小体组蛋白,在进化上十分保守,没有种属和组织特异性。H1的种族保守性低,有一定的种属和组织特异性。 Histone在维持染色体结构和功能的完整性上起着关键性的作用。 Histone与DNA在细胞周期的S期合成。DNA复制停止,Histone合成也立即停止。 (2)非组蛋白·主要指导与特异DNA序列结合的蛋白质 富含天冬氨酸、谷氨酸和色氨酸的酸性蛋白质。 占染色体蛋白质的60—70%,在不同组织细胞中的种类和数量都不相同。在整个细胞周期中都有不同类型的非组蛋白合成。 能识别并结合在特异的DNA序列上,识别和结合靠氢键和离子键。 非组蛋白在调节真核生物基因表达,染色体高级结构的形成等方面起着重要的作用。 α螺旋-转角-α螺旋模式 锌指模式 Cys2/His2 锌指单位和Cys2/ Cys2锌指单位

人类染色体组型分析-实验报告

【实验题目】 染色体组型分析 【实验目的】 1. 掌握染色体组型分析的各种数据指标。 2. 学习染色体组型分析的基本方法。 3.对照标准图型,学习识别人体各对染色体的带型特征。 4.初步掌握人体染色体组型带型分析方法。 5.了解染色体组型与带型分析的意义。 【实验材料与用品】 1.器材:直尺、剪刀、胶水、计算器、白纸 2.材料:人体细胞染色体放大图 【实验原理】 染色体组型又称核型,是指将动物、植物、真菌等的某一个体或某一分类群(亚种、种、属等)的体细胞内的整套染色体,按它们相对恒定的特征排列起来的图像。核型模式图是指将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像。 (一)描述染色体的四个参数: 1.相对长度= 每条染色体长度 单倍常染色体之和+X 2.臂指数= 长臂的长度 q 短臂的长度 p 为了更准确地区别亚中部和亚端部着丝粒染色体,1964年Levan 提出了划分标准: ① 1.0-1.7之间,为中部着丝粒染色体(M ) ② 1.7-3.0之间,为亚中部着丝粒染色体(SM ) ③ 3.0-7.0之间,为压端部着丝粒染色体(ST ) ④ 7.0以上,为端部着丝粒染色体(T ) ×100 (相对长度可以用来表示每条染色体的长度) ×100 (臂指数可以用来确定臂的长度)

3.着丝粒指数 = 短臂的长度 p ×100 (着丝粒指数可以决定着丝粒的相对位置)染色体全长 p+q 按Levan划分标准: ① 50.0-37.5之间为M ② 37.5-25.0之间为SM ③ 25.0-12.5之间为ST ④ 12.5-0.0之间为T 4.染色体臂数(NF):根据着丝粒的位置来确定。 a.端着丝粒染色体(T),NF=1; b.中部、亚中部、亚端部着丝粒染色体(M,SM,ST),NF=2。 (二)人类体细胞染色体的分类标准及其主要特征 染色体组型及分群依据:主要根据染色体的相对长度,着丝粒的位置,其次是臂的长短,以及次级缢痕或随体的有无等方面。 分组排队原则:着丝粒类型相同,相对长度相近的分一组;同一组的按染色体长短顺序配对 排列;各指数相同的染色体配为一对;可根据随体的有无进行配对;将染色体按长短排队, 短臂向上。 染色体组型图的应用

