文档视界 最新最全的文档下载
当前位置:文档视界 › 2019年车联网行业分析报告

2019年车联网行业分析报告

2019年车联网行业分析报告
2019年车联网行业分析报告

目录

1开启汽车网联革命,铺垫智能驾驶未来 (7)

1.1车联网作为两化融合先锋,汽车大国领先布局 (7)

1.2“两端一云”构筑车联网通信实体,全面支撑五大应用场景 (9)

1.1.1车内通信 (10)

1.1.2车与车通信 (10)

1.1.3车与互联网通信 (11)

1.2车联网成为产业发展热点,全球政策加持不断 (12)

1.3标准先行奠定产业基础,中国抢占发展先机 (14)

2中国LTE-V2X横空出世有望后发先至,5G到来恰逢其时成就车联网标准统一 (17)

2.1国外成熟V2X通信标准:专用短距通信技术(DSRC) (17)

2.2国内自主研制全新V2X通信技术:4G/5G通信技术(LTE-V2X) (18)

2.3车联网成为5G标准重点场景之一 (22)

2.45G技术在车联网应用中机遇与挑战并存 (25)

3北斗导航助推车联网发展,成就大众应用突破点 (26)

3.1北斗技术支撑车联网及智能驾驶,获政策支持实现领先应用 (27)

3.2车联网成为北斗突破GPS实现大规模应用重点领域 (28)

4车联网市场空间广阔,云管端全面发力 (31)

4.1我国积极参与市场竞争,中国车联网蓄势待发 (32)

4.2典型的全球车联网企业及应用分析 (33)

4.2.1“云”——互联网巨头苹果进军车联网 (34)

4.2.2“管”——中国移动利用5G助力车联网 (35)

4.2.3“端”——传统福特积极打造智能出行 (36)

5智能网联汽车铺垫智能驾驶未来 (37)

6关键技术全面突破在即,智能驾驶未来驶来 (39)

6.1环境感知技术:实现ADAS与自动驾驶的核心技术 (39)

6.1.1视觉传感器:Mobileye垄断ADAS视觉传感系统 (39)

6.1.2激光雷达:小型化、低成本化,从传统激光雷达到新型固态激光雷达 (40)

6.1.3毫米波雷达:弥补激光雷达的不足,目前无可替代 (41)

6.1.4高精电子地图技术:车联网真正实现的必要保证 (42)

6.2汽车TSP系统:直面用户需求,但爆发性不足 (43)

6.3车联网与大数据结合:“云”端大有所为 (44)

6.3.1UBI车险 (45)

7现存问题亟待解决,打破坚冰即可快速发展 (46)

7.1车联网数据安全问题 (46)

7.2通信容量和速率问题 (47)

7.3智能交通系统的建设 (47)

7.4法律和伦理道德问题 (48)

8投资逻辑&推荐标的 (48)

8.1海格通信 (48)

8.2高鸿股份 (49)

8.3盛路通信 (50)

8.4高新兴 (51)

8.5大唐电信 (52)

8.6移为通信 (53)

8.7四维图新 (54)

8.8天泽信息 (55)

8.9欧菲科技 (56)

8.10路畅科技 (57)

图表目录

图表1:联网汽车的前身 (7)

图表2:美国车联网发展进程 (8)

图表3:日本ITS系统为驾驶员提供的信息 (8)

图表4:中国积极推进“车联网” (9)

图表5:车联网应用场景 (9)

图表6:车内通信主要应用场景 (10)

图表7:车与车通信网络 (10)

图表8:能被V2V技术解决的轻型车祸比率 (11)

图表9:能被V2V技术解决的轻型车祸比率 (11)

图表10:车与应用平台通信网络 (12)

图表11:车与应用平台主要场景描述 (12)

图表12:2017年中国车联网主要政策汇总 (13)

图表13:国际车联网政策及发展战略汇总 (14)

图表14:智能网联汽车技术逻辑结构 (15)

图表15:智能网联汽车智能化等级 (15)

图表16:智能网联汽车产品物理结构 (16)

图表17:智能网联汽车标准体系框架 (16)

图表18:智能网联汽车标准体系内容 (17)

图表19:DSRC技术与其他无线通信技术的比较 (17)

图表20:主动安全功能延时要求 (18)

图表21:C-V2X技术提高道路交通安全性示意图 (18)

图表22:C-V2X技术扩大车辆感知危险范围示意图 (19)

图表23:D IRECT C OMMUNICATION和N ETWORK C OMMUNICATION (19)

图表24:D IRECT C OMMUNICATION和N ETWORK C OMMUNICATION (20)

图表25:LTE-V2X构造图 (20)

图表26:LTE-V的两种通信方式 (20)

图表27:LTE-V2X技术指标 (21)

图表28:DSRC技术与LTE-V技术构造比较 (21)

图表29:LTE-V2X技术标准发展进程 (22)

图表30:5G通信增强自动驾驶感知能力 (22)

图表31:C-V2X技术发展方向 (23)

图表32:5GAA成员构成 (23)

图表33:LTE-V通信单元 (24)

图表34:搭载LTE-V设备的汽车 (24)

图表35:基于D2D模式的V2V通信时延分析 (25)

图表36:5G车联网与当前车联网的比较 (26)

图表37:5G车联网的安全认证 (26)

图表38:GPS车辆管理系统的构成 (27)

图表39:北斗卫星导航系统示意图 (27)

图表40:“两客一危”车辆示意图 (28)

图表41:北斗双向短报文系统 (29)

图表42:北斗相较于GPS的发展优势总结 (29)

图表43:智能驾驶对高精度定位要求 (30)

图表44:海格通信北斗高精度“平台+服务”解决方案 (30)

图表45:智能驾考系统评判软件结构 (31)

图表46:拖拉机自动驾驶车载系统示意图 (31)

图表47:全球联网汽车销售量预测 (32)

图表48:车载信息娱乐服务全球市场收入预测 (32)

图表49:2013-2017年机动车新注册登记情况 (33)

图表50:2008-2017年国内汽车保有量走势 (33)

图表51:车联网产业链示意图 (34)

图表52:车联网涉及企业示意图 (34)

图表53:苹果C AR P LAY车载系统示意图 (35)

图表54:C AR P LAY和A NDROID A UTO用户量 (35)

图表55:中国移动“和车队”示意图 (36)

图表56:SYNC A PP L INK示意图 (36)

图表57:福特汽车自动驾驶汽车示意图 (37)

图表58:图表42:SAE智能驾驶分级 (38)

图表59:5G V2X应用场景 (38)

图表60:汽车生态系统进化 (38)

图表61:M OBILEYE视觉传感器系统功能 (39)

图表62:E YE Q芯片与智能驾驶 (40)

图表63:激光雷达与毫米波雷达对比 (40)

图表64:传统机械式激光雷达外形展示 (40)

图表65:S3系列工作原理 (41)

图表66:车载毫米波雷达功能 (42)

图表67:全球车载毫米波雷达出货量预测 (42)

图表68:HD L IVE地图 (43)

图表69:O N S TAR使用界面 (43)

图表70:安吉星产品服务 (44)

图表71:大数据针对不同客户可提供的服务 (45)

图表72:车联网大数据的商业应用 (45)

图表73:UBI框架 (45)

图表74:S NAPSHOT OBD接头 (46)

图表75:车联网云端数据被入侵后的危害 (47)

图表76:S NAPSHOT OBD接头 (47)

