文档视界 最新最全的文档下载
当前位置:文档视界 › 高考求函数值域及最值得方法及例题-训练题

高考求函数值域及最值得方法及例题-训练题

高考求函数值域及最值得方法及例题-训练题
高考求函数值域及最值得方法及例题-训练题

函数专题之值域与最值问题

一.观察法

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x) 的值域。

点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,

故3+√(2-3x)≥3。

∴函数的知域为.

点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

二.反函数法

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

{

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法

当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

|

点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

四.判别式法

若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)

当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3

|

当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。

点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。

五.最值法

对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

.

∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。

当x=-1时,z=-5;当x=3/2时,z=15/4。

∴函数z的值域为{z∣-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

练习:若√x为实数,则函数y=x2+3x-5的值域为()

A.(-∞,+∞)B.[-7,+∞] C.[0,+∞)D.[-5,+∞)

(答案:D)。

六.图象法

~

通过观察函数的图象,运用数形结合的方法得到函数的值域。

例6求函数y=∣x+1∣+√(x-2)2 的值域。

点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

解:原函数化为-2x+1 (x≤1)

y= 3 (-1

2x-1(x>2)

它的图象如图所示。

显然函数值y≥3,所以,函数值域[3,+∞]。

点评:分段函数应注意函数的端点。利用函数的图象

求函数的值域,体现数形结合的思想。是解决问题的重要方法。

求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

七.单调法

利用函数在给定的区间上的单调递增或单调递减求值域。

例1求函数y=4x-√1-3x(x≤1/3)的值域。

点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x -√1-3x

~

在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为

{y|y≤4/3}。

点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})

八.换元法

以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

例2求函数y=x-3+√2x+1 的值域。

点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

解:设t=√2x+1 (t≥0),则

[

x=1/2(t2-1)。

于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

所以,原函数的值域为{y|y≥-7/2}。

点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}

九.构造法

根据函数的结构特征,赋予几何图形,数形结合。

例3求函数y=√x2+4x+5+√x2-4x+8 的值域。

*

点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

作一个长为4、宽为3的矩形ABCD,再切割成12个单位

正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,

KC=√(x+2)2+1 。

由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共

线时取等号。

∴原函数的知域为{y|y≥5}。

点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})

十.比例法

对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

例4已知x,y ∈R ,且3x-4y-5=0,求函数z=x2+y2的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。 解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k 为参数) (

∴x=3+4k,y=1+3k,

∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。 当k=-3/5时,x=3/5,y=-4/5时,zmin=1。 函数的值域为{z|z≥1}.

点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。 练习:已知x,y ∈R ,且满足4x-y=0,求函数f(x,y)=2x2-y 的值域。(答案:{f(x,y)|f(x,y)≥1}) 十一.利用多项式的除法

例5求函数y=(3x+2)/(x+1)的值域。

*

点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。 解:y=(3x+2)/(x+1)=3-1/(x+1)。 ∵1/(x+1)≠0,故y≠3。

∴函数y 的值域为y≠3的一切实数。

点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。 练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2) 十二.不等式法

例6求函数Y=3x/(3x+1)的值域。

点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。

解:易求得原函数的反函数为y=log3[x/(1-x)], 由对数函数的定义知 x/(1-x)>0 1-x≠0 解得,0<x<1。

∴函数的值域(0,1)。

点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。 以下供练习选用:求下列函数的值域 {

1.Y=√(15-4x)+2x-5;({y|y≤3})

2. Y=2x/(2x -1)。 (y>1或y<0)

训练例题

例1.求下列函数的值域

(1)2

22y x =

+(2)31

(1)2

x y x x +=≤-(3)2y x =+4) 4y x =+

*

例2.已知,0,26x y x y ≥+=,求2

2

4363Z x xy y x y =++--的最值。

例3.求下列函数的值域

(1)2

21425x x y +=--+(2)221x x y x x -=-+(3)sin 2cos x y x

=-

例4.如何求函数23(1)1x y x x +=>-+的最值21

(1)3

x y x x +=>-+呢 `

例5.求下列函数的值域

(1)21()(2)x f x x x +=≥(2

)2y x =-3)|1||4|y x x =-++(4)1sin 2cos x

y x

-=-

课后练习题 一、~ 二、 选择题

1. 已知函数()f x =???≤>)

0(3)0(log 2x x x x ,则f [f (41)]的值是

B.

