文档视界 最新最全的文档下载
当前位置:文档视界 › 数学建模模拟题,图论,回归模型,聚类分析,因子分析等

数学建模模拟题,图论,回归模型,聚类分析,因子分析等

数学建模模拟题,图论,回归模型,聚类分析,因子分析等
数学建模模拟题,图论,回归模型,聚类分析,因子分析等

第11章第2题

摘要

本题分析4 种化肥和3 个小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,可视为两因素方差分析,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。

试验的目的是分析化肥的四个不同水平以及小麦品种的三个不同水平对小麦产量有无显着性影响。

关键词:方差分析显着性化肥种类小麦品种

一.问题重述

为了分析4 种化肥和3 个小麦品种对小麦产量的影响,把一块试验田等分成36个小块,分别对3种种子和四种化肥的每一种组合种植3 小块田,产量如表1所示(单位公斤),问不同品种、不同种类的化肥及二者的交互作用对小麦产量有无显着影响。

二.问题分析

本题意在分析四种化肥和三种小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,为两因素方差分析问题,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。通过对这两种因素的不同水平及交互作用的分析,从而分析4 种化肥和3 个小麦品种对小麦产量的影响。

三.模型假设

1.假设只有化肥种类和小麦品种两个因素,其他因素对试验结果不构成影响。

2.假设不存在数据记录错误。

3.假设每一块试验田本身各项指标相同,不会影响结果。

四.符号说明

数字1,2,3,4——不同的化肥种类

数字1,2,3——不同的小麦品种

五.模型建立

将化肥种类和小麦品种视为两个因素,四种化肥种类看作是化肥种类的四个不同水平,三个小麦品种看作是小麦品种的三个不同水平,将表1的数据进行整理,如表2所示。

六.模型求解

将表2数据导入到spss软件中,进行两因素方差检验,得到结果如下:

表3

表4

选择0.01作为显着性水平,由表4可知,化肥种类影响不显着,因为其p值为

0.013大于0.01,小麦品种对小麦产量影响显着,因为p值为0,小于显着性水平

0.01,小麦品种与化肥种类的交互作用影响显着,因为p值为0,小于0.01的显着性水平。

所以,化肥种类对小麦产量影响不显着,小麦品种和小麦品种与化肥种类的交互作用对小麦产量影响显着。

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (48)

第11章第2题 摘要 本题分析4 种化肥和3 个小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,可视为两因素方差分析,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。 试验的目的是分析化肥的四个不同水平以及小麦品种的三个不同水平对小麦产量有无显着性影响。 关键词:方差分析显着性化肥种类小麦品种

一.问题重述 为了分析4 种化肥和3 个小麦品种对小麦产量的影响,把一块试验田等分成36个小块,分别对3种种子和四种化肥的每一种组合种植3 小块田,产量如表1所示(单位公斤),问不同品种、不同种类的化肥及二者的交互作用对小麦产量有无显着影响。 二.问题分析 本题意在分析四种化肥和三种小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,为两因素方差分析问题,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。通过对这两种因素的不同水平及交互作用的分析,从而分析 4 种化肥和3 个小麦品种对小麦产量的影响。 三.模型假设 1.假设只有化肥种类和小麦品种两个因素,其他因素对试验结果不构成影响。 2.假设不存在数据记录错误。 3.假设每一块试验田本身各项指标相同,不会影响结果。 四.符号说明 数字1,2,3,4——不同的化肥种类 数字1,2,3——不同的小麦品种 五.模型建立 将化肥种类和小麦品种视为两个因素,四种化肥种类看作是化肥种类的四个不同水平,三个小麦品种看作是小麦品种的三个不同水平,将表1的数据进行整理,如表2所示。