图表77:车联网生态情况 (48)

图表78:投资逻辑 (48)

图表79:高鸿股份2013-2018Q1年营收及业绩 (50)

图表80:DA智联系统 (50)

图表81:公司车联网产品 (52)

图表82:交通监测云行系统 (52)

图表83:大唐电信LTE-V产品 (53)

图表84:大唐LTE-V测试 (53)

图表85:移为通信客户分布 (54)

图表86:营业收入地区占比 (54)

图表87:四维图新动态交通信息服务 (55)

图表88:天泽信息车载终端&精准农业产品 (56)

图表89:欧菲科技360环视系统 (56)

图表90:路畅百变系列ADAS辅驾模式 (58)

1开启汽车网联革命,铺垫智能驾驶未来

自1885年,卡尔〃本茨制造出世界上第一辆以汽油为动力源的汽车之后,汽车引发了时至今日的交通革命推进人类社会巨大进步。纵观汽车的一个半世纪的发展,汽车在动力、安全性、外观、舒适性等诸多方面都经历了巨大的改善。同样,上世纪80年代开启的信息革命至今也极大的加速人类沟通的效率、运算能力的指数级提升以及逐步开启万物互联时代等诸多社会变革,逐渐渗透到社会的生产生活当中,改善大家衣食住行的效率和质量。随着汽车从内燃机向新能源车转化,汽车的控制也开始更多借助信息技术,例如倒车雷达、电子导航、辅助驾驶等功能越来越普及。随着信息技术更多的渗透到传统的汽车行业,信息化和工业化的深度融合开始带来车联网生态建立,也为未来智能驾驶、智能交通铺垫信息化公路。

我们回顾汽车的发展史:汽车的第一次电子信息类技术性飞跃是在1911年汽车公司开始在车辆上安装电动起动器。之后的1925年安装了点烟器,1930年配备收音机,1956年设臵动力转向,1970年加入盒式录音机,1984年安全气囊出现。在那之后的一年,光盘播放器开始出现在汽车上,这是真正为实现驾驶员便利迈出的第一步。随后,仪表板诊断程序和GPS导航系统相继于1994年和1995年研发成功。随着科技不断更新,20世纪初,联网汽车的前身出现,即汽车开始使用USB端口和蓝牙连接。

图表1:联网汽车的前身

1.1车联网作为两化融合先锋,汽车大国领先布局

21世纪以来,随着信息技术的爆炸式发展,信息技术开始越来越多的进驻传统汽车行业,至此汽车不再是单纯的通过燃烧汽油提供运行动力的机器,信息化的改造开始在汽车生态中越来越普遍,在让汽车更加安全舒适的同时提高驾驶乐趣和体验,车联网的雏形快速诞生。同时,鉴于车联网被认为是物联网体系中最有产业潜力、市场需求最明确的领域之一,是信息化与工业化深度融合的重要方向,具有应用空间广、产业潜力大、社会效益强的特点,对促进汽车和信息通信产业创新发展,构建汽车和交通服务新模式新业态,推动自动驾驶

技术创新和应用,提高交通效率和安全水平具有重要意义,因此例如美日等传统汽车工业大国都早早开始将车联网作为重要的未来战略而重点布局。

2003年,美国交通运输部为解决迫在眉睫的交通安全问题,联合汽车制造商共同开发V2V(Vehicle To Vehicle)的应用程序原型,同年提出了车辆基础设施一体化(VII)的概念。2009年,启动商用车基础设施一体化工程,并发布《智能交通系统战略研究计划》,旨在通过电子信息及通信技术,实现车辆、交通基础设施和乘客及驾驶员之间协同交互的交通环境。

2011年到2012年间,美国在六个州进行了驾驶员安全驾驶技能测试,用以评估驾驶员对于新的V2V安全驾驶技能的接受程度。2012年到2013年,继续深入开展安全驾驶模型的研究工作,以进一步完善车联网技术的安全性和有效性。2015年底,美国交通运输部提出《2015-2019 ITS战略计划》。该计划表明,美国政府在持续发展过去的车联网技术的同时,也明确了未来四年内车联网的发展主题和开发重点,以满足新的道路交通的安全需求,进一步提高车联网技术的安全性和发展连续性。

图表2:美国车联网发展进程

2003年,日本政府发布《日本智能交通系统战略规划》,构建了日本智能交通系统短期和中长期发展蓝图。2011年,日本高速公路系统引进“ITS 站点智能交通系统”,及时向车载系统提供海量的图片和路况、交通提示信息,有效的缓解了交通拥堵、降低了安全事故发生概率并提高了政府部门的服务效率。

图表3:日本ITS系统为驾驶员提供的信息

2009 年,随着Telematics 车载信息服务系统的相继推出,中国进入Telematics 时代。2010年,我国在“物联网”研讨会上首次提出

“车联网”的概念。10月底,国务院在863计划中加入智能车、道路协同关键技术研究以及大城市区域交通协同联动控制关键技术研究。“十二五”期间,工信部从产业规划、技术标准等多方面着手,加大对车载信息服务的支持力度,以推进汽车物联网产业的全面铺开,预期2020 年实现可控车辆规模达2亿。

2011 年,“车联网”合作研讨会召开。同年7 月,中国车联网产业发展论坛上首次发起了车联网商业模式的探讨。12 月,为推进中国汽车信息化领域的协同创新,推动智能交通发展,带动车联网技术的应用,中国车联网产业技术创新战略联盟成立。2015年,国务院出台《中国制造2025》,促进了智能交通系统产品的开发;2017年4月,国家工信部制定汽车行业中长期发展规划,提出驾驶辅助,部分自动驾驶,有条件自动驾驶等方面的发展目标。

图表4:中国积极推进“车联网”

1.2“两端一云”构筑车联网通信实体,全面支撑五大应用场景

车联网以“两端一云”为主体,路基设施为补充,包括智能网联汽车、移动智能终端、车联网服务平台等对象,涉及车-云通信、车-车通信、车-人通信、车-路通信、车内通信五个通信场景。

图表5:车联网应用场景

通过车联网网络,车辆可获取各种信息并使用车联网应用,以提高用户的行车安全和效率,缓解城市交通压力,并提供用户各种商务和娱乐,使行车过程更舒适。车辆通信类型根据通信对象划分大概可以分为三种类型,即车内通信、车与车通信、车与互联网通信。

1.1.1 车内通信 车内通信是车载终端与车内的传感器和电子控制装臵之间连接形成车内通信网络,获取车辆数据并可发送指令对车辆进行控制。车内通信主要应用于车辆检测、车辆系统控制、辅助驾驶等。

1.1.2 车与车通信

车与车通信(V2V )主要是指通过车载终端进行车辆间的通信。车载终端可实时获取周围车辆的车速、车辆位臵、行车情况等信息,车辆间也可以构成一个互动的平台,实时交换各种文字、图片、音乐和视频等信息等。车与车通信主要应用于减缓和避免交通事故、车辆监督管理、生活娱乐等,同时基于接入/核心网络的车与车通信,还应用于车辆间的语音、视频通话等。

图表7: 车与车通信网络

美国国家公路交通安全管理局认为未来几年高速公路安全方面的最大收益将来自于避免碰撞技术的大规模应用。通过警告驾驶员即将发生碰撞的情况,车与车之间的通信可以尽可能减少机动车辆碰撞的次数和严重程度,从而最大限度地降低由这些碰撞造成的社会成本。

