文档视界 最新最全的文档下载
当前位置:文档视界 › 黄酮类化合物分离纯化的研究进展

黄酮类化合物分离纯化的研究进展

黄酮类化合物分离纯化的研究进展
黄酮类化合物分离纯化的研究进展

黄酮类化合物分离纯化的研究进展

摘要:目前,利用现代分离技术提取黄酮类化合物的方法有很多。本文综述提取黄酮类化合物的方法,重点介绍了有机溶剂提取法、超声波辅助提取法、微波提取法、超临界萃取法、酶浸渍萃取法。

关键词:黄酮类;有机溶剂提取法;超声波辅助提取法;微波提取法;超临界萃取法;酶浸渍萃取法

前言

黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物,是一类低分子天然植物成分,又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物和大型真菌中。到目前为止,已经发现有5000多种植物中含有黄酮类和异黄酮类化合物[1]。近年来,黄酮类化合物作为一种天然药物引起了人们的广泛重视,例如,如芦丁、槲皮素等能够增强心脏收缩[2];杜鹃素具有止咳祛痰作用;黄芩苷具有抗菌消炎、抑制肿瘤细胞作用;水飞蓟素具有保肝作用等;此外,黄酮类化合物还有降血脂、止血、抑制血小板聚集等多种药理作用。黄酮类化合物在人体不能直接合成,只能从食品中获得。主要是作为食品添加剂或直接应用于食品中增加其保健作用。目前人们积极关注如何从植物中提取纯度高,活性高的黄酮类物质。

黄酮类化合物的主要提取方法是有机溶剂提取法、超声波辅助提取法、微波提取法、超临界萃取法、酶浸渍萃取法。本文重点介绍了这几种提取方法。

1 提取黄酮类化合物的原则

黄酮类化合物可以根据结构分:黄酮和黄酮醇;二氢黄酮和二氢黄酮醇;查耳酮;双黄酮;异黄酮和二氢异黄酮;黄酮苷。黄酮类化合物种类多,由于其结构和状态的不同使得溶解度存在着很大的差异。游离的苷元难溶或不溶于水,而易溶于甲醇、乙醇、乙酸乙酯、等有机溶剂或稀碱溶液,其中有些平面分子,如黄酮、黄酮醇、查耳酮等,分子间排列紧密,引力较大,难溶于水;而非平面型分子,如二氢衍生物,其分子间排列较松弛,引力降低,有利于水分子的进入,较易溶于水。

黄酮类化合物的分离纯化工作主要依据以下几个方面:1极性大小不同,利用吸附或分配原理进行分离;2、酸性强弱不同,如梯度pH萃取法;3、分子大小不同,如葡聚糖凝胶分子筛;4、分子中的某些特殊结构,如利用金属盐络合能力不同等特点进行分离。

2 酮类化合物的提取方法

2.1 有机溶剂提取法

甲醇和乙醇是最常用的黄酮类化合物提取溶剂,高浓度的醇(如90%左右)适宜于提取苷元,60%左右浓度的乙醇或甲醇水溶液适宜予提取苷类。柑橘属类黄酮多以极性较大的糖苷形式存在,目前广泛采用极性较大的有机溶剂进行浸提。对胡柚皮的提取工艺表明,在乙醇浓度90%,料液比1:5,提取2h,提取温度40-60℃时类黄酮提取率较高。研究化橘红用8倍量80%乙醇回流提取3次,1·5 h/次,得到较大的提取率。研究枳实药材中总黄酮提取工艺,得到60%的乙醇,8倍量,回