六.模型求解 将表2数据导入到spss软件中,进行两因素方差检验,得到结果如下:表3

数学建模之聚类分析

聚类分析 聚类分析是将个对象按各自的特征将相似的对象归到同一个类或簇的一种方法,它的原则是同一个类中的对象有很大的相似性,而不同类间的对象有很大的相异性。特点: ①适用于没有先验知识情况下的分类。对于没有先前的经验或一些规则的对象进行分类,则显得很随意和主观,这时需要使用聚类分析法通过对象各自的特性来合理的分类; ②能处理多个维度或属性决定的分类。例如,对于某个地区的全部家庭的富裕程度而言,通过家庭的收入和支出差可以简单分类,容易知道。但是如果要求从家庭的收入、家庭的支出、家庭的固有资产、家庭所在地区的地段等多个变量来分析就比较复杂,然后解决这个问题可以使用聚类分析算法。 ③聚类分析算法也是一种探索性分析方法,能够挖掘对象的潜在规律和特性,并根据相似性原则对事物进行分类。 几类距离公式:

() ()() () () ()()()211112 21 11.2.=,3.,4.||5.1|| 6.2||7p q pq ij i G j G p q pq p q T p q pq p q p q p q p q q ij ik jk k p ij ik jk k p ij ik jk k D d n n D d x x n n ward D x x x x n n Minkowski d q x x d x x d x x ∈∈==== = = -+? ?=-???? =-? ?=-????∑∑∑∑∑类平均距离重心距离 离差平方和距离闵科夫斯基绝对值距离 欧氏距离 () ()( )())1 ||.8.p ik jk ij k ik jk ij x x Wiliams d L x x Mahalanobis d M =-=+= ∑ 兰式距离马氏距离其中是样品协方差 系统聚类法思想 先将每一个样本作为一个单独的类,然后计算各个样本之间的距离i S ,在将计算出来的距离i S 定义为类之间的距离j S ,以为j S 标准的距离,进行合理合并,形成新的一个类,在重新对新类和其他剩余的类进行计算其距离,循环执行合并动作,直到全部的样本都属于一个大类为止。 步骤: ①若有n 个样本点,计算出每两个样本点之间的距离ij d ,即矩阵()ij n n D d ?=; ②建立n 个类,每个类中仅有一个样本点,且每个类的平台高度都为0; ③将距离最近的两个类合并为新类,选取聚类图的平台高度为这两类之间的距离值; ④求出新类和目前各类之间的距离,如果类的个数等于1,执行步骤⑤,否则,返回执行步骤③;

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

数学建模图论模型图论

§1 最小生成树 1.1 生成树的概念 设图G=(V,E)是一个连通图,当从图中任一顶点出发遍历图G时,将边集E(G)分成两个集合A(G)和B(G)。其中A(G)是遍历图时所经过的边的集合,B(G)是遍历图时未经过的边的集合。显然,G1=(V,A)是图G的子图,则称子图G1是连通图G的生成树。图的生成树不是惟一的。如对图1(a),当按深度和广度优先搜索法进行遍历就可以得到图1中(b)和(c)的两棵不同的生成树,并分别称之为深度优先生成树和广度优先生成树。 对于有n个顶点的连通图,至少有n-1条边,而生成树中恰好有n-1条边,所以连通图的生成树是该图的极小连通子图。若图G的生成树中任意加一条边属于边集B(G)中的边,则必然形成回路。 求解生成树在许多领域有实际意义。例如,对于供电线路或煤气管道的铺设问题,即假设要把n个城市联成一个供电或煤气管道网络,则需要铺设n-1条线路。任意两城市间可铺设一条线路,n个城市间最多可能铺设n(n-1)/2条线路,各条线路的造价一般是不同的。一个很实际的问题就是如何在这些可能的线路中选择n-1条使该网络的建造费用最少,这就是下面要讨论的最小生成树问题。 1.2 网的最小生成树 在前面我们已经给出图的生成树的概念。这里来讨论生成树的应用。 假设,要在n个居民点之间敷设煤气管道。由于,在每一个居民点与其余n-1个居民点之间都可能敷设煤气管道。因此,在n个居民点之间,最多可能敷设n(n-1)/2条煤气管道。然而,连通n个居民点之间的管道网络,最少需要n-1条管道。也就是说,只需要n-1条管道线路就可以把n个居民点间的煤气管道连通。另外,还需进一步考虑敷设每一条管道要付出的经济代价。这就提出了一个优选问题。即如何在n(n-1)/2条可能的线路中优选n-1条线路,构成一个煤气管道网络,从而既能连通n个居民点,又能使总的花费代价最小。 解决上述问题的数学模型就是求图中网的最小生成树问题。把居民点看作图的顶点,把居民点之间的煤气管道看作边,而把敷设各条线路的代价当作权赋给相应的边。这样,便构成一个带权的图,即网。对于一个有n个顶点的网可以生成许多互不相同的生成树,每一棵生成树都是一个可行的敷设方案。现在的问题是应寻求一棵所有边的权总和为最小的生成树。