以V2V 技术为基础来计算潜在车祸的发生情况有助于预估车祸所带来的人身损失,财产损失及社会成本损失的严重性。美国交通部

2020年物联网行业分析报告

2020年物联网行业分 析报告 2020年8月

目录 一、5G成为物联网核心催化剂 (6) 1、5G时代最大特征是万物互联 (6) 2、运营商重视物联网发展,三大运营商物联网连接数持续高增长 (6) 3、5G建设全面提速,行业应用加速落地,物联网迎来加速发展期 (7) 4、作为新兴行业,物联网市场规模得到快速发展 (8) (1)连接数量 (8) (2)市场规模 (9) 二、产业物联网成为新时期物联网发展的核心 (9) 1、政策因素在生产性领域和智慧城市建设上效果显著 (9) 2、5G会对物联网产生本质催化 (10) 三、芯片成为物联网连接根基 (12) 四、物联网模组有望迎来发展机遇,格局向头部集中 (14) 1、无线通信模组是物联网感知层与网络层的重要连接枢纽 (14) 2、通信模组分为蜂窝类模组和非蜂窝模组 (15) 3、整个物联网模组的产业链格局:规模优势+渠道优势提供行业护城河 (16) 五、相关企业 (19) 1、移远通信 (19) 2、广和通 (20) 3、汉威科技 (20) 4、移为通信 (21) 5、威胜信息 (21) 6、高新兴 (21) 7、美格智能 (21) 7、浩云科技 (22) 六、主要风险 (22)

1、贸易摩擦带来的芯片原材料供应风险 (22) 2、产品技术升级的风险 (22) 3、行业发展不及预期 (22)

物联网市场高度景气,带动行业增长迅速。作为新兴行业,物联网市场规模得到快速发展。(1)连接数量,根据爱立信的统计,物联网连接数将3倍于移动互联网的增速,其中局域网链CAGR约18%,广域网产业链(包括蜂窝和LPWA)CAGR约26%。(2)据Gartner 预测,物联网终端市场规模将达到2.93万亿美元,保持年均25-30%的高速增长。 5G等基础设施的完善是物联网发展质变的根基。5G定义了三大场景:大带宽、广连接、低延时。5G网络覆盖不断加速,对于更多物联网场景的孵化意义重大,包括公用事业、车联网、自动驾驶、工业控制等,2G/3G/4G网络对于物联网没有直接的催化,是基于人与人之间沟通的基础设施。而5G网络是第一次面向产业的信息端基础设施升级。物联网的爆发始于5G。 物联网成为新的经济引擎。以互联网、智能终端为载体的信息革命带来了上一轮经济的爆发,催生了苹果/亚马逊/谷歌,阿里/腾讯等商业巨头。而在5G时代刚起步的当下,物联网连接数10倍于互联网的背景下,对于运营商、芯片厂商、中游制造厂商、下游应用平台厂商都迎来一轮新的契机。 物联网作为5G应用的核心赛道,有望在5G/IDC的基础设施之上,开启新篇章。基础设施的建设给物联网应用的孵化提供了土壤,物联网的推进促进了基础设施的升级。 5G的投资节奏逐步进入第三个阶段—规模建网之后,寻找5G落地带来的流量增长和应用落地的投资机会。

车联网产业链深度报告

2014-07-22易欢欢阿尔法工场 本文由中国车联网产业技术创新战略联盟秘书长方竹推荐 导读:2020年全国的汽车总规模将突破2亿辆,假设每车能带来3000元的增量效益(车载导航设备以及各种保险、流量、通讯等增值服务),车联网将拥有1200亿元的市场空间,成为大数据时代的下一个蓝海 一、车联网前景广阔,千亿市场可预期 我国各行业的信息化建设,以及手机、汽车、互联网、智能交通、物联网等的发展为地理信息产业的发展提供了 巨大的牵引力。我国利用后发优势,采用“引进消化吸收再创新”的模式,靠引进国外先进卫星导航技术和新产品而 迅速崛起的我国卫星导航产业逐渐成熟,技术创新对未来对我国GNSS 企业的要求对产业今后发展有至关重要的作用。 地理信息产业与国家军事安全、信息安全息息相关,随着我国国际竞争力的提高,我国国家安全保护变得越发重要,北斗卫星导航系统建网以及国家基准设施建设为地理信息产业发展提供巨大空间。 (一)汽车市场繁荣带来车联网千亿需求 我国汽车销量再创新高,汽车行业迎来春天。2013年国内汽车产销分别为2211.68万辆和2198.41万辆,同比增长14.8%和13.9%,比上年分别提高10.2和9.6个百分点,增速大幅提升,创全球产销最高纪录。 根据汽车工业协会的数据显示,截止到2013年年底,我国国内汽车保有量已达1.37亿辆,约占全球汽车保有量 的十分之一,随着我国汽车销量不断增加,汽车行业附加服务将越来越多元化,汽车及相关行业的市场空间也将随之 增长。 在国内汽车销量不断创新高的背景下,汽车总体规模不断扩大,与汽车密切相关的车联网市场将得以迅猛发展。 易观智库分析数据表明,目前车联网在国内市场的渗透率不到5%,预计2014年至2015年,国内车联网渗透率即将突破10%的临界点,而到2020年,车联网渗透率有望突破20%。 目前我国拥有大约1.4亿汽车,按现在每年2000万辆的增速,2020年全国的汽车总规模将突破2亿辆,这意味 着车联网的用户数将从500多万激增至4000多万,假设每车能带来3000元的增量效益(车载导航设备以及各种保险、流量、通讯等增值服务),车联网将拥有1200亿元的市场空间,成为大数据时代的下一个蓝海。 (二)两客一危先行,政策指引车联网落地 政府的导向和投资是车联网落地的推动因素。今年以来的政策也表明政府在不余遗力推动整个车联网生态系统的 建设。国家颁布的《道路运输车辆动态监督管理办法》将正式实施,《办法》规定,已经进入运输市场的重型载货汽 车和半挂牵引车,各地应合理制订安装计划,确保于2015年12月31日前全部安装、使用卫星定位装置,并接入道 路货运车辆公共平台。 旅游客车、包车客车、三类及以上班线客车和危险货物运输车辆、重型载货汽车和半挂牵引车要在出厂前安装符 合标准的卫星定位装置。对于要求两客一危车辆使用卫星定位装置,这意味着国家将从政策层面上支持和促进车联网 的发展。 随着交通系统的进一步铺设,对于卫星定位装置的要求将从客车和载货车逐步渗透到个人汽车上,带动整个机动 车车联网的融合和连接。在未来几年时间内,政府将鼓励个人汽车也使用卫星定位装置,这有利于完善动态交通监控 系统,达到智慧交通的目标,并且进一步扩大车联网系统在个人汽车领域的渗透率,市场规模将不断扩大。 二、全产业链价值盛宴

解密工业物联网的安全现状与背后原因

解密工业物联网的安全现状与背后原因 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 如今,移动技术的应用和增长创造了一个快节奏的社会,人们对即时信息和即时反馈已经习以为常,工业物联网涉及物联网技术在制造工艺和供应链中的应用。除了来自设备和传感器的数据外,工业物联网战略还应该结合机器学习和大数据技术,利用现有传感器、机器对机器(M2M)通信、自动化技术的组合,可以为企业提供更多见解。 被广泛视为“智慧工厂”核心支柱的工业4.0无疑是实现适应性、自动化与敏捷性的新型联网硬件基础。LNS方面发现,大多数工业企业都有计划实施数字化转型,而这意味着网络安全问题正变得比以往任何时间都更加重要。遗憾的是,大多数计划迈入工业物联网