9

1

C. -9

D. -

9

1 )

2. 若集合??

????????∈-???

??==R x y y S x

,121|,{}2|log (1),1T y y x x ==+>-,则T S 等于

A .{0}

B .{|0}y y ≥

C .S

D .T

3. 下列函数中值域是(0,+∞)的函数是

A.125

x

y -= B.11()

2

x

y -=

C.y =

D. y =

4. 定义在R 上的函数()y f x =的值域为[a ,b ],则(1)f x +的值域为

A.[a ,b ]

B.[a +1,b +1]

C.[a -1,b -1]

D.无法确定

5. 函数y =

1

2

-x 的定义域是(-∞,1) [2,5],则其值域是 A.(-∞,0) [21,2] B.(-∞,2) C.(-∞,2

1

) [2,+∞] D.(0,+∞)

6. 函数]4)3(lg[2

+++=x k x y 的值域为R ,则实数k 的取值范围是

A .17≤≤-k

B .7-≤k 或1≥k

C .71≤≤-k

D .7-k 7. 已知函数)(,|

|1

)1

()(2)(x f x x f x f x f 则满足=

-的最小值是 A .2 B .22 C .3

2 D .

3

2

2 8. 函数|3||1|y x x =--+

A.最小值为0,最大值为4

B.最小值为-4,最大值为0

C.最小值为-4,最大值为4

D.没有最大值,也没有最小值 9. 已知)12(+x f 的最大值为2,)14(+x f 的最大值为a ,则a 的取值范围是

\

A .2

B .2>a

C .2=a

D .以上三种均有可能

10.已知a b a ,0,0>>、b 的等差中项是βαβα++=+=则且,1

,1,21b

b a a 的最小值是 A .3

B .4

C .5

D .6

11. 已知()12g x x =-,221[()](0)x f g x x x -=≠,则f ()2

1= A .15 B .1 C .3 D .30

12. 设函数f x x x ()()()

=->

?1010,则()()()()a b a b f a b a b ++-?-≠2的值为

A.a

B. b

C.a 、b 中较小的数

D.a 、b 中较大的数

13.函数

19

1

()n f x x n

==-∑的最小值为

A .190

B .171

C .90

D .45 二、填空题:

14. 定义在R 上的函数)(x f 满足关系式:2)21()21(=-++x f x f ,则+)81(f )8

2(f

)8

7

(f ++ 的值等于________

15. 已知函数()f x 对一切实数a b ,,均满足()()()f a b f a f b +=?,且(1)2f =.则

(2)(3)(4)

(2007)

(1)(2)(3)

(2006)

f f f f f f f f ++++

=

16. 设1

)(2

++=

x b

ax x f (a >0)的值域为[-1,4],则a ,b 的值为_________ 17.

函数??

?

??>+-≤<+≤+=15103

03

2x x x x x x y 的最大值是 18.已知a ,b 为常数,若2

2

()43,()1024,f x x x f ax b x x =+++=++则5a b -= 三、解答题:

.

19. 求下列函数的值域 (1)5

44

2

--=

x x y ; (2)x x y 21-+-=; (3)x

x y 1

2-=

|

20. 已知函数22

2()(0)1

x bx c

f x b x ++=<+的值域为[1,3],求实数b 、c 的值。

|

21.设函数4

1)(2

-

+=x x x f , (1)若定义域为[0,3],求)(x f 的值域;

(2)若定义域为]1,[+a a 时,)(x f 的值域为]16

1

,21[-,求a 的值.