数学建模各种分析报告方法

现代统计学 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 主成分分析和因子分析的区别 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,

数学建模之聚类分析

聚类分析 聚类分析是将个对象按各自的特征将相似的对象归到同一个类或簇的一种方法,它的原则是同一个类中的对象有很大的相似性,而不同类间的对象有很大的相异性。特点: ①适用于没有先验知识情况下的分类。对于没有先前的经验或一些规则的对象进行分类,则显得很随意和主观,这时需要使用聚类分析法通过对象各自的特性来合理的分类; ②能处理多个维度或属性决定的分类。例如,对于某个地区的全部家庭的富裕程度而言,通过家庭的收入和支出差可以简单分类,容易知道。但是如果要求从家庭的收入、家庭的支出、家庭的固有资产、家庭所在地区的地段等多个变量来分析就比较复杂,然后解决这个问题可以使用聚类分析算法。 ③聚类分析算法也是一种探索性分析方法,能够挖掘对象的潜在规律和特性,并根据相似性原则对事物进行分类。 几类距离公式: () ()() () () ()()()21 1112 21 11.2.=,3.,4.||5.1|| 6.2||7p q pq ij i G j G p q pq p q T p q pq p q p q p q p q q ij ik jk k p ij ik jk k p ij ik jk k D d n n D d x x n n ward D x x x x n n Minkowski d q x x d x x d x x ∈∈==== == -+? ?=-???? =-? ?=-????∑∑∑∑∑类平均距离重心距离 离差平方和距离闵科夫斯基绝对值距离 欧氏距离 () ()() ())1 ||.8.p ik jk ij k ik jk ij x x Wiliams d L x x Mahalanobis d M =-=+= ∑ 兰式距离马氏距离其中是样品协方差 系统聚类法思想 % 先将每一个样本作为一个单独的类,然后计算各个样本之间的距离i S ,在将计算出来的距离i S 定义为类之间的距离j S ,以为j S 标准的距离,进行合理合并,

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模 图与网络模型及方法

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”.哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图"是指某类具体事物和这些事物之间的联系.如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功.欧拉为了解决 这个问题,采用了建立数学模型的方法.他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”.问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河. 图与网络是运筹学(Operat ions Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域.下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题. 我们首先通过一些例子来了解网络优化问题. 例1 最短路问题(SPP -shorte st pat h p rob lem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市.假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

数学建模图论

图论 一.最短路问题 问题描述:寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 将问题抽象为赋权有向图或无向图G ,边上的权均非负 对每个顶点定义两个标记(()l v ,()z v ),其中: ()l v :表示从顶点到v 的一条路的权 ()z v :v 的父亲点,用以确定最短路的路线 S :具有永久标号的顶点集 1.1Dijkstra 算法:即在每一步改进这两个标记,使最终()l v 为最短路的权 输入:G 的带权邻接矩阵(,)w u v 步骤: (1) 赋初值:令0()0l u =,对0v u ≠,令 ()l v =∞,0={u }S ,0i = 。 (2) 对每个(\)i i i v S S V S ∈= (即不属于上 面S 集合的点),用min{(),()()}i u S l v l u w uv ∈+ 代替()l v ,这里()w uv 表示顶点u 和v 之间边的权值。计算min{()}i u S l v ∈,把达到这个最小值的一个顶点记为1i u +,令11{}i i i S S u ++=?。 (3) 若1i V =-,则停止;若1i V <-,则 用1i +代替i ,转(2) 算法结束时,从0u 到各顶点v 的距离由v 的最后一次编号()l v 给出。在v 进入i S 之前的编号()l v 叫T 标号,v 进入i S 之后的编号()l v 叫P 标号。算法就是不断修改各顶点的T 标号,直至获得P 标号。若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各顶点的最短路也在图上标示出来了。 理解:贪心算法。选定初始点放在一个集合里,此时权值为0初始点搜索下一个相连接点,将所有相连接的点中离初始点最近的点纳入初始点所在的集合,并更新权值。然后以新纳入的点为起点继续搜索,直到所有的点遍历。

数学建模指导

建模方法 接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座) 培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple, 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 竞赛参考书 l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).