领域的企业都未能考虑到安全性这项因素,这主要是由于运营技术与信息技术之间存在严重隔阂,而这道鸿沟甚至有可能严重影响到工业数字化转型浪潮的未来命运。 报告指出,40%的工业企业已经启动工业物联网计划,另有24%则计划在明年之内开始着手。众多下一代工业物联网平台都将以即服务(*aaS)方式运行,这将带来更突出的灵活性、易用性并生成大量可量化数据。但这一切在网络安全层面又会带来新的软肋——特别是考虑到工业企业通常将安全保护视为一种附加因素,而非工业物联网PaaS体系中的固有部分。 LNS方面就工业物联网安全所面临的巨大风险给出了三项原因,首先是企业并不了解相关威胁的严重程度,再者是IT与OT在各自的孤岛内运作,还有就是严重缺乏网络安全最佳实践的实施经验。 1、威胁态势 研究结果显示,企业对威胁态势并不清楚:47%的受访企业没有处理过任何安全违规事件。其中19%的企业曾因便携式存储介质上的恶意软件而遭遇安全事故,相比之下直接攻击活动则非常罕见。这使得众多企业面对网络安全工作抱有一种“迷之自信”。但这种自信显然站不住脚,例如美国国土安全部就曾警告称,目前每一家主要自动化方案供应商的产品中都包含有已知软件漏洞。这意味着直接攻击必将发生,只是或早或晚的问题。 2、IT与OT间的彼此孤立 导致网络安全挑战的另一大问题在于IT与OT间的彼此孤立。OT包括工厂当中非企业模式的一切元素,例如控制系统、监控系统、工厂硬件以及机器等等。 报告指出,“即使企业开始以认真态度对待工业网络安全,如果不能在IT与OT之间建立起真正的合作关系,问题仍然不可能得到充分解决。”IT技能与OT专业知识应当加以结合,从而为下一代工业技术创造行之有效的安全规划。

【完整版】2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (6) 一、研究原则 (6) 二、研究方法 (7) 第三节企业市场发展战略的作用、特征及与企业的关系 (9) 一、企业市场发展战略的作用 (9) 二、市场发展战略的特征 (10) 三、市场发展战略与企业战略的关系 (11) 第四节研究企业市场发展战略的重要性及意义 (12) 一、重要性 (12) 二、研究意义 (12) 第二章市场调研:2018-2019年中国车联网和自动驾驶行业市场深度调研 (13) 第一节5G推动车联网与自动驾驶腾飞 (13) 第二节5G时代来临,推动车联网与智能驾驶发展 (14) 一、5G具有大流量、低时延、高可靠性等优点 (14) 二、5G赋予车联网更多功能 (16) 三、5G是自动驾驶实现的先决条件 (19) 第三节车联网C-V2X或后来居上,车载终端有望先行爆发 (21) 一、DSRC与C-V2X对比,C-V2X有望后来居上 (22) (1)DSRC (22) (2)C-V2X (23) (3)LTE-V2X完胜DSRC,为车联网的最优解 (25) 二、车联网产业链涵盖芯片模组、终端设备等主要环节 (28) 三、车联网潜在市场规模近万亿 (29) 四、车联网硬件设备有望率先受益 (30) 第四节智能驾驶产业链涵盖感知、决策、执行等环节 (35) 一、智能驾驶产业链 (35) 二、中国或成为最大的自动驾驶市场,未来规模超万亿 (37) 三、ADAS加速渗透,带来行业新机遇 (40) 第五节5G商用箭在弦上,产业链各环节蓄势待发 (44) 一、5G牌照发放,开启商用化进程 (44) 二、产业链各环节进展顺利 (48) (1)芯片及模组 (48) (2)终端设备 (49) (3)整车企业 (49) (4)基础设施 (50) 第六节部分企业分析 (53) 一、均胜电子:安全整合推动业绩增长,汽车电子前景广阔 (53) 二、德赛西威:汽车电子龙头,车联网智能驾驶逐步落地 (53) 三、华域汽车:汽车零部件龙头,智能电动打开成长空间 (54)

2019-2020年汽车制造业研究报告

2019-2020年汽车制造业研究报告 汽车制造业是我国国民经济发展的支柱产业之一,具有产业链长、关联度高、就业面广、消费拉动大等特性。汽车制造上游行业主要为钢铁、化工等行业,下游主要为个人消费、基建、客运和军事等。汽车制造行业景气度与宏观经济、居民收入水平和固定资产投资密切相关,而钢材价格、油气价格、消费者偏好以及产业政策等外部因素也是影响汽车制造行业的重要因素。 经过多年发展,我国汽车保有量已得到大幅提升。2019年以来,受宏观经济下行压力加大、消费者信心下降、前期汽车消费刺激政策逐步退坡和固定资产投资增速放缓等因素影响,我国汽车制造行业景气度进一步下行,行业产销量萎缩。受行业收入下降及原材料钢材价格维持高位等因素影响,汽车制造企业整体盈利能力减弱,信用风险有所加大,行业内规模体量小、盈利能力弱及对新能源补贴等政策敏感度高的企业信用风险或将明显 上升。 受行业景气度下行影响,样本企业汽车销量2018年来出现下降,产能利用率有所降低,企业经营压力加大。财务方面,由于销量下降及原材料成本保持高位,样本企业毛利率出现下降,且2019年前三季度降幅较为明显。得益于回款较好及费用控制,样本企业经营性现金流表现尚可,但投资性现金流持续净流出,非筹资性现金流对短期债务的覆盖程度一般,且样本企业财务杠杆水平普遍较高,其中部分样本企业偿债压力大。

2019年前三季度,行业内仍以发行中期票据和公司债等传统债券为主,当期发行的债券信用评级全部为AA+级以上(含AA+级),发行利差总体较小。级别调整方面,受行业景气度下行及自身经营问题影响,2019年前三季度汽车制造行业共有3家主体信用等级下调,其中1家违约,其他主体信用等级无变动。 展望2020年,在宏观经济增长放缓、汽车保有量进一步上升以及前期新建产能继续释放等多重因素影响下,预计国内汽车市场竞争压力将进一步加大,且在前期政策刺激并较大量释放有效需求之后,政策空间及效果或将受到一定约束。行业景气度持续弱化有助于市场出清并实现优胜劣汰,为行业高质量发展提供空间。外商独资新能源车企的顺利投产以及合资车企中外方持股比例的政策放开,或将给国内汽车市场格局及汽车工业发展带来深远影响。 一、行业基本面 我国汽车制造行业经历快速发展,近年来汽车保有量已得到大幅提高。受宏观经济下行压力加大、消费者信心下降、前期汽车消费刺激政策逐步退坡和固定资产投资增速放缓等影响,2019年来我国汽车制造行业景气度下行,产销量下降,其中乘用车降幅较大。在多重因素综合影响下,我国汽车市场或已进入存量博弈与优胜劣汰阶段。 汽车制造行业具有较强的周期性。随着居民收入不断提高和城镇化进程加速,我国汽车产业自2000年起步入快速发