流提取2次,每次1·5 h[3]。

2.2超声波辅助提取法

用超声波法提取黄酮类物质,是目前比较新的方法。超声辅助提取法的原理是利用超声波的空化作用加速植物有效成分的溶出,另外超声波的次级效应,如机械振动、乳化、扩散、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取。赵永光,赵莹等用超声波法提取枸杞叶中的黄酮类化合物,通过不同的浸提温度、破碎度、溶剂浓度、超声时间、超声功率对枸杞叶中黄酮类化合物的提取工艺进行了研究。正交试验结果表明最佳提取工艺为:温度700℃,95%乙醇,时间20min,功率180W,破碎度100目,提取率高达97.6%。延峰[5]等研究了银杏黄酮的超声提取方法,并与索氏提取法作了比较研究[4]。结果表明,超声提取法优于索氏提取法。毕丽君[5]调用超声波法提取水芹中总黄酮,提取率可达94.6%。王昌利等应用超声技术对芦丁的提取工艺进行了系统研究,提出了新的芦丁提取工艺,与目前常规工艺相比,可节约原材料30%一40%。此法具有提取时间短、产率高、低温提取有利于有效成分的保护等优点。张胜帮[6]等采用超声波-醇提法,研究了提取淡竹叶中黄酮类化合物的各种影响因素,通过正交试验设计,寻找最佳提取条件.结果表明,以60%乙,醇为溶剂,固液比为1:30,经20kHz越声波提l:30min,再经70℃水浴回流3h为最佳,在最佳实验条件下得到2.27%的利率。在影响因素中,影响程度从大到小依次为:溶剂、回流温度、超声时间、超声强度、回流时间、溶刺浓度、围液比。

2.3微波提取法

黄酮类化合物的微波提取方法,是通过浸没在提取液中的微波辐射待提取的样品,使其超微结构特性遭到破坏[11]。由于所用的提取剂是微波较容易穿透的,因而微波可自由地通过提取剂,使化合物自由地流人未被加热的提取剂[10]。微波萃取法更简单,而且具有萃取时间短,成本低,萃取效率高等优点[9]。该法适用面更广,能大大提高提物中黄酮类化合物含量,且溶剂损耗较少。刘峙嵘等[7]采用微波萃取银杏叶黄酮类化合物,与传统溶剂萃取黄酮类化合物相比,微波萃取法更简单,银杏叶黄酮类化合物且萃取时间短,成本低,萃取效率高等优点。微波辐射5min后抽提1.5h后就可以得到更好的效果,而且利用微波处理,在短时间内抽提的提取率按新鲜银杏重计可达到0.536%,这是传统工艺提取率的2.2倍。

2.4超临界萃取法(SCDE)

超临界流体萃取是利用超临界流体在临界压力和临界温度附近具有的特殊性能作为溶剂进行萃取的一门科学,最常用的超临界流体为CO2。应用CO2—SPE技术提取分离黄酮类物质,具有萃取速度快,效率高,操作简单等特点,产品中没有残留有机溶剂,与传统的萃取分离工艺相比优势是明显的。此外,超临界CO2萃取易与其它先进技术联用,成为新型而有效的分离分析技术。胡圣尧等[8]用正交试验法确定超临界萃取后紫草籽中黄酮类化合物提取的最佳方案,测定提取的粗黄。酮的抗氧化活性及与柠檬酸、Vc的抗氧化协同作用。结果超临界萃取后的紫草籽中黄酮类化合物的最佳提取条件为:乙醇浓度

60%、固液比1:5、温度50℃、提取时间为2h。超临界萃取后的紫草籽粗黄酮对二苯代苦味酰基自由基(DPPH)的EC50为65.47mg /L。张玉祥[9]通过正交试脸,确定最优化的提取工艺是:20MPa的压力下,夹带剂15%-50cc萃取40min,含量测定显示,CO2超临界流体萃取法能有效萃取银杏叶中的总黄酮和总内酯,含量高于欧洲(EGb761)的质量标准[20]。