植物染色体工程与育种_米福贵

植物染色体工程与育种* 米福贵 云锦凤 逯晓萍 (内蒙古农牧学院,呼和浩特 010018) 摘要: 对植物染色体工程与双二倍体、异附加系、异代换系、易位系、单体与缺体系统进行了综述。 关键词: 染色体工程;育种 分类号:Q942 文献标识码:A 文章编号:1000-6311(1999)02-0064-04 C hromosomal Engineering and Plant Breeding.M I Fu gui,YUN Jin feng,LU Xiao ping(Dep artment o f Gr assland Science,I nner Mongolia I nstitute o f Agriculture and A nimal H usbandry,H ohhot010018):Gr assland o f China,No.2,1999,pp.64~ 67,78. Abstract: This paper review ed the chromosomal eng ineering in the aspects of double diploid,hetero-additive line,hetero-replacement line,ex chang e line,monosome one incomplete chromosome systems. Key words: Chromosom al engineering;Plant breeding 染色体是生物细胞核中最重要而稳定的成分,它具有特定的形态结构和一定的数目,具有自我复制能力,并积极参与细胞的代谢活动,能出现连续而有规律的变化,是决定物种繁衍的遗传物质的载体。如果染色体在数量、结构、功能等方面发生变异,最终都会导致生物遗传性状的改变。据此,人们按照预定的目标,操作处理染色体,进而培育新品种乃至新物种,这便是人们所说的染色体工程。 染色体工程(chromosomal eng ineering)这一术语最早是由 C.M.Rick和G.S. Khush在1966年论述番茄单体、三体和缺体时首先提出的。现在对这一概念的理解,是指按照人们的预先设计,通过附加、代换、削减和易位等染色体操作方法和技术改变物种染色体组成,进而定向改变其遗传特性的新技术。有时人们也把这种技术称为染色体操作(chromosomal manipulation),它是染色体水平上的细胞工程。 目前,植物学家们已经将染色体工程用于作物品种的改良,使其成为一门育种新技术,此外它也是研究基因定位和异源基因导入的有效手段。其基本的操作程序包括如下几个步骤:杂交;依靠杂种(或亲本)减数分裂时染色体联合的规律性变化产生具有不同染 *国家教委资助课题 收稿日期:1998-09-29 作者简介:米福贵,男,博士,副教授,39岁,1982年本科毕业于内蒙古农牧学院草原系,多年来一直从事植物遗传育种的教学和科研工作,在国内外有关刊物上发表论文30余篇. 中国草地 Grassland of China 1999,No.2,pp.64~67,78

第八章细胞核

第八章细胞核 一、选择题 1.关于核被膜下列叙述错误的是________ 2.A.由两层单位膜组成 3.B.有核孔 4.C.有核孔复合体 5.D.外膜附着核蛋白体 6.E.是封闭的膜结构 7.核膜的特殊作用是________ 8.A.控制核一质之间的物质交流 9.B.与粗面内质网相通 10.C.把遗传物质DNA集中于细胞内特定区域 11.D.附着核糖体 12.E.控制RNA分子在核一质之间进出 13.下列细胞器未发现于原核细胞的是________ 14.A.质膜 15.B.核糖体 16.C.核膜 17.D.细胞壁 18.E.液泡 19.在DNA分子中没有的碱基是_________ 20.A.胸腺嘧啶 21.B.胞嘧啶 22.C.鸟嘌呤 23.D.尿嘧啶 24.E.腺嘌呤 25.真核细胞的遗传物质DNA分布在___________ 26.A.细胞核

27.B.细胞质 28.C.细胞核和内质网 29.D.细胞核和高尔基体 30.E.细胞核和线粒体 31.rRNA的主要合成部位是_________ 32.A.高尔基体 33.B.细胞质 34.C.粗面内质网 35.D.核仁组织区 36.E.滑面内质网 37.关于细胞核下列叙述错误的是_________ 38.A.原核细胞与真核细胞主要区别是有无细胞核 39.B.核的主要功能是贮存遗传信息 40.C.核的形态有时和细胞的形态相适应 41.D.每个真核细胞只能有一个核 42.E.核仁存在于核内 43.电镜下见到的间期细胞核内侧高电子密度的物质是_________ 44.A.RNA 45.B.组蛋白 46.C.异染色质 47.D.常染色质 48.E.核仁 49.核质比反映了细胞核和细胞体积之间的关系,当核质比变大时,说明_______ 50.A.细胞质随细胞核的增加而增加 51.B.细胞核不变而细胞质增加 52.C.细胞质不变而核增大 53.D.细胞核与细胞质均不变 54.E.细胞质不变而核减小。 55.rRNA是由_________