车联网产品项目可行性研究报告

车联网产品项目 可行性研究报告 xxx科技发展公司

第一章项目概况 一、项目概况 (一)项目名称 车联网产品项目 近几年我国汽车市场发展迅猛,汽车销量和保有量增速显著。车联网 市场规模巨大。据相关专家及媒体预测,2020年中国汽车保有量约为2.5- 3亿辆,按照15%的渗透率,具备联网能力的车辆将达到4000万辆左右。 以每辆车1000元的硬件产品价格来估算,单是硬件市场就有400亿元规模。而随着产品功能的丰富,单辆车的硬件产值也会翻倍提高,加之互联网服务,车联网市场的空间可以在5-10年内达到千亿甚至万亿规模。 (二)项目选址 某某经济园区 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时 具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和 自然生态资源保护相一致。 (三)项目用地规模 项目总用地面积48397.52平方米(折合约72.56亩)。 (四)项目用地控制指标

该工程规划建筑系数69.48%,建筑容积率1.09,建设区域绿化覆盖率7.14%,固定资产投资强度191.92万元/亩。 (五)土建工程指标 项目净用地面积48397.52平方米,建筑物基底占地面积33626.60平 方米,总建筑面积52753.30平方米,其中:规划建设主体工程39900.91 平方米,项目规划绿化面积3767.65平方米。 (六)设备选型方案 项目计划购置设备共计107台(套),设备购置费5419.17万元。 (七)节能分析 1、项目年用电量1079889.55千瓦时,折合132.72吨标准煤。 2、项目年总用水量29252.61立方米,折合2.50吨标准煤。 3、“车联网产品项目投资建设项目”,年用电量1079889.55千瓦时,年总用水量29252.61立方米,项目年综合总耗能量(当量值)135.22吨标准煤/年。达产年综合节能量50.01吨标准煤/年,项目总节能率26.10%, 能源利用效果良好。 (八)环境保护 项目符合某某经济园区发展规划,符合某某经济园区产业结构调整规 划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理 措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境 产生明显的影响。

国内外物联网产业发展现状趋势全面综述 2

国内外物联网产业发展现状趋势 关键词: 物联网RFID 【提要】2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立“感知中国”中心。2010年《政府工作报告》中,温总理再次指出:将“加快物联网的研发应用”明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立"感知中国"中心。2010年《政府工作报告》中,温总理再次指出:将"加快物联网的研发应用"明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 物联网概述 1.物联网的定义与概念提出 所谓"物联网",是指通过射频识别、红外感应器、全球定位系统和激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 通俗地解释,物联网就是"物物相连的互联网"。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。 物联网的概念是美国Auto-ID实验室在1999年首次提出的,2005年国际电信联盟在信息社会世界峰会上发布《ITU互联网报告2005:物联网》,正式提出"物联网概念",激情豪迈地指出"物联网时代即将到来"。 2.物联网的本质和关键技术 物联网的本质概括起来主要体现在三个方面:一是互联网特征,即对需要联网的物一定要能够实现互联互通的互联网络;二是识别与通信特征,即纳入物联网的"物"一定要具备自动识别与物物通信(MachinetoMachine,M2M)的功能;三是智能化特征,即网络系统应具有自动化、自我反馈与智能控制的特点。 物联网产业链可以细分为感知、处理和信息传送三个环节,每个环节的关键技术分别为传感技术、智能信息处理技术和网络传输技术。传感技术通过多种传感器、RFID、二维码、GPS定位、地理信息识别系统和多媒体信息等多媒体采集技术,实现对外部世界的感知和

车联网项目立项申请报告

车联网项目 立项申请报告 泓域咨询规划设计/投资分析/产业运营

车联网项目 车联网是自动驾驶感知层的不可替代环节。当前的自动驾驶大多依靠 雷达、摄像头、定位等手段实现感知层信息的输入,但依靠以上技术远远 不够,信息的实时交互能力和广度都无法突破,在这一背景下车联网成为 自动驾驶感知层的不可替代的环节。 在数字经济时代,数字化转型是必然的要求和发展方向。无论是数字 政府、数字社会还是数字经济本身,数字化转型既是目标和方向又是手段。对于数字化转型的两种形态:产业数字化和数字产业化都离不开新型的基 础设施作为支撑,没有基础设施作为保障条件,数字化转型的目标难以实现。 自2020年3月,提出加快5G和数据中心等新型基础设施建设进度, 工信部倡导加快新型基础设施建设后,引发全民热议的“新基建”概念, 新基建的本质,是能够支撑传统产业向网络化、数字化、智能化方向发展 的信息基础设施的建设。 该车联网设备项目计划总投资9694.02万元,其中:固定资产投资7431.85万元,占项目总投资的76.66%;流动资金2262.17万元,占项目 总投资的23.34%。

达产年营业收入15481.00万元,总成本费用11726.17万元,税金及附加172.71万元,利润总额3754.83万元,利税总额4445.45万元,税后净利润2816.12万元,达产年纳税总额1629.33万元;达产年投资利润率38.73%,投资利税率45.86%,投资回报率29.05%,全部投资回收期4.94年,提供就业职位325个。 坚持“社会效益、环境效益、经济效益共同发展”的原则。注重发挥投资项目的经济效益、区域规模效益和环境保护效益协同发展,利用项目承办单位在项目产品方面的生产技术优势,使投资项目产品达到国际领先水平,实现产业结构优化,达到“高起点、高质量、节能降耗、增强竞争力”的目标,提高企业经济效益、社会效益和环境保护效益。 ...... 自2020年3月,提出加快5G和数据中心等新型基础设施建设进度,工信部倡导加快新型基础设施建设后,引发全民热议的“新基建”概念,新基建的本质,是能够支撑传统产业向网络化、数字化、智能化方向发展的信息基础设施的建设。

2020年物联网行业分析调研报告

2020年物联网行业分析 调研报告 2019年12月

目录 1. 物联网行业概况及市场分析 (5) 1.1 物联网市场规模分析 (5) 1.2 中国物联网行业市场驱动因素分析 (5) 1.3 物联网行业结构分析 (5) 1.4 物联网行业PEST分析 (6) 1.5 物联网行业特征分析 (8) 1.6 物联网行业国内外对比分析 (9) 2. 物联网行业存在的问题分析 (11) 2.1 政策体系不健全 (11) 2.2 基础工作薄弱 (11) 2.3 地方认识不足,激励作用有限 (11) 2.4 产业结构调整进展缓慢 (11) 2.5 技术相对落后 (12) 2.6 隐私安全问题 (12) 2.7 与用户的互动需不断增强 (13) 2.8 管理效率低 (13) 2.9 盈利点单一 (14) 2.10 过于依赖政府,缺乏主观能动性 (15) 2.11 法律风险 (15) 2.12 供给不足,产业化程度较低 (15) 2.13 人才问题 (15)

3. 物联网行业政策环境 (17) 3.1 行业政策体系趋于完善 (17) 3.2 一级市场火热,国内专利不断攀升 (17) 3.3 “十三五”期间物联网建设取得显著业绩 (18) 4. 物联网产业发展前景 (19) 4.1 中国物联网行业市场规模前景预测 (19) 4.2 物联网进入大面积推广应用阶段 (19) 4.3 政策将会持续利好行业发展 (19) 4.4 细分化产品将会最具优势 (20) 4.5 物联网产业与互联网等产业融合发展机遇 (20) 4.6 物联网人才培养市场大、国际合作前景广阔 (21) 4.7 巨头合纵连横,行业集中趋势将更加显著 (22) 4.8 建设上升空间较大,需不断注入活力 (22) 4.9 行业发展需突破创新瓶颈 (23) 5. 物联网行业发展趋势 (24) 5.1 宏观机制升级 (24) 5.2 服务模式多元化 (24) 5.3 新的价格战将不可避免 (24) 5.4 社会化特征增强 (24) 5.5 信息化实施力度加大 (25) 5.6 生态化建设进一步开放 (25)

