文档视界 最新最全的文档下载
当前位置:文档视界 › 烟气余热回收利用

烟气余热回收利用

烟气余热回收利用
烟气余热回收利用

燃气锅炉烟气余热利用

一、国内燃气锅炉改选概况

★目前燃气锅炉排烟温度在180~200℃左右,国外目前燃气锅炉排烟温度为40℃左右。燃气锅炉改造节能潜力很大。

★市场上燃气价格不断上涨,为节省运行成本,燃气锅炉应该改造。

★由于国内外能源供应紧张,国家最近将出台新的节能政策,要求各单位节能指标达到20%。

二、改造方案

★显热利用方案

燃气锅炉排烟温度从180~200℃降到90℃左右,锅炉效率可以

提高6%。

★水蒸汽汽化潜热利用方案

燃气锅炉排烟温度可从90℃降至40℃,锅炉效率提高到103%。

★烟气放出热量可以用于采暖、工业用热水、洗澡用热水等。

★以4t/h燃气蒸汽锅炉为例:

烟气温度从180℃降至90℃,可回收热量:75000kcal/h

加热采暖水从70℃升至90℃,可加热3.75吨热水,供采暖面积

约900平方米。

三、经济效益分析

以4t/h燃气蒸汽锅炉为例,经改造后可节气约20Nm3/h,全年节气10-15×104Nm3,年节约燃气费约20-30万元,不到半年即可得到回收。

四、方案优点:

1.利用热管技术,烟侧和水侧用隔板隔开,不泄露,即烟气系统和

水系统各自独立。

2.烟侧阻力20-30pa,不设引风机,费用低。

3.烟侧采用高频焊螺旋肋片,受热面扩展充分,结构紧凑,体积小。

4.根据需要对换热器换热量进行调节,精度高。

5.水系统采用常压系统。

6.节能效果显著,以4t/h燃气蒸汽锅炉为例,每小时节气约20Nm3/h,全年节气10-15×104Nm3,年节约燃气费约20-30万元,不到半年即可得到回收。

科技项目技术方案烟气余热回收

中国华电集团公司科技工程技术方案

一、工程背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐

严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范 设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上 升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。

另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的优点是可以将排烟温度降低到烟气酸露点以下,但由于这些材料的导热系数、造价和使用寿命等限制,余热回收的经济性不佳。另外,当换热材料表面发生酸露凝结时,设备表面会形成导热系数更差的粘性灰垢,该类致密的粘性积灰与换热材料表面结合力很强,较难通过吹灰系统清除,甚至使系统堵灰严重而无法正常运行。 传统低温省煤器技术较简单、成熟,但其不仅余热回收的效益低,而且只适于回收排烟温度较高的余热,否则受热面腐蚀和堵灰问题会很严重。该系统如果设计不当,还有发生凝结水汽化的风险。 相变式低温省煤器是为了控制烟道换热器的低温腐蚀而开发,其通过控制中间传热介质(水-汽)的相变参数来控制传热量和烟道换热器壁温,从而提高了系统的可靠性,并可自动将排烟温度降低到最佳的温度。