-

22. 已知函数:)(1)(a x R a x

a a

x x f ≠∈--+=

(1)证明:()2(2)0f x f a x ++-=对定义域内的所有x 都成立. (2)当()f x 的定义域为1

[,1]2

a a +

+ 时,求证:()f x 的值域为[3,2]--; *(3)设函数2

()|()()|g x x x a f x =+-, 求()g x 的最小值 .

;

函数的值域与最值参考答案

(三)例题讲评

例1.(0,1];[4,3);(,4];[1,4--∞+ 例2.

620,0,03y x x x =-≥≥∴≤≤及

2232726182()(03)22Z x x x x =-+=-+≤≤,最大值18;最小值27

2

例3.[1,1)-;1

[,1)3-

;[; /

例4.223(1)2(1)44

(1)22111

x x x y x x x x ++-++=

==++-≥+++,当且仅当 4

1(1)1

x x x +=

>-+时取等号;即1x =时,y 的最小值是2。没有最大值。 另外2211331

x y x x x +=

=+++方法同上,即1x =时,y 的最大值是1

2

。没有最小值。 说明:本题不能用判别式法。因为x R ?。若用判别式法得1162y -≤≤,当1

6

y =-时, 求得3x =-,不合。

例5.5

[,);(,2]2+∞-∞;4[5,);[0,]3

+∞

(以上各小题考虑了各种方法的顺序,有的方法给出2个小题,有的题目可以多种方法导数法暂不考虑。) (四)练习题 一、【 二、

9.提示:令)14()2()12()(+=→+=x f x g x f x g ,实际是将原函数图象的点的横坐标缩短变为原来的二分之一,纵坐标不变。故最值不变。 10. 提示:由11

1144a b a b ab ab

+=?=+≥≤

?≥, 1

11

()1145a b a b ab

αβ+=+++=+

≥+= @

二、填空题

; ; 16. a =4, b=3; 17. 4; 。 15.提示:

()

()()

f a b f a f b +=用赋值法或令()2x f x =

三、解答题

19. [解析]先确定函数的定义域,正确选择方法,并作出相应的数式变换.

(1)函数的定义域为5,1≠-≠x x 且,

令09,9)2(542

2≠-≥∴--=--=u u x x x u 且, 即0>u 或9

440409-≤>?

<≤-u u u 或, $

∴函数的值域为),0(]9

4,(+∞--∞ ;

(注)这里运用了不等式性质:b a ab b a 1

10

?>>;

[解法二]原函数等价于0)45(4,4)54(2

2

=+--=--y yx yx x x y 即,

当0=y 时,得-4=0,矛盾,0≠∴y ,

)5,1(≠-≠∈x x R x 且 ,

0)49(0)45(4162≥+?≥++=?∴y y y y y ,

解得函数的值域为),0(]9

4

,(+∞--∞ .

(2)函数的定义域为]2

1

,(-∞.作换元,令)0(21212≥-=?=-t t x t x , >

),0[)(,1)1(2

1

2122+∞∴-+=+-=∴在t f t t t y 上为增函数,

21)0(-=≥∴f y ,∴函数的值域为),2

1

[+∞-;

[解法二]令x x f x x f 21)(,)(21-=-=,∴原函数)()(21x f x f y +=, ∵)()(21x f x f 与在定义域内都是减函数,

∴原函数)(x f y =在定义域]21

,(-∞是减函数,2

1)21(-=≥∴f y , 而当-∞→x 时,+∞→y ,∴函数的值域为),2

1

[+∞-. (3)函数的定义域为2

1≥

x ,

)210(1)11(21122

22≤<+--=+-=-=

∴x x x

x x x y ,

由二次函数性质知函数的值域为[0,1];

[解法二]令12-=x t , )0(2

1

2≥+=∴t t x , 10,12212)(2

≤≤∴=≤+=

=∴y t

t

t t t f y , 即函数的值域为[0,1]