2.5 酶浸渍萃取法

酶浸渍法是近几年根据黄酮类化合物的特性研究出来的一种新的方法。酶浸渍法是指在黄酮提取过程中,通过加入恰当的酶发生转糖反应和酶解反应而使产品黄酮得率和含量大大提高的新兴技术[15]。传统的水提取只能提取水溶性黄酮,致使类黄酮得率和含量过低;此时如选用恰当的酶加入,不仅可以将油溶性的类黄酮转化为易溶于水的糖苷类而利于提取,而且还可通过酶反应将植物组织分解,使提取传质阻力减小;另外也可使提取液中的杂质分解去除,从而简化后续分离纯化工序。并且其提取条件温和,有利于黄酮类活性保护,且成本低、安全。

3 结语

有机溶剂提取法、超声波辅助提取法、微波提取法、超临界萃取法、酶浸渍萃取法,以上介绍的这五种方法是提取黄酮类化合物的主要方法。此外还有高速逆流色谱提取技术、超滤技术、植物细胞膜破碎法、液膜分离法等新型提取技术,都有各自优于传统方法的特点。。超临界萃取法速度快、操作简单,产品无溶剂残留;超声波辅助提取

无需加热,对有效成分

具有保护作用。在提取某些中草药黄酮类成分时,可以将二者合理地结合利用[18]。

由于黄酮类化合物具有降压、降血脂、镇痛、抑制血小板聚集、抗骨质舒松、抗心律失常、抗过敏及抗缺氧等多种药理及保健作用[19],而且黄酮类化合物在人体不能直接合成,只能从食品中获得,现在科学家们都积极关注从植物体中提取纯度高、活性强的天然黄酮成分。因此,对黄酮类化合物的提取以及测定方法的研究具有广泛的前景。

总之,黄酮类化合物的分析方法较多,且日趋成熟,在实际应用中根据不同制剂类型以及不同的分析要求来制定相应的提取分离方法。

参考文献

[1] 张岩,曹国杰,张燕,方国臻,王硕.黄酮类化合物的提取以及检测方法的研究进展[J].食品研究与开发,2008,28(1)

[2]焦士蓉,郑贵菊. 柚皮黄酮类物质的微波辅助提取及其抗氧化活性研究[J]. 食品与机械, 2007,5(01)

[3]赵永光,赵莹. 超声波法提取枸杞叶中黄酮类化合物的研究[J].中国酿造,2009,(12)

[4] 廖周坤,徐正.超临界流体萃取去脂沙棘果渣中总黄酮的工艺研究[J].四川化工与腐蚀控制,2003,6(6):1-3

[5] 毕丽君,李慧.水芹中总黄酮类化合物最佳提取工艺的研究[J].食品科学,1999,35(12):35—36

[6] 张胜帮,赵玲玲.淡竹叶中黄酮类化合物的提取研究[J].食品科学,2006,27(10):255-258.

[7] 刘峙嵘,俞自由,方裕勋,李传茂,张新峰.微波萃取萃取银杏叶黄酮类化合物.东华理工学院学报,2005,28(2)

[8]胡圣尧,聂志妍,宋聿文,袁勤生.超临界萃取后紫草籽中黄酮类化合物的提取及其抗氧化性研究[J].中国生化药物杂志,2008,29(2)

[9]张玉祥,邱蔚芬. CO2超临界萃取银杏叶有效成有效成分的工艺研究[J]中国中医药科技,2006,13(4):255-256

[10] 高中松,丁文,高亮.超声波提取桑叶中总黄酮的工艺研究[J].中国农学通报,2006,22(4):116-119

[11] 张玉祥,邱蔚芬.银杏叶超声波提取工艺研究时[J].时珍国医国药.2006,7(5):784-785.