8.第八章 群体遗传学

(一)选择题(A型选择题) 1.群体中尿黑酸尿症(AR)的杂合子频率为0.004,那么______。 A.随机婚配后代患尿黑酸尿症的风险是0.00002 B.随机婚配后代患尿黑酸尿症的风险是0.00004 C.姑表兄妹婚配后代患尿黑酸尿症的风险是0.008 D.姑表兄妹婚配后代患尿黑酸尿症的风险是0.004 E.舅甥女之间的近婚系数是1/8 2.孟德尔群体是指。 A.生活在一定空间范围内,能相互交配的同种个体 B.生活在一定空间范围内的所有生物个体 C.生活在一定空间范围内能相互交配的所有生物个体 D.生活在一定空间范围内的所有同种生物个体 E.以上都不对 3.基因库是指。 A.一个个体的全部遗传信息 B.一个孟德尔群体的全部遗传信息 C.所有生物个体的全部遗传信息 D.所有同种生物个体的全部遗传信息 E.一个细胞内的全部遗传信息 4.一个遗传不平衡的群体,随即交配多少代后可达到遗传平衡。 A.1代 B.2代 C.2代以上 D.无数代 E.以上都不对 5.一个947人的群体,M血型348人,N血型103人,MN血型496人,则。 A.M血型者占36.7% B.M基因的频率为0.66 C.N基因的频率为0.63 D.MN血型者占55.4% E.N血型者占36.7% 6.______不是影响遗传平衡的因素。 A.群体的大小 B.群体中个体的寿命 C.群体中个体的大规模迁移 D.群体中选择性交配 E.选择 7.Hardy-Weinberg平衡律不含______。 A.在一个大群体中 B.选型婚配 C.没有突变发生 D.没有大规模迁移 E.群体中基因频率和基因型频率在世代传递中保持不变 8.在一个100人的群体中,AA为60%,Aa为20%,aa为20%,那么该群体中______。 A.A基因的频率为0.3 B.a基因的频率为0.7 C.是一个遗传平衡群体 D.是一遗传不平衡群体 E.经过一代后基因频率和基因型频率都会发生变化 9.对于一种相对罕见的X连锁隐性遗传病,其男性发病率为q, ______ 。 A.人群中杂合子频率为2pq B.女性发病率是p2 C.男性患者是女性患者的两倍 D.女性患者是男性患者的两倍 E.女性发病率为q2 10.在遗传平衡的基础上,下列数据不对的是______。 A.对于一种罕见的AD病,几乎所有的受累者均为杂合子 B.对于一种罕见的AR病,杂合携带者的频率约为致病基因频率的2倍 C.对于一种罕见的XD病,男性患者是女性患者的1/2 D.对于一种罕见的XR病,男性患者为女性患者的1/q E.对于一种罕见的Y伴性遗传病,男性患者是女性患者的2倍 11.以AR为例,亲属之间的亲缘系数不对的是______。 A.姨表兄妹为1/8 B.祖孙为1/4 C.舅甥为1/2 D.同胞兄妹为1/2 E.同卵双生子兄妹为1 12.能影响遗传负荷的因素是______。

人类染色体图及各带特点(R显带)

R带染色体的识别 正常中国人体细胞的R带带型特点和Dutrillaux提 供的R带带型基本在一致 1号 p:近端2个中等着色带,远端1条特别宽的深着色带,通常由3条带融合而成,约占1∕2长,二者之间为一宽的浅染区;q:中央一个浅染区将q分成大致相等的两部分。每一部分个由2-3条中等色带组成;着丝粒和次缢痕为阴性节段。 2号 p:3-4着色程度不同的带。自内向外逐渐加深;q:近端和远端各有2-3条中等着色带,中间为宽的淡然区,其中央可见1条窄的浅染带。 3号 p:中央1条渗着色带,远端一条窄的中等着色带,其余均淡染区;q:中央偏内侧处1条深着色带,远端1条窄的中等着色带,两者间的淡染区较p的淡染区宽; 着丝粒及其上下方为阴性节段。 4号 p近端着丝粒处1条中等着色带,末端1条深着色带,其间为淡染区;q:除远端1条窄的中等着色带外,其余均淡染有的可见4条宽窄不一的深染带。 5号 p:近端1条中等着色带,远端1条深着色带;q:近端1条中等着色带,远端3条深着色带,其内侧两带常常融合,末端带稍浅。 6号 p:近端1条宽的深着色带,远端1条窄的中等着色带;q:近端为浅染区,中央有1条窄的中等着色带,远端1条稍宽的深着色带。 7号 p:近端和中央各有1条中等着色带,远端一条深着色带,其间为淡染区;q:3条分布大致均匀的深着色带。近端和远端的带较宽,中间的带较窄。8号 p:2条中等着色带;q:远端一条深着色带,其上方约1∕3处1条窄的浅着色带,其余均淡染。