20.由y =1

22

2+++x c

bx x 得 (2-y )x 2+bx +c -y =0,(*) 当y -2≠0,由x ∈R,有Δ=b 2-4(2-y )·(c -y )≥0 即

4y 2-4(2+c )y +8c -b 2≤0,由已知得

2+c =1+3且4

82

b c -=1×3

∴b =±2,c =2又b <0,∴b =-2,c =2, 而y -2=0,b =-2,c =2代入(*)式得x =0

∴b =-2,c =2为所求 21.解:21)2

1()(2

-+=x x f ,∴对称轴为2

1-=x , (1)2103->≥≥x ,∴)(x f 的值域为)]3(),0([f f ,即]447,41[-; (2)∴-=,21)]([min

x f 对称轴]1,[2

1

+∈-=a a x ,

212321

121-≤≤-????

????

-≥+-≤∴a a a ,

∵区间]1,[+a a 的中点为2

1

0+=a x , ①当2

1

1,2121-≤≤--≥+

a a 即时, 16

1

41)1()1(,161)1()]([2max =-+++∴=+=a a a f x f ,

4

9

(4302748162-=-=?=++∴a a a a 不合);

②当123,2121-<≤--<+a a 即时,161

)()]([max ==a f x f ,

4

1

(45051616,1614122=-=?=-+∴=-+∴a a a a a a 不合);

综上,4

543-

=-=a a 或. 22.(1)证明:x

a a a

x a x a a x x a f x f +--+-+

+--+=

-++21221)2(2)( 01221121=--+--+-+=-+-++--+=x

a x a x a a x a x x a x a a x

∴结论成立 (2)证明:x

a x a x a x f -+

-=-+--=

1

11)()( 当112,211211121-≤-≤--≤-≤---≤-≤--+≤≤+x

a x a a x a a x a 时

21

13-≤-+-≤-x

a 即]2,3[)(--值域为x f

(3)解:)(|1|)(2

a x a x x x g ≠-++=

①当a x a x x x g a x a x -++=-++=≠-≥4

3

)2

1(1)(,12

2

时且 如果211-

≥-a 即2

1

≥a 时,则函数在),(),1[+∞-a a a 和上单调递增 2min )1()1()(-=-=a a g x g ,

如果a g x g a a -=-=<-<-4

3

)21()(,21211min 时即当

而当21-

=a 时,)(x g 在2

1

==a x 处无定义,故)(x g 最小值不存在 ②当4

5)21(1)(122

-+-=+--=-≤a x a x x x g a x 时

如果4

5

)21()(23211min -==>>-a g x g a a 时即

如果2min )1()1()()1,()(2

3211-=-=--∞≤≤-a a g x g a x g a a 上为减函数在时即 当0)2

1

()43()1(210)23()45()1(232222>-=---<>-=--->a a a a a a a a 时当时

综合得: 当21<

a 时 g (x )最小值是a -43

当2

321≤≤a 时 g (x )最小值是2)1(-a 当23>a 时 g (x )最小值为45-a

当2

1

-=a 时 g (x )最小值不存

求值域经典例题

四、经典例题 例1、求下列函数的值域: (1) (2) (3) (4) (5) (6) 分析:对于形如(1)(2)(3)的函数求值域,基本策略是(ⅰ)化归为的值域;(ⅱ)转化为sinx(或cosx)的二次函数;对于(4)(5)(6)之类含有绝对值的函数求值域,基本策略则是(ⅰ)在适当的条件下考察y2;(ⅱ)转化为分段函数来处理;(ⅲ)运用其周期性、奇偶性或函数图象对称性转化. 解: (1) ∵ ∴, 即所求函数的值域为. (2)由