2019年汽车行业深度研究报告

2019年汽车行业深度研究报告

投资案件 结论和投资建议 当前汽车行业处于周期下行的末端,此轮下行周期的开始时间为2017年12月,2019Q3 开始上行周期。当前行业分化特征愈发明显,推荐拥有核心竞争力的公司。 从大周期看,当前处于销量底部回升过程中,开始有相对收益,加大配置正当时。当单季度盈利兑现后,享受绝对收益。从板块强弱看,零部件板块优于乘用车,尤其是自身α属性更强的公司。首推爱柯迪,继续推荐华域汽车、星宇股份、均胜电子、新泉股份。乘用车推荐市占率持续提升的日德产业链:上汽集团、广汽集团。 原因及逻辑 复盘过去20年汽车行业9段行情,共性为(1)股价表现与月度销量基本同步,单季度摊薄ROE存在一定程度滞后,持续季度越多,股价表现越强。但2次购置税刺激政策例外。(2)汽车行业的上行周期+下行周期为36个月左右。此轮下行周期的开始时间为201712,2019Q3开始上行周期。 典型制造业固定资产驱动和整车车型周期导致乘用车子行业有自身周期性。一般而言固定资产净额增长率连续两年下滑后第三年开始恢复,进而收入增速、毛利率及净利润增速逐步修复,当前处于新一阶段的底部区域。 有别于大众的认识 市场忽视了当前汽车行业从“总量”驱动向“分化”过渡的行业大趋势下产生的投资机会。我们认为,过去20年汽车的9段行情以“总量”驱动(轿车渗透率、SUV渗透率、零部件全球化、治超载、自主品牌2.0时代),但未来存量博弈下,“分化”将是主旋律,且已露出端倪(行业CR20市占率创新高、自主六朵金花市占率逆势提升、零部件行业68%的利润掌握在6家公司手里),此时配置强α属性公司有望获超额收益。

物联网发展现状调研报告(完整版)

报告编号:YT-FS-8706-76 物联网发展现状调研报告 (完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

物联网发展现状调研报告(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 以下提供一篇调研报告给大家参考! 自XX年国际电信联盟(itu)发布《itu互联网报 告XX:物联网》正式提出物联网概念后,现代信息通 信技术的快速发展和相互融合,促使物联网技术日趋 成熟,以“物物智能互联”为核心的时代快速到来。 世界主要发达国家相继提出了物联网战略,投入巨资 进行研究开发,我国也高度重视物联网产业,在“xx” 规划和其他政策意见中做了重点部署,物联网产业迎 来了良好发展机遇。 一、物联网概念和关键技术 物联网是在互联网基础上,利用射频识别(rfid) 技术、无线通信技术、红外感应器、全球定位系统、 激光扫描器等信息传感设备,按约定协议完成物品与

物品、人与物品、人与人之间的互连,进行信息交换和通讯,实现智能化识别、定位、跟踪、监控和管理。需要利用物联网才能解决的是传统意义上的互联网没有考虑的、对于任何物品连接的问题。 (一)物联网涉及的主要关键技术 一是射频识别技术。射频识别是一种非接触式的自动识别技术,通过射频信号识别对象并获取相关数据,是物联网关键的技术之一。rfid标签,具有读取距离远、穿透能力强、无磨损、抗污染、效率高、信息量大等特点。当带有rfid标签的物品通过特定rfid 读写器时,标签被读写器激活并通过无线电波将标签中的信息传送到读写器以及信息处理系统,完成信息的自动采集。 二是下一代网络技术。下一代网络以软交换为核心的,采用开放、标准的体系结构,能够提供丰富业务,具有分组传送、控制功能从业务中分离、业务提供与网络分离、端到端qos和透明的传输能力、融合固定与移动业务等特征。这些特征对实现物联网人与

2020年车联网行业深度分析报告

2020年车联网行业深度分析报告

正文目录 1. 汽车智能网联升级,大国领先布局 (7) 1.1. 面对车联网战略新兴产业,各国政策加持不断 (8) 1.2. 中国持续完善产业标准,加强产业顶层设计 (12) 2. 关键技术全面突破在即,为智能驾驶保驾护航 (15) 2.1. 中国LTE-V2X有望后发先至,5G加速新一代通信技术演进 (16) 2.2. 环境感知+高精地图:汽车“看到”并“认识”环境 (24) 2.3. 我国自主建立的北斗系统助力实现自动驾驶应用 (28) 2.4. TSP:车联网产业链核心环节,两种模式主导,竞争激烈 (32) 2.5. T-BOX:有望成为智能网联汽车标配 (33) 2.6. AI:实现人机交互,成为最先落地的AI场景 (35) 3. UBI:融合车联网技术,提供用户定制化“管理型”车险 (37) 4. 智能网联化铺垫智能驾驶发展 (39) 5. “云-管-端”构建车联网产业链,潜在市场空间广阔 (45) 6. 中国互联网ICT巨头布局车联网,ETC设备将成车联网重要入口 (50) 6.1. 互联网及ICT巨头争先开展车联网布局 (50) 6.2. ETC设备将成车联网重要入口且撬动智能交通市场 (52) 7. 问题和挑战 (54) 7.1. 信息安全风险抑制消费选择 (54) 7.2. 基础设施薄弱,投资需求大 (54) 7.3. 通信标准尚未统一不利产业做大做强 (54) 7.4. 法律伦理体系滞后,落地后问题不容忽视 (54) 7.5. 用户需求恐不及预期,车联网或变现困难 (55) 8. 投资逻辑&受益标的 (56) 8.1. 海格通信 (56) 8.2. 移远通信 (57) 8.3. 广和通 (58) 8.4. 移为通信 (59) 8.5. 高新兴 (60) 8.6. 大唐电信 (61) 8.7. 高鸿股份 (61) 9. 风险提示 (63) 图目录 图 1 车联网应用发展进程和演进方向 (7) 图 2 车联网网络层次 (8) 图 3 截至2019年车联网专利全球地域分布情况 (8) 图 4 美国车联网发展进程 (9) 图 5 日本ITS系统为驾驶员提供的信息 (10) 图 6 车联网产业标准体系建设结构图 (13) 图 7 智能网联汽车、电子产品与服务和车辆智能管理标准体系结构图 (13) 图 8 信息通信和智能交通标准体系结构图 (13) 图 9 智能网联汽车技术逻辑结构 (14) 图 10 智能网联汽车智能化等级 (15) 图 11 智能网联汽车产品物理结构 (15) 图 12 车联网五大应用场景 (16)

