文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学竞赛教案讲义(5)数列

高中数学竞赛教案讲义(5)数列

高中数学竞赛教案讲义(5)数列
高中数学竞赛教案讲义(5)数列

一、基础知识

定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1.定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.

定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =

d n n na a a n n 2

)

1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,

则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2

+Bn . 定义3 等比数列,若对任意的正整数n ,都有

q a a n

n =+1

,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1

;2)前n 项和S n ,当q ≠1时,S n =q

q a n --1)

1(1;当q =1

时,S n =na 1;3)如果a , b , c 成等比数列,即b 2

=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞

定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为

q

a -11

(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理

定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数

n ≥n 0成立。

定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2

=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1

+c 2βn -1

,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1

,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 例2 已知数列{a n }满足a 1=

2

1,a 1+a 2+…+a n =n 2

a n , n ≥1,求通项a n . 例3 设0

a 1

,求证:对任意n ∈N +,有a n >1. 2迭代法。

数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或

n -1等,这种办法通常称迭代或递推。

例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得

121+++n n pa a ·a n +.02=+n n cq qa

例5 已知a 1=0, a n +1=5a n +1242

+n a ,求证:a n 都是整数,n ∈N +. 3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。 例6 已知a n =

100

241

+n (n =1, 2, …),求S 99=a 1+a 2+…+a 99.

例7 求和:4

321

3211??+??=

n S +…+

.)2)(1(1++n n n 例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列?

??

???n n a 2的前n 项和,求证:S n <2。

4.特征方程法。

例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n .

例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n . 5.构造等差或等比数列。

例11 正数列a 0,a 1,…,a n ,…满足212----n n n n a a a a =2a n -1(n ≥2)且a 0=a 1=1,求通项。

例12 已知数列{x n }满足x 1=2, x n +1=n

n x x 22

2+,n ∈N +, 求通项。

三、基础训练题

1. 数列{x n }满足x 1=2, x n +1=S n +(n +1),其中S n 为{x n }前n 项和,当n ≥2时,x n =_________. 2. 数列{x n }满足x 1=

21

,x n +1=2

32+n n x x ,则{x n }的通项x n =_________. 3. 数列{x n }满足x 1=1,x n =

12

1

-n x +2n -1(n ≥2),则{x n }的通项x n =_________. 4. 等差数列{a n }满足3a 8=5a 13,且a 1>0, S n 为前n 项之和,则当S n 最大时,n =_________. 5. 等比数列{a n }前n 项之和记为S n ,若S 10=10,S 30=70,则S 40=_________.

6. 数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , S n =x 1+x 2+…+ x n ,则S 100=_________.

7. 数列{a n }中,S n =a 1+a 2+…+a n =n 2

-4n +1则|a 1|+|a 2|+…+|a 10|=_________. 8. 若

1

25313322

11-+=

=+=+=+n x x x x x x x x n n Λ,并且x 1+x 2+…+ x n =8,则x 1=_________. 9. 等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若

132+=

n n

T S n n ,则n

n n b a ∞→lim =_________. 10. 若n !=n (n -1)…2·1, 则!1

)1(22007

1

n n n n n

++-∑==_________.

11.若{a n }是无穷等比数列,a n 为正整数,且满足a 5+a 6=48, log 2a 2·log 2a 3+ log 2a 2·log 2a 5+

log 2a 2·log 2a 6+ log 2a 5·log 2a 6=36,求?

??

???n a 1的通项。

12.已知数列{a n }是公差不为零的等差数列,数列{n

b a }是公比为q 的等比数列,且b 1=1, b 2=5,

b 3=17, 求:(1)q 的值;(2)数列{b n }的前n 项和S n 。

四、高考水平训练题

1.已知函数f (x )=????

?

????≥-?

?

? ??<<-?

?? ?

?

≤+)

1(11211

22121x x x x x x ,若数列{a n }满足a 1=37,a n +1=f (a n )(n ∈N +

),则a 2006=_____________.

2.已知数列{a n }满足a 1=1, a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项

a n =?

?

?≥=)

2()1(1n n .

3. 若a n =n 2

+n λ, 且{a n }是递增数列,则实数λ的取值范围是__________. 4. 设正项等比数列{a n }的首项a 1=

2

1, 前n 项和为S n , 且210S 30-(210

+1)S 20+S 10=0,则a n =_____________.

5. 已知3

1

)1(33lim 1=

-++∞→n n n n a ,则a 的取值范围是______________. 6.数列{a n }满足a n +1=3a n +n (n ∈N +

),存在_________个a 1值,使{a n }成等差数列;存在________个a 1值,使{a n }成等比数列。 7.已知402

401--=

n n a n (n ∈N +

),则在数列{a n }的前50项中,最大项与最小项分别是

____________.

8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.

9. 设{a n }是由正数组成的数列,对于所有自然数n , a n 与2的等差中项等于S n 与2的等比中项,则a n =____________.