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

烟气余热回收

烟气余热回收 目录 前言 烟气余热回收的方法 编辑本段前言 近十年来,由于能源紧张,随着节能工作进一步开展。各种新型,节能先进炉型日趋完善,且采用新型耐火纤维等优质保温材料后使得炉窑散热损失明显下降。采用先进的燃烧装置强化了燃烧,降低了不完全燃烧量,空燃比也趋于合理。然而,降低排烟热损失和回收烟气余热的技术仍进展不快。为了进一步提高窑炉的热效率,达到节能降耗的目的,回收烟气余热也是一项重要的节能途径。 烟气是一般耗能设备浪费能量的主要途径,比如锅炉排烟耗能大约在15%,而其他设备比如印染行业的定型机、烘干机以及窑炉等主要耗能都是通过烟气排放。烟气余热回收主要是通过某种换热方式将烟气携带的热量转换成可以利用的热量。 编辑本段烟气余热回收的方法 烟气余热回收途径通常采用二种方法:一种是预热工件;二种是预热空气进行助燃。烟气预热工件需占用较大的体积进行热交换,往往受到作业场地的限制(间歇使用的炉窑还无法采用此种方法)。预热空气助燃是一种较好的方法,一般配置在加热炉上,也可强化燃烧,加快炉子的升温速度,提高炉子热工性能。这样既满足工艺的要求,最后也可获得显著的综合节能效果。 此外国内从五十年代开始在工业炉窑上采用预热空气的预热器,其中主要形式为管式、圆筒辐射式和铸铁块状等形式换热器,但交换效率较低。八十年代,国内先后研制了喷流式,喷流辐射式,复台式等换热器,主要解决中低温的余热回收。在100度以下烟气余热回收中取得了显着的效果,提高了换热效率。但在高温下仍因换热器的材质所限,使用寿命低,维修工作量大或固造价昂贵而影响推广使用。 21世纪初国内研制出了陶瓷换热器。其生产工艺与窑具的生产工艺基本相同,导热性与抗氧化性能是材料的主要应用性能。它的原理是把陶瓷换热器放置在烟道出口较近,温度较高的地方,不需要掺冷风及高温保护,当窑炉温度1250-1450℃时,烟道出口的温度应是1000-1300℃,陶瓷换热器回收余热可达到450-750℃,将回收到的的热空气送进窑炉与燃气形成混合气进行燃烧,可节约能源35%-55%,这样直接降低生产成本,增加经济效益。 陶瓷换热器在金属换热器的使用局限下得到了很好的发展,因为它较好地解决了耐腐蚀,耐高温等课题,成为了回收高温余热的最佳换热器。经过多年生产实践,表明陶瓷换热器效果很好。它的主要优点是:导热性能好,高温强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。是目前回收高温烟气余热的最佳装置。目前,陶瓷换热器可以用于冶金、有色、耐材、化工、建材等行业主要热工窑炉。 烟气余热回收的其它方式:

火力发电厂烟气余热利用的分析及运用

POWER SUPPLY TECHNLLOGIES AND APPLICATIONS 火力发电厂烟气余热利用的分析及运用 郭洪远 (宁夏京能宁东发电有限责任公司宁夏灵武750400) 【摘要】由于目前水资源、能源紧缺、环境日益恶化等等状况,合理有效的利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。研究表明,设置烟气余热系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。因此在电厂优化设计中,合理有效的利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。 【关键词】烟气余热;优化设计;提高效率;节能 引言 由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃,在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。 1.烟气余热利用的状况 目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有: (1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排人大气之中。 (2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无 公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用 越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多 数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用组成:系统的初期设 备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%, 几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数 的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、 人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的 下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪 费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的疑难和低效问题总是让人 觉得很复杂和无从下手。其实对压缩空气系统进行正确的能源审计就可 以为用户的整个压缩空气系统提供全面的解决方案。对压缩空气系统设 备其进行动态管理,使压缩空气系统组件充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低10%—50% 的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出:

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准版)

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0843

冶炼电炉烟气全余热回收装置-高温烟道 式余热锅炉(标准版) 在电炉冶炼的过程中,要产生大量的高温烟气,其最高温度可达2100℃,含尘量高,且所含氧化铁尘具有工业回收价值。高温含尘烟气携带的热量约为电炉输入总能量的11%,有的甚至高达20%。这些高温烟气不仅带走大量的热,而且给电炉的除尘系统带来了巨大的负担,不但降低了氧化铁尘的回收率,而且造成了严重的污染问题。随着钢铁行业的发展,电炉炼钢的铁水比例逐渐上升,有的甚至超过了30%。铁水比例的升高,引起电炉炼钢烟气量增加、热量浪费和除尘问题的日趋严重。如何将这部分高温烟气中的显热充分地回收,变“废”为宝,使之转化为热能,并使得电炉烟气更加稳定,为高效除尘创造条件,从而降低除尘系统运行成本和企业的生产成本,这是电炉炼钢企业必须重视的问题。公司组建了专业的技