关于物联网行业调研报告

平顶山工业职业技术学院行业调研报告 姓名:若虚 班级:物联网一班 学号:000 2016年12月24日

行业调研报告 一、前言 随着科技发展,社会交流的加深,通信行业在市场的需求下不断蓬勃发展,而通信设备以运营商为核心,推进行业发展。互联网产业发展,成为社会不可缺的生产和交易平台,带动的一系列的产业如电子商务通信设备制造的同时也对在高速泛在的信息网络提出更高的要求。 4G牌照的发放,国家带宽战略的确定,5G的到来,物联网技术的发展都给通信市场带来了利好消息,通信行业发展机遇被业界所看好。预计整个通信产业的市场规模继续扩大,包括设备制造商,工程商,软件商,运营商等均有获得机会和机遇。未来,将会有更多的服务商进入通信行业,而通信行业市场因此更加活跃,更加激烈。 二调查的问题和答案 1.行业现状 硬件测试工程师大专以上学历起薪大多在3000至4000元,在工作一两年后可以获得加薪,从20%至50%不等。具有4年以上经验,收入则可翻倍,达到1万元左右。软件测试工程师出现严重短缺的现象是与我国信息产业的发展紧密联系的。信息产业作为我国的支柱产业,对其他各行业所起到的促进作用不可估量。比如说随着电子商务的发展,对中国石化等企业产生了巨大的推动作用,产业经济大幅度

攀升。而信息产业的核心就是软件技术,滞后的软件技术是不可能产生先进的信息产业的。而软件的产业化,主要表现在对软件质量的控制上。随着我国IT行业的发展,产品的质量控制与质量管理将成为企业生存与发展的核心,而能够把质量带动起来的就是软件测试。从软件、硬件到系统集成,几乎每个中大型IT企业的产品在发布前都需要大量的质量控制、测试和文档工作。 2.典型企业 中兴通讯有限公司 3.典型岗位 硬件测试工程师 4.工作内容 职责一: 参与和协助标准化工程师完成产品测试标准的确定工作,并执行工作任务: 1、收集和整理国家相关测试标准 2、结合本企业实际,协助工程司制定本企业的产品标准 3、在测试执行过程中,严格贯穿执行产品标准要求 4、在测试过程中发现的问题或者存在的不足,及时反馈给标准化工程师进行标准的调整和修订 职责二

车联网行业深度分析报告

车联网行业深度分析报告

目录 1. 标准滞后,车联网十年发展不温不火 (4) 1.1 供给端:标准滞后导致主导方模糊、技术不达 (6) 1.2 需求端:用户碎片化带来车主体验提升不高 (8) 2. 车联网标准制定上升至国家层面,2020 年落地有望 (9) 3. 5G、自动驾驶风口,车联网机遇挑战并存 (10) 3.1 车联网市场将在2020 年迎来高速发展 (10) 3.2 车联网商用路线:先连接后升级 (12) 4. 5G 推进车联网标准发展的新动力 (14) 4.1 5G推动C-V2X 标准演进 (15) 4.2 5G 边缘计算为车联网提供低时延保证 (17) 5. 自动驾驶技术革新带来车联网质地飞跃 (19) 5.1 传感器技术:自动驾驶之眼 (21) 5.2 高精度地图 (25) 6. 互联网车企合作开启,车联网生态联盟已具雏形 (26)

7. 相关标的 (29) 7.1 高新兴 (29) 7.2 四维图新 (30) 7.3 科大讯飞 (31) 7.4 宝信软件 (31) 7.5 北斗星通 (32) 8. 风险提示 (32)

1. 标准滞后,车联网十年发展不温不火 车联网是物联网在智能交通领域的运用,它借助新一代信息和通信技术,实现车内、车与车、车与路、车与人、车与服务平台的全方位网络连接,提升汽车智能化水平和自动驾驶能力,构建汽车和交通服务新业态,从而提高交通效率,改善汽车驾乘感受,为用户提供智能、舒适、安全、节能、高效的综合服务。 广泛而言,车联网涵盖车自身全部生命周期的信息以及车辆与外界交互的信息。这就意味着,从车辆研发、生产、销售、使用、回收过程中的所有信息交换都被包括在车联网中,因此,车联网除支持车辆与交通三要素———人、车、路互联,实现在智能交通领域的应用以外,还将与移动互联网、通讯网、智能工厂、智能电网、智能家居等外部网络互联,形成自车与人、车、路、网相互连接及信息交互的有效平台。理想状态下,车联网通过连接车、路等交通关键要素,能够提供面向个人、企业、政府等不同用户提供各种不同类型的服务,构建高效、安全、绿色的交通环境。车联网目标是减少80%的交通事故、减少20%的碳排放和增加30%交通效率。

物联网产业投资分析报告

物联网产业投资分析报告 随着电信网络特别是无线网络的扩展,传感技术的发展,我国推广物联网的条件逐步成熟。国家工信部明确提出要进一步研究建设物联网,加快传感中心建设,推进信息技术在工业领域的广泛应用,提高资源利用率、经济运行效益和投入产出效率。我国物联网标准体系已形成初步框架,物联网在广东、江苏、上海等地都已经有了局部的建设。2014年我国物联网产业规模达到了6000亿元人民币,同比增长22.6%,2015年产业规模达到7500亿元人民币,同比增长29.3%。但由于产业标准不统一,行业竞争加剧等风险存在,物联网未来将进一步完善并获得高速发展。 定义 物联网,英文名称Internet of things,简称IOT。顾名思义,物联网就是物物相连的互联网。这里包含两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了物品与物品之间,进行信息交换和通信。物联网是继计算机、互联网与移动通信网之后的第三次信息产业浪潮,被列为国家重点发展的战略性新兴产业之一。 应用范围 物联网应用到生产环节,能够实现更加智能化、针对性的生产管理,进行供应链的分析与优化,更好地做出产品故障诊断与预测,为企业创造更大的价值,使整个人类社会的生产活动更加环保、智能、安全。 物联网应用到消费环节,可穿戴设备、智慧医疗、智能家居、车联网等领域的应用应运而生,它们将引领消费者物联网的发展,给服务业带来深远的影响,从而改变和丰富人们的日常生活。预计今后,许多软件和硬件供应商都能从这一领域中找到一席之地。

物联网应用到公共事业,将技术引入到水务、照明、环保、电网、交通、消防等多个领域,帮助政府实现对城市的智能化管理,着力打造真正的“智慧城市”。可以说,物联网的影响正在逐渐渗透到人类社会的各个产业环节中,为人类的生产生活带来巨大的变革。 行业投资价值度评级