9号 p:近端一条深着色带,其余均淡染;q:中央和远端各1条深着色带,常互相融合;着丝粒区为阴性节段。10号 p:2条均匀分布的中等着色带:q:3条均匀分布的深着色带,常融合在一起,近着丝粒处1条窄的中等着色带。 11号 p:近端和远端1条中等着色带,中间为染区;q:近端和远端各1条深着色带,近端者比远端者宽而深,中间为宽阔的淡染区。 12号 p:近端和远端1条窄的中等着色带,中间为淡染区区;q:中央1个宽阔的淡染区将近端和远端的2个深着色带分开,远端者比进端者宽且深。 13号 p:随体不定着色;q:近端2条深着色带,常融合,远端1条中等着色带,中间为淡染区。 14号 p:随体不定着色;q:近端为浅染区,远端可见2条分布均匀的深着色带。 15号 p:随体不定着色;q: 中央1条窄的淡染带将q分成近端和远端两个宽的深着色区。 16号 p:全部深染;q:中央和远端个各1条深着色带,常融合在一起;着丝粒区为阴性节段。 17号 p:全部深染;q:近端和远端各1条深着色带,中间为窄的淡染区。 18号 p:近端为浅染区,远端1条窄的中等着色带;q :中央一条窄的中等着色带将宽阔的浅染区分成上下两部分。 19号 p:全部为1个深着色带;q:1个与p相仿的深着色带;着丝粒区为阴性节段。 20号 p:近端1条窄的中等着色带,其余均淡染;q:全部为一个宽的深着色带。 21号 p:随体不定着色;q:近端浅染,远端1个窄的中等着色带。 22号 p:随体不定着色;q:全部为1个宽的深染色带。 X p:近端为1个深着色带,远端为1个中等着色带:q:近端1个窄的中等着色带,远端2-3个窄的中等着色带,中间为浅染区。 Y p:全部为中等着色带;q:全部为浅染区。且自内向外逐渐变浅。

161203140143111_第十章 细胞核与染色体(A卷)20161203134522答案

江西师范大学生命科学学院2015-2016学年二学期 课程考试试卷答案(A卷) 课程名称:细胞生物学考试时间:120分钟年级:xxx级 专业:xxx 题目部分,(卷面共有30题,100分,各大题标有题量和总分) 一、名词解释(12小题,共48分) 1、隔离子 答案:防止处于阻遏状态与活化状态的染色质结构域之间结构特点向两侧扩展的染色质DNA序列。 2、左旋DNA 答案:1979年,美国麻省理工学院的Rich首先发现左旋DNA。左手螺旋是指5'端→3'端链前进的方向对着自己,链旋转的方向是顺时针,左旋DNA的整个糖-磷酸骨架呈“Z”字形曲折,在天然DNA中,某些富GC区往往呈左旋。这种DNA的生物学意义在于与基因调控有关,另外与细胞癌变有关。 3、核(纤)层蛋白 答案:组成脊椎动物核纤层的非膜蛋白质。核层蛋白是属于中等纤维的多肽。根据其在SDS-聚丙烯酰胺凝胶电泳上所出现的3条特征性的带,将构成核层的蛋白分为核层蛋白A、B、C,分子质量在60 000~70 000 Da左右,这3种蛋白构成一个纤维网络,既与核内膜上特定的蛋白质结合,又与染色质特定部位相连系。 4、核型模式图 答案:将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像称为核型模式图,它代表一个物种的核型模式。 5、A-型DNA 答案:相对湿度为75%时的DNA钠盐纤维,右手双股螺旋,每圈螺旋11个碱基对,螺距3.2 nm,螺旋扭角为33 ,每个碱基对的螺旋上升值为0.29 nm,碱基倾角13 ,碱基平面 不与螺旋轴垂直。 6、微卫星DNA 答案:重复单位序列最短,具高度多态性,在遗传上高度保守,为重要的遗传标志。人类基因组中有30000个不同的微卫星位点。 7、单一DNA序列 答案:其顺序在基因组中只有一次或少数几个拷贝,多是结构基因顺序,能转录mRNA,是最终合成蛋白质的密码。只占5%左右。 8、卫星DNA 答案:在等密度CsCl梯度离心时,在DNA主沉降带以外的DNA小沉降带,是一部分碱基组成特殊(G-C碱基对高,有较高的浮力密度,处在主沉降带的下面)而又高度重复的DNA。重复单位长5~100 bp,主要分布在着丝粒区。