术队伍开始了电炉烟气全余热回收装置的研究,从提高余热回收量、烟尘沉降效率、锅炉的压力及使用寿命3个角度进行研发,从而降低电炉的吨钢能耗。并在江苏某企业110t电炉成功投运,并对装置出口烟气温度、吨钢回收蒸汽量等关键参数进行了现场测试,测试结果显示装置达到了预期指标。 1、电炉烟气冷却方式现状 目前电炉烟气冷却的方式有水冷+机力风冷、废钢预热+水冷、水冷+热管余热锅炉等几种。 1.1水冷+机力风冷 水冷+机力风冷系统的流程见图1。电炉第四孔出口的高温烟气进入水冷烟道,同时,混入从电炉四孔水冷弯头和水冷滑套间的缝隙吸入的空气,进行燃烧,之后进入燃烧沉降室,在燃烧沉降室进行燃烧和灰尘沉降后,从燃烧沉降室出来的高温烟气经过水冷烟道冷却到600℃左右,进入机力风冷器,冷却后的烟气与电炉密闭罩的除尘烟气混合降温后进入布袋除尘器除尘,之后通过风机、消声器,从烟囱排出。

热管技术在有机热载体锅炉烟气余热回收上的应用(2021年)

热管技术在有机热载体锅炉烟气余热回收上的应用(2021 Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0371

热管技术在有机热载体锅炉烟气余热回收 上的应用(2021年) 绍兴是一个纺织印染大市,全市有2万余台有机热载体锅炉,其中燃煤有机热载体锅炉占到70%以上,燃煤有机热载体锅炉尾部排烟温度达到320℃以上,烟气带走的热量为30%--40%,造成大量的热量浪费。根据国家TSGG0002-2010《锅炉节能结束监督管理规程》的要求,尾部烟气温度过高,必须装节能装置,降低排烟温度。 为积极响应绍兴市节能减排的需要,我公司开发出一系列热管式余热锅炉,并在印染行业得到了广泛应用,降低了燃煤有机热载体锅炉排烟温度,取得了较好成绩、 1.热管技术回收有机热载体锅炉烟气余热主要用途 在燃煤有机热载体锅炉尾部受热面中,热管技术主要有以下用

途: 1.1.生产热水和蒸汽。利用有机热载体锅炉排烟温度300~400℃中,高温烟气余热,产生50-90℃的热水,也客气产生0.8Mpa及以下蒸汽,可以广泛用于生活和工艺用热。 1.2.预热空气。燃煤有机热载体锅炉具有排烟温度高,效率低的特点,在燃烧过程中,煤没有充分燃烧,可以用来加热空气,提高鼓风机进口空气温度,提高工作效率。 2.热管技术原理和回收装置构造 2.1.热管技术原理 热管是一个内部抽成真空并充以一定量高纯度工质的密封管,形状无特殊限制.全管分为加热段、放热段、绝热段。在工作时,工质在加热段吸热汽化,到放热段凝结放出热量,并回流到加热段重新吸热,从而将热量从一端传递到另一端,以达到热交换之目的。 以热管为传热元件的热管式余热锅炉(气一汽型热管换热器),具有超常规的优良特性,特别是在余热回收中,发挥着重要作用. 2.2.回收装置结构