∴ ∴ 注意到这里x∈R,, ∴ ∴所求函数的值域为[-1,1]. (3)这里 令sinx+cosx=t 则有 且由 于是有 ∵ ∴ 因此,所求函数的值域为. (4)注意到这里y>0,且 ∵

∴ 即所求函数的值域为. (5)注意到所给函数为偶函数, 又当 ∴此时 同理,当亦有. ∴所求函数的值域为. (6)令 则易见f(x)为偶函数,且 ∴是f(x)的一个正周期.① 只需求出f(x)在一个周期上的取值范围. 当x∈[0,]时, 又注意到, ∴x=为f(x)图象的一条对称轴②∴只需求出f(x)在[0,]上的最大值. 而在[0,]上,递增.③ 亦递增④∴由③④得f(x)在[0,]上单调递增.

∴ 即⑤ 于是由①、②、⑤得所求函数的值域为. 点评:解(1)(2)运用的是基本化归方法;解(3)运用的是求解关于sinx+cosx与sinxcosx的函数值域的特定方法;解(4)借助平方转化;解(5)(6)则是利用函数性质化繁为简,化暗为明.这一点在解(6)时表现得淋漓尽致. 例2、求下列函数的周期: (1); (2); (3); (4); (5) 分析:与求值域的情形相似,求三角函数的周期,首选是将所给函数化为+k的形式,而后运用已知公式.对于含有绝对值的三角函数,在不能利用已有认知的情况下,设法转化为分段函数来处理. 解: (1) = = ∴所求最小正周期. (2)

函数值域的求法(精选例题)

函数值域的求法 1、(观察法)求下列函数的值域 (1)求函数y1=121 1x +的值域 (]1,0 (2)求函数y1=2-x 的值域。 (]2-,∞ 2、(配方法)求下列函数的值域 (1)求函数225,[1,2]y x x x =-+∈-的值域 ][84, (2)求函数y =的值域: ][20, (3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是( ) C A.-1241 B.18 C.8 D.43

3、(换元法)求下列函数的值域 (1)21y x =+[)∞+,3 (2)4y x =++ ][234,1+ (3)求函数y=32 ++x x 的值域 ??????21,0 (4)求函数y = ][2,1 (5)求函数 y=12243++-x x x x 的值域 ??????41,41-

4、(分离常数法)求下列函数的值域 (1)求值域(1)1 (4)2x y x x -=≥-+ ()??? ???∞+∞,,251- (2)求函数122+--=x x x x y 的值域。 ?????? 131 -, 5、(判别式法)求下列函数的值域 (1)求函数的值域2222 1x x y x x -+=++ ][51, (2)求函数3274222++-+=x x x x y 的值域。 ?????? 229 -, (3)已知函数12)(22 +++=x b ax x f x 的值域是[1,3 ],求实数a , b 的值. a=2或-2,b=2

6、(单调性法)求下列函数的值域 (1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。 (2)-48f = (2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间???? ??-34,14上的最大值和最小值. max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x = 7、(数形结合法)求下列函数的值域 (1)求函数y=4 1362+-x x 4-542++x x 的值域 (]265-, (2)求函数y=4 12++x x 4-1 - 2 +x x 的值域 ()1,1-

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数值域的求法及例题

函数值域的求法 在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法. [例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2| (5)y =2x -3+134-x (6)y =2 224)1(5 +++x x x (7)y =5 21+-x x (8)y =1223222++--x x x x (9)y =3-2x -x 2 x ∈[-3,1] (10)y =2 1322+-x x 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域. 对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域. 对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域. 解:(1)y ∈R (2)y ∈{1,0,-1} (3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1] 时,得y ∈[-1,8] (4)对于y =|x +1|-|x -2|的理解,从几何意义入 手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3 -3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3] (5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域. ∵4x -13≥0 ∴x ∈[4 13 ,+∞)令t =134-x 则得:x =4132+t