第八章 人类性别决定与性别异常

第八章人类性别决定与性别异常 一、性别决定的复杂性: 概述: (1)XY型 (2)外形能明确区分。 (一)性别决定的分化发育过程: 1、性别决定:在受精时的一瞬间即决定了,XX-女,XY-男,,X染色体是中性的,Y染色体的有无是关键:有—男性,没有—女性。 2、性别分化: (1)6-7周之前的期胚胎是中性的,具有两性结构—原始性腺(生殖脊)是由两部分组成: a、外胚层组织(皮质)和内部质块(髓质) b、两对与性器官发育有关的原始导管:一对是女性中才可能发育的苗勒氏管;另一对是男性中才可能发育的午非氏管。 (2)初级性别分化:即形成第一性征的重要时期。胚胎发育在6-7周之后,才正式通过初级性别分化。 a、正常XX胚胎中,皮质部分开始发育逐 渐形成胚胎性卵巢,苗勒氏管逐渐发育成输卵管、子宫等女性生殖器官;与此同时髓质部分和午非氏管逐渐退化。

b、正常XY胚胎中,髓质部分逐渐分化发 育成胚胎性睾丸,午非氏管逐渐发育成男性生殖器官;与此同时皮质部分和苗勒氏管逐渐退化。图8-1。 (3)次级性别分化:青春期则是性别分化发育的次级性别分化阶段,就是形成第二性征的重要时期。由一系列激素所调控。无论男性女性体内均能分泌雄性和雌性激素,看哪一种占优势。男性—雄性激素优势;女性—雌性激素优势。如果相反,那么就发生男性像女性,女性像男性。 (二)性别异常: 1、概念:性别异常是指性腺发育不全和两性畸 形。它包括染色体畸变所引起的性染色体病。 a、如;Turner 综合征45,X 女性;Klinefelter综合征47,XXY男性。 b、通常把这两种性腺发育不全的性染色体病称为性别异常,其次,还有各种类型的两性畸形。 2、两性畸形的共同症状: (1)概念:是患者体内性腺体结构和外部第二性征在不同程度上均具有两性特征,又被叫做间性者,都没有生育能力。 (2)两性畸形又可分为真假两性畸形的类别: ①假两性畸 :遗传性别是正常的XX、XY,但是第一和第二性征与遗传性别正好相反:

第八章-群体遗传学(答案)

第八章-群体遗传学(答案) 第八章群体遗传学(答案) 一、选择题 (一)单项选择题 *1.基因库是: A ?一个体的全部遗传信息 B ?一孟德尔群体的全部遗传信息 C ?所有生物个体的全部遗 传信息 D ?所有同种生物个体的全部遗传信 息E. —细胞内的全部遗传信息 2. 一个有性生殖群体所含的全部遗传信息称为: A ?基因组 B ?基因文库C.基因库D ?基因频率 E.基因型频率 *3. 一个遗传不平衡的群体随机交配()代后可达到遗传平衡。 A . 1代B. 2代C. 2代以上D ?无数代E .以上都不对 4.在10000人组成的群体中,M型血有3600人,N 型血有1600人.MN型血有4800人,该群体是:

A ?非遗传平衡群体 B ?遗传平衡群体 C?x2检验后,才能判定 D ?无法判定 E.以上都不对 *5 ?遗传平衡定律适合: A ?常染色体上的一对等位基因B?常染色 体上的复等位基因C. X-连锁基因 D. A+B E. A+B+C *6 ?不影响遗传平衡的因素是: A ?群体的大小 B ?群体中个体的寿命 C ?群体中个体的大规模迁移 D ?群体中选择性交配E.选择 7.已知群体中基因型BB、Bb和bb的频率分别为40%, 50%和10%, b基因的频率为: A . 0.65 B . 0.45 C ?0.35 D ?0.30 E. 0.25 8先天性聋哑(AR)的群体发病率为0.0004,该群体中携带者的频率是: A.0.01 B.0.02 C.0.0002 D.0.04 E.0.1 9. PTC味盲为常染色体隐性性状,我国汉族人群 中PTC味盲者占9%,相对味盲基因的显性基因频率是: A.0.09 B.0.49 C.0.42 D.0.7 E.0.3 *10 ?下列哪项不会改变群体的基因频率: A ?群体变为很小 B ?群体内随机交配 C ?选择放松

细胞生物学第十章细胞核与染色体

第十章细胞核与染色体 一、间期核的性质 (一)形状:一般来说,间期核的形状是与细胞形状相对应的。当细胞呈等直径形(圆球形、立方形、对称多角形),核呈圆形;当细胞呈长形(柱状、管状、棱状)核则呈椭圆形;当细胞是扁平状,核呈扁盘形。另外,亦有细胞核呈不规则形的,例如:白血细胞(核呈多叶形),纤毛虫(核呈链珠形),蚕丝腺细胞(核呈分枝形),胚乳细胞(核呈网状)。(二)大小:一般来说,间期核的体积与细胞体积成正比关系,但不同发育时期也有变化。 (三)数量:通常细胞中都是单核,但也有双核或多核的。例如。乳管细胞(菊科植物)及骨藻细胞中,核有几百个。动物横纹肌细胞及骨骼内的破骨细胞中,核也达一百个左右。这些多核细胞是由于核分裂次数多于胞质分裂次数所导致的,或者是由于天然发生的细胞融合所造成的(合胞体)。此外,还有少数类型细胞是无细胞核的,例如人的成熟红细胞及植物的成熟筛管细胞,皆是由于细胞分化而导致丧失了核,故再不能分裂增殖了,寿命亦十分有限。 (四)位置:胚胎细胞和幼龄细胞内,细胞核居中,但随着细胞生长和分化,有时核会移位和变形。例如成熟的植物细胞之中,细胞核常被中央液泡挤到一侧边位置。 二、间期核的结构 (一)核膜nuclear envelope 1.形态结构:电镜下观察,核膜是由两层平行排列的单位膜组成,即核外膜和核内膜,每层膜的厚度约7.5nm,在内、外膜之间有宽为20-50nm的间隙,称为核周隙(perinuclear

space)。核外膜的外表面附有核糖体,其部分区域与糙面内质网膜相连,∴核周隙与内质网腔是连通的。核内膜上无核糖体附着,其内侧有一层纤维网状结构。称为核纤层nuclear lamina,核纤层的厚度因细胞而异,一般在30nm以下,组成核纤层的蛋白纤维是由3种多肽——核纤层蛋白A、B、C(MW60—75KD)装配而成,这种纤维可与核内膜中的laminB受体结合,又可与染色质的特定区段(异染色质)连接,∴核纤层是维系核膜及染色质的结构支架。核膜上具有能贯通内外的孔道,称为核孔nulear pore,核孔在核膜上的数量和密度因细胞类型和生理状态而异,凡代谢旺盛、转录活跃的细胞则核孔多而密。核孔中有复杂结构,故统称为核孔复合体nuclear pore complex,动、植物细胞核膜上都具有 此结构。其具体构型为:在核孔外 缘和内缘各有一胞质环和核质环, 由这两环分别朝核内外各伸出8条 纤丝,胞质纤丝短而卷曲,核质纤 丝细长伸入核内,末端还形成一小 环(由8个颗粒组成),型似捕鱼 笼。此外,在核孔复合体内部 又有一平面对称分布的8个 颗粒及1个中央颗粒(或称中 央栓),这些结构物皆是核糖 核蛋白构成。总之,核孔复合 体的基本结构特点是:对垂直 于核膜的中心轴是呈八重对称分布格局,而对核膜内外则是不对称分布。应用电镜免疫测定,核孔复合体的标志蛋白是gp210(跨膜糖蛋白),是起锚定核孔复合体作用。另外,中央颗粒上还有一种P62蛋白。从酵母到人,各类生物细