数学建模之模糊评价与模糊聚类

数学建模之模糊评价与 模糊聚类 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

一、模糊评价 模糊评价法是应用模糊理论和模糊关系合成的原理,通过多个因素对被评 价事物隶属等级状况进行综合性评价的一种方法。运用模糊评价法,通过多因素 或多指标,既对被评价事物的变化区间作出某种划分,又对事物属于各评价等级 的程度作出分析,从而更深入和客观地对被评价事物进行描述。 特点: ①模糊评价法的结果是一个向量,而不是一个数值,即被评价事物的状况是通过被评价事物的等级隶属度来表示。 ②模糊评价法可以是一种多层的评价,即可以先对被评价事物的某一层面进行模糊评价,再将各层面的模糊评价结果进行模糊合成,得出总的模糊评价结果。 ③模糊评价法具有指标或因素的自然可综合性。由于模糊评价法只需确定各指标的等级隶属度,既可用于主观指标,又可用于客观指标,以此而无需专门对指标进行无量纲处理。 模糊评价的应用 ①人事考核中的应用, ②单位员工的年终评定, ③昆山公安信息化建设效绩的评估(下载文档), ④我国商业银行内部控制评价体系研究(下载文档), ⑤石化行业业绩评价(下载文档)等。 一级模糊综合评判模型的建立步骤 ①确定因素集及评语集 确定被评价对象的因素集U ,{}12=,, ,n U u u u ,评语集{}12,,,m V v v v =; ②构造模糊关系矩阵R ,进行单因素评判。 用ij r 表示U 中的因素i u 对应于V 中等级j v 的隶属关系,则有 ③确定各因素的权重 用i a 表示第i 个因素的权重,11n i i a ==∑,则评价因素权向量A 为 ()12,,,n A a a a =。 ④综合评判 由模糊关系矩阵R 得到一个模糊变换为 则评判的综合结果为 () 11121212221212,,,m m n n n nm r r r r r r B A R a a a r r r ?? ? ? == ? ??? 。 多层次模糊综合评判模型的建立步骤

数学建模图论

数学建模图论 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

图论 一.最短路问题 问题描述:寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 将问题抽象为赋权有向图或无向图G ,边上的权均非负 对每个顶点定义两个标记(()l v ,()z v ),其中: ()l v :表示从顶点到v 的一条路的权 ()z v :v 的父亲点,用以确定最短路的路线 S :具有永久标号的顶点集 算法:即在每一步改进这两个标记,使最终()l v 为最短路的权 输入:G 的带权邻接矩阵(,)w u v 步骤: (1) 赋初值:令0()0l u =,对0v u ≠, 令()l v =∞,0={u }S ,0i =。 (2) 对每个(\)i i i v S S V S ∈=(即不属 于上面S 集合的点),用min{(),()()}i u S l v l u w uv ∈+代替()l v ,这里()w uv 表示顶点u 和v 之间边的权值。计算min{()}i u S l v ∈,把达到这个最小值的一个顶点记为1i u +,令11{}i i i S S u ++=?。 (3) 若1i V =-,则停止;若 1i V <-,则用1i +代替i ,转(2) 算法结束时,从0u 到各顶点v 的距离由v 的最后一次编号()l v 给出。在v 进入i S 之前的编号()l v 叫T 标号,v 进入i S 之后的编号()l v 叫P 标号。算法就是不断修改各顶点的T 标号,直至获得P 标号。若在算法运行过程中,将

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

相关文档
相关文档 最新文档