函数定义域、值域经典习题及答案88322

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: 2) y = 1 + (2 x - 1)0+ 4 - x 2 1+ 1 x -1 2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______ 3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函 数 f (1 + 2)的定义域为 。 x 4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2] ⑶y =3x -1 x + 1 ⑷y = 3x -1 (x 5) x +1 三、求函数的解析式 1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。 2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。 ⑴y = x 2 -2x -15 x +3-3 y = 2x - 6 x +2

3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。 4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _ f(x)在R 上的解析式为 5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且 f(x)+g(x)=1,求f(x)与g(x) 的解析表达式 x - 1 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ y= x2+2x+3 ⑵ y = -x2+2x +3 ⑶ y = x2- 6x -1 7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是 8、函数y = 2-x的递减区间是;函数y = 2-x的递减 3x + 6 3x + 6 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ; x+3 ⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 , f (x) = 2x - 5。 A、⑴、⑵ B 、⑵、 ⑶ C 、⑷D、⑶、⑸ 10、若函数f(x)= x - 4的定义域为R ,则实数 m mx2+ 4mx + 3 的取值范围是 ( ) A、(-∞,+∞) 3 B 、(0,3 ] 3 C 、(3,+∞ ) 3 D 、[0, 3 ) 11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )

求值域的方法,带例题

1.直接观察法:利用常见函数的值域来求值域或者通过对函数定义域、性质或者图像的观察,结合函数的解析式,求得函数的值域。 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 44|2-≥};当a<0时,值域为{a b a c y y 44|2 -≤}. 练习1.求下列函数的值域 ① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1 += x x y 2.分离常数法:分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。 练习2.求函数1 1)(+-= x x e e x f 的值域。 3.有解判别法: 有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数是否为0的讨论 例1.求函数y=1 1 22+++-x x x x 值域 解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题?≥0,

即0)14(-)1(22≥+y-y , 解得33 1 ≤≤y 且 y ≠1. 综上:值域{y|33 1 ≤≤y }. 例2.求函数6 6 522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?) 解:把已知函数化为(2)(3)36 1(2)(3)33 x x x y x x x x ---===- -+++ (x ≠2且 x ≠-3) 由此可得 y ≠1 ∵ x=2时 51-=y ∴ 5 1 -≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠5 1 -} 练习3(1)31 (1)2 x y x x +=≤- (2)22 1x x y x x -=-+ 4.二次函数在给定区间上的值域。 例3. 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142 ∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ④]5,0[,142∈+-=x x x y ; 注:对于二次函数)0()(2 ≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a b x 2-=时,其最小值 321-1-2-3 654321-1-2x O y

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

求函数最值常用的方法及经典例题讲解

求函数最值常用的方法及经典例题讲解 知识点: 一、函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥. 二、求函数最大(小)值常用的方法. 案例分析: 例1、画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈-

类型一、直接观察法 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。 例 1、求函数 1 ,[1,2] y x x =∈ 的值域 A、单调递减,无最小值 B、单调递减,有最小值 B、单调递增,无最大值 D、单调递增,有最大值小试牛刀: 1、求函数 2 1 y x = - 在区间[2,6] 上的最大值和最小值. 2

()5522++=x x x f 类型二、反函数法(原函数的值域是它的反函数的定义域) 例: 求函数3456x y x +=+值域。 实战训练场: 1) 求函数2 13-+= x x y 的值域; 2) 函数.11的值域是x x y +-= 类型三、倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例1 、求函数 y = 的值域。 例2、求函数 的值域。