第八章 细胞核练习题及答案

第八章细胞核名词解释 1.核纤层( nuclear lamina) 2.亲核蛋白( karyophilic protein) 3.染色质( chromatin 4.常染色质( euchromatin) 5.异染色质( heterochromatin) 6.核型( karyotype) 7.核小体( nucleosome) 8.核孔( nuclear pore) 二、单项选择题 1.不参与染色质构成的是 A.组蛋白 B.非组蛋白 C. DNA D. RNA E.脂类 2.关于核膜的错误叙述是 A.由两层单位膜组成 B.与内质网相连续 C.有核孔复合体 D.外核膜有核糖体附着 E.染色质直接附着于内核膜 3.组成核小体核心颗粒的组蛋白八聚体是 A.2H1+2H2A+2H3+2H4 B.2H1+2H2A+2H3+2H4 C.2H1+2H2A+2H2B+2H4 D.2H1+2H2B+2H3+2H4 E.2H2A+2H2B+2H3+2H 44.关于细胞核的错误叙述是 A.有无细胞核是原核细胞与真核细胞的主要区别

B.细胞核的主要功能是贮存遗传信息 C.细胞核的形态常与细胞的形态相适应 D.一个真核细胞只能有一个细胞核 E.核仁存在于细胞核内 5.电镜下观察到的核膜内侧高电子密度物质是 A. RNA B.组蛋白 C.异染色质 D.常染色质 E.核仁 6.细胞核内最重要的物质是 A.核蛋白 B.组蛋白 C.非组蛋白 D. RNA E. DNA 7.染色体形态特征最明显的有丝分裂时期是 A.前期 B.前中期 C.中期 D.后期 E.末期 8.组成核小体的主要物质是 A.DNA和组蛋白 B.RNA和组蛋白 C.DNA和非组蛋白 D.RNA和非组蛋白 E.DNA和RNA 9.下列物质不能自由通过核孔复合体进行转运的是 A. K+ B.双糖 C.氨基酸 D.核糖体蛋白 E.核苷酸 10.蛋白质合成旺盛的细胞所具有的特点是 A.细胞体积明显增大 B.细胞体积明显减小 C.核仁明显增大 D.核仁明显减小

第十章细胞核与染色体

第十章细胞核与染色体 第四节核基质 核基质(nuclear matrix )或称核骨架(nucleoskeleton)为真核细胞核内的网络结构,是指除核被膜、染色质、核纤层及核仁以外的核内网架体系。由于核基质与DNA复制,RNA 转录和加工,染色体组装及病毒复制等生命活动密切相关,故日益受到重视。 一、核基质的组成 核基质的组成较为复杂,主要组分有三类:①非组蛋白性纤维蛋白,分子量40-60KD,占96%以上,其中相当一部分是含硫蛋白,其二硫键具有维持核骨架结构完整性的作用;除纤维蛋白外,还有10多种次要蛋白质,包括肌动蛋白和波形蛋白,后者构成核骨架的外罩;核骨架碎片中还存在三种支架蛋白(scaffold proteins,SCⅠ、SCⅡ、SCⅢ),SCⅡ、Ⅲ的功能尚不明确,SCⅠ是DNA拓朴异构酶Ⅱ。②少量RNA和DNA,RNA对维持核骨架的三维结构是必需的,而DNA称为基质或支架附着区(matrix /scaffold associated region, MAR或SAR),通常为富含AT的区域。③少量磷脂(1.6%)和糖类(0.9%)。 核骨架纤维粗细不等,直径为3-30nm,形成三维网络结构与核纤层,与核孔复合体相接,将染色质和核仁网络在其中。核骨架-核纤层-中间纤维三者相互联系形成一个贯穿于核、质间的统一网络系统。这一系统较微管、微丝具有更高的稳定性。 二、核骨架的功能 1.为DNA的复制提供支架,DNA是以复制环的形式锚定在核骨架上的,核骨架上有DNA 复制所需要的酶,如:DNA聚合酶α、DNA引物酶、DNA拓朴异构酶II等。DNA的自主复制序列(ARS)也是结合在核骨架上。 2.是基因转录加工的场所,RNA的转录同样需要DNA锚定在核骨架上才能进行,核骨架上有RNA聚合酶的结合位点,使之固定于核骨架上,RNA的合成是在核骨架上进行的。新