10. 在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数. 11.已知数列{a n }中,a n ≠0,求证:数列{a n }成等差数列的充要条件是

1

1143322111111++=++++n n n a a a a a a a a a a Λ(n ≥2)①恒成立。 12.已知数列{a n }和{b n }中有a n =a n -1b n , b n =

2

1

1

1---n n a b (n ≥2), 当a 1=p , b 1=q (p >0, q >0)且p +q =1

时,(1)求证:a n >0, b n >0且a n +b n =1(n ∈N );(2)求证:a n +1=1

+n n

a a ;(3)求数列.lim n n

b ∞→

13.是否存在常数a , b , c ,使题设等式 1·22

+2·32

+…+n ·(n +1)2

=

12

)1(+n n (an 2

+bn +c ) 对于一切自然数n 都成立?证明你的结论。 五、联赛一试水平训练题

1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972

,这样的数列共有_________个。

2.设数列{x n }满足x 1=1, x n =

7

22

411++--n n x x ,则通项x n =__________.

3. 设数列{a n }满足a 1=3, a n >0,且5

123-=n n a a ,则通项a n =__________.

4. 已知数列a 0, a 1, a 2, …, a n , …满足关系式(3-a n +1)·(6+a n )=18,且a 0=3,则

∑=n

i i

a 01

=__________. 5. 等比数列a +log 23, a +log 43, a +log 83的公比为=__________.

6. 各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.

7. 数列{a n }满足a 1=2, a 2=6, 且

1

12++++n n

n a a a =2,则

=+++∞

→2

21lim

n

a a a n

n Λ________.

8. 数列{a n } 称为等差比数列,当且仅当此数列满足a 0=0, {a n +1-qa n }构成公比为q 的等比数列,

q 称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项

数最多有__________项.

9.设h ∈N +,数列{a n }定义为:a 0=1, a n +1=???

??+为奇数

为偶数n n

n n

a h a a a 2

。问:对于怎样的h ,存在

大于0的整数n ,使得a n =1?

10.设{a k }k ≥1为一非负整数列,且对任意k ≥1,满足a k ≥a 2k +a 2k +1,(1)求证:对任意正整数

n ,数列中存在n 个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。

11.求证:存在唯一的正整数数列a 1,a 2,…,使得

a 1=1, a 2>1, a n +1(a n +1-1)=

.11

13

22-+-++n n n n a a a a

六、联赛二试水平训练题

1.设a n 为下述自然数N 的个数:N 的各位数字之和为n 且每位数字只能取1,3或4,求证:

a 2n 是完全平方数,这里n =1, 2,….

2.设a 1, a 2,…, a n 表示整数1,2,…,n 的任一排列,f (n )是这些排列中满足如下性质的排列数目:①a 1=1; ②|a i -a i +1|≤2, i =1,2,…,n -1。 试问f (2007)能否被3整除?

3.设数列{a n }和{b n }满足a 0=1,b 0=0,且

????

?=-+=-+=++.

,2,1,0,478,

36711Λn b a b b a a n n n n n n 求证:a n (n =0,1,2,…)是完全平方数。

4.无穷正实数数列{x n }具有以下性质:x 0=1,x i +1

(1)求证:对具有上述性质的任一数列,总能找到一个n ≥1,使n

n x x x x x x 2

122

1120-+++Λ≥3.999

均成立;

(2)寻求这样的一个数列使不等式n

n x x x x x x 2

122

1120-+++Λ<4对任一n 均成立。

5.设x 1,x 2,…,x n 是各项都不大于M 的正整数序列且满足x k =|x k -1-x k -2|(k =3,4,…,n )①.试问这样的序列最多有多少项?

6.设a 1=a 2=31,且当n =3,4,5,…时,a n =2

2

12212

1

242)21(------+--n n n n n n a a a a a a , (ⅰ)求数列{a n }的通项公式;(ⅱ)求证:

21

-n

a 是整数的平方。 7.整数列u 0,u 1,u 2,u 3,…满足u 0=1,且对每个正整数n , u n +1u n -1=k u u ,这里k 是某个固定的正整数。如果u 2000=2000,求k 的所有可能的值。

8.求证:存在无穷有界数列{x n },使得对任何不同的m, k ,有|x m -x k |≥

.1

k

m -

9.已知n 个正整数a 0,a 1,…,a n 和实数q ,其中0

k k b b 1+

1

(k =1,2,…,n ); (3)b 1+b 2+…+b n <

q

q

-+11(a 0+a 1+…+a n ).