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

烟气余热利用方案说明

烟气节能器方案简要说明 xx公司在xx新建一条生产线,该生产线的一部分工艺采用天然气作为燃料进行加热,产生的废气目前通过烟道排出,浪费了部分能源。由于新厂地处东北,冬季气温低需要进行供暖,目前使用4台额定功率523kW的燃气常压热水锅炉提供热水满足供暖。为了充分利用能源,减少排放和生产成本,拟对生产线废气余热进行部分回收,以降低燃气常压热水锅炉的燃气消耗。 一、 概况 铁岭新厂共有两条生产线,均用天然气作为燃料进行供热。每条生产线使用后的废气流量为3000m3/h,温度约175℃,通过500×600mm的矩形烟道排放,烟道位置和走向如下图。 箭头所示位置可安装烟气节能器,上下距离约2000mm。 新厂车间供暖面积10000m2,办公区供暖面积2000m2,使用4台功率523Kw、天然气耗量53.5m3/h、进/回水温度85/60℃的燃气常压热水锅炉并联在供热管网的循环管路上进行供暖和供热,整个管网用一台流量187m3/h、扬程44m的离心泵驱动。

二、 烟气节能器 烟气热水器回收废气一部分余热,将一部分供暖循环水从60℃加热到85℃,用来代替部分天然气。换热器形式为管壳式,采用双金属复合管作为传热元件,水平装配。烟气从热水器的下方进入,从热水器的上方流出,供暖循环水从热水器的上方进入,从热水器的下方流出,形成逆向流动。烟气节能器的设计参数如下表: 节能器吊挂在烟道中间,烟侧进出口与烟道焊接在一起。节能器的上方有压缩气体吹扫口,在节能器下方的烟气入口处安装可抽出的规格为50目的单层不锈钢滤网。 三、 实施步骤

1.在厂房的主横梁上焊接水平梁,然后向上焊接斜拉梁,向 下焊接吊挂梁; 2.断开烟道,将节能器吊装到烟道中间,并与烟道焊接,同 时节能器的吊耳与吊挂梁进行焊接; 3.从供暖循环水主管引水管到节能器的进水和出水口,并用 法兰连接; 4.引一压缩空气管道连接到节能器附近并与吹扫口连接。 四、 节约燃气预测 序号项目单位数值 1 节能器换热功率kW 480 2 节能器每年工作时间h 2200 3 节能器年回收热量kJ 3.8×109 4 节约天然气量m313.35×104 2台节能器每年可节约天然气大约26.7×104立方米。 五、 经济效益简单预估 1.项目收益估算 注:采暖季按3个月计算,在东北通常是4个月 2.项目静态投资回收期估算

烟气余热回收装置的利用

烟气余热回收装置的利用

烟气余热回收装置的利用 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2 [文献标识码]A [文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1. 0%。

因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。 3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。 4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝

烟气余热回收技术方案

烟气余热回收利用改造项目 技术方案 *** 节能科技有限公司 二O 一二年

、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170 C,平均热效率在89%, **锅炉房2台锅炉正常运行排烟温度在160-180C,平均热效率在88%,(标准应不高于160C)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。 有着显著的节能效益。主要原理: 1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中 常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量 9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250 C,这些烟气含有8%--15%的显热和 11%的水蒸气潜热。加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100C左右,同时烟气冷却后产生的凝结水得到及时有效地排出( 1 nm3天然气完全燃 烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)瑞典 板式烟气热回收器 AIREC公司是世界上唯一一家钎焊式模块化非对称流量板式换 热器的专业生产制造商,凭借独到的设计理念,雄厚的产品开 发能力和多年行业丰富的实践经验使AIREC成为在非对称流量 换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温 的环境下,板片用铜或镍焊接在一起,具有很高的机械强度, 更大的传热面积,更高的效率,更轻便小巧。AIREC通过继承 CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

科技项目技术方案(烟气余热回收)

中国华电集团公司科技项目 技术方案 课题名称:陕西华电蒲城发电有限责任公司#3机组锅炉烟气余热回收技术的研究应用 申请单位:陕西华电蒲城发电有限责任公司起止时间: 2013年12月至2014年12月 课题组长: 手机: 固定电话: 申请日期: 2013年10月20日

一、项目背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。 另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。

相关文档