08-第八章 基因突变

第八章基因突变 遗传物质的改变 ?基因突变(genic mutation)或点突变(point mutation) I. 基因突变的概说 II.基因突变的性质 III.基因突变的检出 IV.基因突变的分子基础 V.生物体的修复机制 ?染色体改变(chromosomal variation, aberration) I. 染色体结构改变 II. 染色体数目改变 白化病 ?基因突变的概说 1.基因突变的类型 1)按突变的表性特征分类: 突变发生后出现的表型改变是多种多样的,有的可能十分微弱,需要精细的生化技术才能检测出与野生型的差别,有的突变的表型效应可能是如此之大,以致产生形态上的严重缺陷甚至死亡。基于突变被辨认的方法,可以将突变类型分类: 形态突变、生化突变、致死突变: (1) 形态突变(morphological mutation): 突变主要影响生物体的外在可见的形态结构,故又称可见突变(visible mutations) ,如形状、大小、色泽等的改变。 (2) 生化突变(biochemical mutations): 突变影响生物的代谢过程。导致一个特定的生化功能的改变或丧失。 例如某野生型细菌可以在基本培养基中生长,而突变体一定要在基本培养基中添加某种氨基酸才能生长,这一现象被认为是发生了生化突变。 在人类群体中,由于某种生化突变产生了代谢缺陷,如苯丙酮尿症和半乳糖血症等等,将这类遗传病称为先天性代谢缺陷。 a.失去功能的突变(loss-of-function mutations): 突变事件通常是破坏性的,突变事件导致功 能丧失,完全丧失基因功能的突变称为无效突变(null mutation) 。 b.渗漏突变(leaky mutation):有时,功能的失活不完全,仍保留了一些功能,但在杂合状 态不能产生足够多的野生型表型,这种情况下新的等位基因称为渗漏基因(leaky gene),这类突变称为渗漏突变。通常,丧失功能的突变是隐性的。有时候,丧失功能的突变也可以是显性的,杂合子单个野生型等位基因不能提供足够数量的基因产物来形成正常表型。 c.获得功能的突变(gain-of-function mutation) :有时候,突变事件引起的遗传随机变化有可 能使之获得某种新的功能。在杂合体中,获得功能的突变极有可能是显性的突变,并能产生新的表型。 (3)致死突变(lethal mutation): 影响生物体的生活力,导致个体死亡的突变。致死突变可分为显性致死和隐性致死两类,显性致死在杂合状态时就有致死作用,而隐性致死则在纯合态时方有致死作用。 一般以隐性致死较为常见。但致死突变不一定都伴有可见的表型效应,因为致死突变的致死作用可以发生在不同的发育阶段,如配子期、合子期或胚胎期致死,就见不到成体的表型效应。 (4)条件致死突变(conditional lethal mutations):在某些条件下能成活,而在某些条件下是致死的。例如T4噬菌体的温度敏感突变型在25C时能在E·coli 宿主细胞中正常生长,形成噬菌斑,但在42C时不能生长。利用条件致死突变,可以研究基因作用的敏感时期。 2).按发生突变的时间和细胞分类

相关文档
相关文档 最新文档