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学竞赛教案讲义(17)整数问题

第十七章 整数问题 一、常用定义定理 1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。b 不能被a 整除,记作a b. 2 带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≤r<|a|,当r=0时a|b 。3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,01且n 为整数,则k a k a a p p p n 2121 ,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。 6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。 7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。 8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p ≡a(modp). 9.若(a,m)=1,则)(m a ≡1(modm), (m)称欧拉函数。 10.(欧拉函数值的计算公式)若k a k a a p p p m 2121 ,则 (m)=.)11(1 k i i p m 11.(孙子定理)设m 1,m 2,…,m k 是k 个两两互质的正整数,则同余组: x ≡b 1(modm 1),x ≡b 2(modm 2),…,x ≡b k (modm k )有唯一解, x ≡'1M M 1b 1+'2M M 2b 2+…+'k M M k b k (modM), 其中M=m 1m 2m k ;i M =i m M ,i=1,2,…,k ;i i M M '≡1(modm i ),i=1,2,…,k. 二、方法与例题 1.奇偶分析法。 例1 有n 个整数,它们的和为0,乘积为n ,(n>1),求证:4|n 。 2.不等分析法。 例2 试求所有的正整数n ,使方程x 3+y 3+z 3=nx 2y 2z 2有正整数解。

高中数学教学设计大赛获奖作品汇编

对数函数及其性质(1) 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计

高中数学竞赛辅导讲义第十四章 极限与导数

第十四章 极限与导数 一、 基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞→,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类 似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)± g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+ Δx)-f(x 0)).若x y x ??→? lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导 的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

谈高中数学竞赛辅导

谈高中数学竞赛辅导 数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。笔者就对数学竞赛辅导谈谈自己的见解和做法,旨在抛砖引玉,以求大家共同探讨。 1.培养学生对数学竞赛的直接兴趣 直接兴趣是由于对事物本身或活动本身感到需要而引起的兴趣。在每学期开学第一节课,笔者都不急于讲授新课,而是向学生讲述数学家华罗庚等的故事;讲述数学在各行各业的用途;对其它各个学科有什么帮助;介绍华罗庚杯数学竞赛获奖学生勤奋学习的故事,通过这一系列的例子来激发学生对数学学习的重视和兴趣。 2.合理安排竞赛知识的先后顺序 数学竞赛知识无穷无尽,就高中学生而言也有很多,所以尽可能与教材结合增加学生的理解能力。数学解题与数学发现一样,通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的,类比、归纳是获得猜想的两个重要的方法。所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。类比是一种主观的不充分的似真推理,因此,要确认其猜想的正确性,还须经过严格的逻辑论证。 3.加强对个别学生的重点辅导 重点辅导是一个非常重要的问题,也是关键问题。学校不可能所有辅导的学生都同等优秀,总会有几个特别出色的,对待他们不可能跟其他同学站在同一角度出发,要求要特别高,在正常的课堂辅导外还要求他们自发学习和预习竞赛书上的所有内容,扩充他们整体的知识面。平常要多点关心他们的学习进度,解决困难问题,合理地梳理各部分的知识。 4.比赛前信心的确立和精神的放松 高中的学生,由于他们生理和心理的原因,在某些大事情面前是比较紧张和害怕的,当遇到一定的困难时就会不知所措,那么在比赛时就比较麻烦了。为了使他们确立信心和放松精神,笔者做了两件事,出一份模拟题;开一个考前座谈会。 5.总结 高中学生数学竞赛辅导。

高中数学竞赛讲义-涂色问题 新人教A 版

§29涂色问题 涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。有些问题,本来就属于图论的内容。有些问题的解决,则需要用到数论、组合数学的理论和方法。这里介绍,只是中学数学竞赛中的有关问题。 1.小方格染色问题 最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧. 2.线段染色和点染色 (1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边 染色”(或称“线段染色”),主要借助抽屉原则求解. (2)点染色.先看离散的有限个点的情况. 例题讲解 1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。过各分点作平行于AD的线段,得到n个矩形。每一个矩形又被对角线BD 分成两部分。将奇数号矩形左部及偶数号矩形的右部涂上同一颜色。证明:在对角线BD两侧的有同色的部分,其面积和相等。 2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3 的六方格矩形内恰好2个红方格。试问:一个9×11的99方格矩形内包含多少个红方格? 3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换

两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点的对角线下方。 4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。 5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。 6.设a1,a2,a3……是一个不减的正整数序列,定义b m是使a n≥m的n的最小值,若a19=85,试求a1+a2+…+a19+b1+b2+…+b85的值。 7.有1987块玻璃片,每块上涂有红、黄、蓝三色之一,进行下列操作:将不同颜色的两块玻璃片擦净,然后涂上第三种颜色。 (1)求证:无论开始时红、黄、蓝色玻璃片各有多少块,总可以经过有限次操作而使所有的玻璃片涂有同一种颜色; (2)求证:玻璃片最后变成哪种颜色,与操作顺序无关。 8.把集合M={1,2,…,1987}的元素用4种颜色涂色,求证:至少存在一种涂色方法,使得M中任何等差数列的10项,不是同一颜色。

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学竞赛讲义_复数

复数 一、基础知识 1.复数的定义:设i 为方程x 2 =-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ 表示cos θ+isin θ,则z=re i θ ,称为复数的指数形 式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 1 21z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)| || |||2121z z z z = ;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2 +|z 1-z 2|2 =2|z 1|2 +2|z 2|2 ;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1 212, 0r r z z z = ≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2) , .) (2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++= , k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n π π2sin 2cos +,则全部单位根可表示为1,1Z ,1 1 21,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

相关文档 最新文档