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

求函数值域典型例题

求函数值域典型例题 一、函数点调性法 对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。利用函数在给定的区间上的单调递增或单调递减求值域。 例1. 求函数 1 y x = 的值域。解:∵0x ≠ ∴ 显然函数的值域是: ),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域。解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 练习1:求函数 , 故 。 ∴函数的值域为[ 3 ,+∞) 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 练习2:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 练习3:① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+= x x y ④x x y += 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴,2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1111111+-=+-+=+= x x x x x y ∵01 1 ≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1 + ==2)1(2+- x x 2≥, 当x<0时,)1 (x x y -+ --==-2)1(2----x x -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法)函数 x x y 1 +=的图像为: 例3 求函数y = +-2 5 x log 3 1-x (2≤x ≤10)的值域 解:令y 1= 2 5 -x ,2y = log 3 1-x ,则 y 1 , 2y 在[ 2, 10 ]上都是增函数。 所以y= y 1 +2y 在[ 2 ,10 ]上是增函数。 当x = 2 时,y min = 3 2-+log 3 12-=8 1 , 当x = 10 时,max y = 52+log 39=33。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

函数求值域方法之值域换元法

函数求值域方法之值域换元法

函数求值域方法之值域换元法 求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。 五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法 类型一:一般换元法 形如:y=ax+b ±d cx + 方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t=d cx +,用t 表示x ,带入原函数得到一个关于t 的二次函数,求解值域即可。 例1:求函数1)(--=x x x f 的值域 分析:本题),1[+∞∈x ,在取值区间内,x 单调增,1-x 单调增,两个单调增的函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。 解:另1-=x t (0≥t ),则12+=t x , 代入)(x f 得1)(2+-=t t x f (0≥t ) 本题实求二次函数在指定区间内的范围

③巧用万能公式:2 tan 12tan 2sin 2θ θ θ+= 2 tan 12tan 1cos 2 2 θ θθ+-= 三角换元时,尤其注意确定好θ的取值范围,下面用具体的例题跟大家说明。 例2:求21)(x x x f -+=的值域 分析:本题若使用一般换元法,则只能得到2x 与2t 之间的关系,操作起来比较麻烦,换元法本身的目的就是要使得题目变得更为简单便捷,所以一般换元法失灵,考虑使用三角换元,因为2x 前面的系数是-1,所以使用公式①换元 解:令θsin =x , 012≥-x ,∴]1,1[-∈x ,]1,1[sin -∈∴θ 另]2 ,2[π πθ- ∈(原因:方便后面化出来的θcos ,不用讨论正负性了) 代入)(x f ,得θθ2sin 1sin )(-+=x f =|cos |sin θθ+ ]2 ,2[π πθ- ∈,θθcos sin )(+=∴x f 辅助角公式,合一变形得:)4sin(2)(πθ+=x f (]2 ,2[π πθ-∈) ]4 3,4[4 π ππ θ- ∈+ ,∴]2,1[)(-∈x f 变式:求22)(x x x f -+=的值域 分析:另θsin 2=x 即可

函数定义域值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x = +- (2 )01(21)111 y x x = +-++ - 2、设函数的定义域为,则函数的定义域为_ _ _;函数 的定义域为________; 3、若函数(1)f x +的定义域为 ,则函数(21)f x -的定义域是 ;函 数1 (2)f x +的定义域为 。 4、 已知函数 的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵ y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸ 2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 )

LS 高一数学函数值域求法及例题

君子有三乐,而王天下不与存焉。父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。 函数值域(最值)的常用方法 姓名: 一、基本函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????, 当0a <时的值域为24,4ac b a ??--∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 二、其它函数值域 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2 、求函数y = 的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数2241x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 274222++-+=x x x x y 的值域. 2、求函数2122 x y x x += ++的值域. 3、 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用 三角代换)等) 1、求函数x x y 41332-+-=的值域. 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数13y x x =-+-的值域。 七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+), 利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.) 1、求函数1(0)y x x x =+>的值域.

值域的求法典型习题及解析

值域的求法习题 一.解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1);(2);(3)x∈[0,3]且x≠1;(4).6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

参考答案与试题解析 一.解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).可求可求 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. x==2 3.求函数的值域:.

得: 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6) ﹣+ y=的范围,可得 ==3+,再利用反比例函数求解. t= =+ )≥,∴[, y= y= y===3+,∵≠3+≠

相关文档
相关文档 最新文档