2019年物联网行业市场分析报告

2019年物联网行业市场分析报告

内容目录 1. 通信研发占比高,挖掘细分领域潜在机会 (4) 1.1. 科创板发行规则及与原三板的区别 (4) .2. 通信板块研发占比位居前三,挖掘细分领域潜在机会,重点关注5G、量子通信、1 云计算、物联网、大数据等 (5) 2. 5G 完整的产业链概况:集成能力强,末端制造强,前端芯片及材料成为突破的主战场 (5) 2 2.1. 以主设备商领先的优势,产业链集成有望引领全球 (5) .2. 光模块/器件:核心技术高壁垒,国产化重点突破领域,5G+云计算叠加国产份额 提升驱动长期成长 (8) .3. 基站天线及滤波器的末端制造环节较强,功放、数字中频、高频覆铜板等前端芯片级材料是下阶段重点突破方向 (10) 2 2 2 2 2 2.3.1. 基站天线:中国基站天线企业全球领先 (11) .3.2. 滤波器:全面的国产替代,陶瓷滤波器渐成主流 (12) .3.3. PA:薄弱环节,密切关注国产替代进展;GaN 成为首选的PA 材料 (12) .3.4. 数字中频+射频收发模块:目前多依赖进口,国产化仍有待加速 (13) .3.5. PCB+CCL:高频高速板正在国产化替代 (14) 3. 专网:技术壁垒高、研发投入大的高科技产业,国产替代+份额提升面临广阔成长空间 (15) . 量子通信:量子计算时代国家信息安全核心保障,中国厂商商用进度领先,期待应用需求大规模落地 (17) 4 4 4.1. 量子计算机商用临近,下一代安全技术量子通信需求迫切 (17) .2. 国家高度重视量子通信,国内量子通信商业化进展领先 (17) 5. 云计算基础设施:IDC 一线资源稀缺,长期价值凸显 (18) 5 5 5.1. 全球IDC 行业受益云计算快速发展,大型化数据中心是未来趋势 (18) .2. 国内IDC 行业高速发展,一线资源稀缺,价格稳定,长期价值凸显 (20) .3. 5G 时代云计算/CDN 向边缘计算演进,当前处于技术研发、商业模式探索关键时 期 (20) 6. 物联网:5G 时代万物互联,终端、平台、应用市场有望相继迎来大发展 (22) 6 6.1. 中国M2M 市场:全球最大市场仍然保持高增长 (22) .2. 国内物联网产业进展:网络建设日益完善、成本如期下降,应用拓展仍需时间和 场景创新 (23) 图表目录 图1:科创板要求 (4) 图2:2017 年通信行业研发费用占比中信行业指数前三 (5) 图3:5G 网络连接示意图 (5) 图4:全球主要设备商变迁 (7) 图5:2013-2017,五大通信设备商的运营商业务收入(亿美元) (7) 图6:几大设备商无线接入设备(RAN)市场份额统计 (7)

工业物联网发展现状及其问题分析

工业物联网发展现状问题和关键技术应用工业物联网是物联网在工业领域的应用,将在能源、交通运输(铁路和车站、机场、港口)、制造(采矿、石油和天然气、供应链、生产)等应用领域上发挥重要作用。 在物联网的过程中,包含了各个类型的供应厂商,主要有:设备制造商、系统集成商、网络运营商、平台供应商等。鉴于中国工业物联网产业链还处在形成初期,产业链条的界定和分工还不完全明晰,但随着产业整体竞争力的快速提升,行业处于爆发前期。各个环节的都必需得到良好的发展。 设备制造商 设备制造商主要涵盖感知层、传输层、现场管理层、应用层等工业物联网各层级主要设备厂商。感知层企业包括芯片、RFID、传感器、工业仪表、工业相机、二维码、PLC等企业;传输层则企业主要包括芯片、通信模块、通信设备等企业,如云里物里作为物联网企业,主要就是做蓝牙解决方案,生产蓝牙模组和iBeacon设备的厂家。现场管理层主要包括工控机、DCS、SCADA、FCS等;应用层涉及到的设备主要包括服务器、智能装备等。 平台供应商 平台供应商主要为工业物联网应用提供支撑,能够为设备制造商提供终端监控和故障定位服务,为系统集成商提供代计费和客户服务,为终端用户提供可靠全面的服务,为应用开发者提供统一、方便、低廉的开发工具等。主要包括工业物联网平台、工业数据平台、工业云平台提供商等。 网络运营商 网络运营商主要提供数据传输,是工业物联网网络层的主体,是连接传感数据和终端应用的中间环节。运营商将关注焦点放在了连接和应用这两个层面。其中连接是运营商最擅长的领域,而平台则是运营商未来突围的关键。 在网络部署方面,未来将会存在两种典型应用场景:一方面,企业的工业物联网接入移动运营商的物联网网络,比如移动物联网、NB-IOT网络、5G网络等,将数据汇总到公有云中;另一方面,如果企业关注数据安全,更倾向于先建立专有的工业物联网络和数据中心,再将一些安全级别低的数据汇总到公有云。 系统集成商 系统集成商主要致力于解决各类设备、子系统间的接口、协议、系统平台、应用软件等与子系统、使用环境、施工配合、组织管理和人员配备相关的集成,相关企业包括自动化企业、工业控制系统企业、工业软件企业等各类工业系统解决方案企业。 工业物联网目前存在的问题 基础支持力量薄弱 现阶段,我国在传感器关键技术、计算机系统设计技术、通信网络技术等物联网共性技术方面滞后于欧美日等发达国家,无法为我国的工业转型提供强有力的支撑。 人才资金支持需要提升 目前,我国工业物联网的发展处于起步阶段,在技术研发、企业培育、产品推广等方面需要大量的资金支持,但目前我国的资金支持仍局限在国家科技计划,资金总量和资金的覆盖面有限,限制了我国工业物联网的发展。

工业物联网发展几大阶段

工业物联网发展几大阶段 厂商不应只着眼于提供各种硬件、软件、平台、数据模型,而是要向使用者提供这些硬件、软件、平台、数据模型,为自己服务的方法。 近几年,工业物联网发展的如火如荼,各种服务商、集成商如雨后春笋不断涌现,逐鹿市场。但工业物联网在工业制造中部署落地的情况却不容乐观,那么,发展工业物联网,难度究竟在哪里?或者说哪些能力才是工业物联网厂商们的核心竞争力? 我们将工业物联网的技术应用分为以下七层: 层级L1、C1:设备联网,数据采集 随着工业物联网的快速发展,很多传统的工业制造企业将目光转向了设备数据,要实现智慧管理、数据处理,第一步需要拿到设备数据。那么对于工业设备来说,数据采集很难么?设备生产厂家自己不能做?当然不是。 其实工业设备数据采集,就是做一个硬件终端,与设备交互,只要弄明白交互的物理接口、交互协议、数据类型等,这个事情就不难。但拥有协议的设备厂家,为何自身没做数据

采集,而是通过第三方来获取数据,其中的难点不在数据采集本身,因为工业设备的数据具有海量且无序的特点。 除了数据采集,还要对数据进行存储、分类、处理等等,这些都是厂家需要面临和解决的问题。中国制造业现状决定数据采集将是非常大的市场需求,正催生了大量的硬件制造商、数据采集集成商等提供基础数据互通能力的服务企业。 层级L2、C2:数据接收,数据存储,云平台 云平台很难吗?设备生产厂家自己做不了,其他软件公司不能做吗?MQTT就是物联网了吗? 当然是否定的。 云平台的难度当然比做一个数据采集终端要难一些,但云平台归根到底,还是一个解决终端规模接入处理能力,如何解决大规模并发的数据存储问题,这也是一个纯粹的技术问题,即便设备厂家做不了,还是有很多物联网公司能去做这件事,例如阿里云、华为云、云里物里等企业。看中的正是它们的云部署能力和雄厚的实力,对于云中部署的数据有比较高的保障,这是一般的企业想做也没有能力做好的。 层级L3、C3:数据处理 云平台虽然解决了数据接收和存储需求,但业内人都知道,这是非常复杂的时序数据存储。数据被保存到云平台后,该怎么处理?这件事情是想着简单,实际部署却有一定难度。 所谓数据处理,就是把数据进行高度的抽象,并进行必要的处理,让这些数据更加有序的保存,高效的检索,便于后续的数据应用、统计、分析计算。 数据处理这个环节,事实上很容易被忽略,绝大多数物联网服务商并不明白数据处理是怎么回事,更不知道如何去做好数据处理,只能把采集到保存过程中的数据直接应用,这就带来一系列问题:

相关文档
相关文档 最新文档