[12] 李莉,刘成梅,田建文,等.现代提取分析技术在黄酮类化合物中的应用[J].江西食品工业,2006(4):42-44

[13]孙婷.超临界CO2法萃取银杏叶黄酮及其含量测定的研究[J].中国食品学报,2005,5(3):126—129

[14] 谷玉洪,罗蒙,徐飞,等.超临界C02提取蜂胶中总黄酮的工艺研究叨.中草药,2006,37(3):380-383

[15] 王邕,黎海彬,白先放,等.酶解-溶剂法提取罗汉果中黄酮类物质的研究[J].食品科技,2006,(7):125-127

[16] 李云志,曾凡骏,李帆.元宝枫叶总黄酮的提取研究[J].食品与生物技术学报,2006,25(1):28-32

[17]张胜邦,赵玲玲.黄酮类化合物的提取纯化研究进展.温州大学学报.自然科学版[J].2007,28(5)

[18]郭雪峰,岳永德,黄酮类化合物的提取.分离纯化和含量测定方法的研究进展[J]. 安徽农业科学.Journal of Anhui Agri.Sci.2007.35(26):8083-8086

[19] 张匀,栾雨时,张华微.甘薯叶中黄酮类化合物的提取工艺研究[J].食品研究与开发,2006,27(6):92-94

[20] 李云志,曾凡骏,李帆.元宝枫叶总黄酮的提取研究[J].食品与生物技术学报,2006,25(1):28-32

现代生物化学分离技术

综述

题目:黄酮类化合物分离纯化的研究进展

学院:水产与生命学院

专业:海洋生物学

姓名:张莹莹

学号:M100105256

26黄酮类化合物习题.doc.doc

黄酮类化合物习题 1.常见黄酮类化合物的结构类型可分为哪几类。 2. 试述黄酮类化合物的广义概念及分类依据。写出黄酮、黄酮醇、二氢黄酮、异黄酮、查耳酮、橙酮的基本结构。 3. 试述黄酮(醇)、查耳酮难溶于水的原因。 4. 试述二氢黄酮、异黄酮、花色素水溶性比黄酮大的原因。 5. 如何检识药材中含有黄酮类化合物。 6. 为什么同一类型黄酮苷进行PC,以2%~6%醋酸溶液为展开剂,Rf 值大小依次为三糖苷>双糖苷>单糖苷>苷元。 7. 为什么用碱溶酸沉法提取黄酮类化合物时应注意pH的调节。 8. 简述用碱溶酸沉法从槐米中提取芸香苷加石灰乳及硼砂的目的。 判断题 1.黄酮类化合物广泛分布于植物界,大部分以游离形式存在,一部分以苷的形式存在。 2. 黄酮分子中引入7,4′位羟基,促使电子位移和重排,使颜色加深。 3. 以BAW系统进行PC检识黄酮苷与其苷元,展层后苷元的Rf值大于苷。 4. 用2%~6%醋酸/水溶液为展开剂,对黄酮苷与其苷元进行PC,展层后苷元的Rf值大于苷。

提取与分离 中药黄芩中有下列一组化合物,经下述流程分离后,各出现在何部位?简述理由。 A. 黄芩苷(黄芩素-7-O-葡萄糖醛酸苷) B. 黄芩素(5,6,7-三OH黄酮) C. 汉黄芩苷(汉黄芩苷-7-O-葡萄糖醛酸苷) D. 汉黄芩素(5,7-二OH, 8-OCH3黄酮) E. 5,8,2-三OH,7-OCH3黄酮 F. 5,8,2-三OH,6,7-二-OCH3黄酮 G. 5,7,4′-三OH,6-OCH3二氢黄酮)H. 3,5,7,2′,6′-五OH二氢黄酮

结构鉴定题 从某中药中得一黄色结晶Ⅰ,分子式C21H21O11,HCl-Mg粉反应呈淡粉红色,FeCl3反应及α-萘酚-浓H2SO4反应均为阳性,氨性氯化锶反应阴性,二氢氧锆反应呈黄色,加枸橼酸后黄色不退.晶Ⅰ的光谱数据如下: UV λmax nm MeOH 267 348 NaOMe 275 326 398(强度不降) AlCl3274 301 352 AlCl3/HCl 276 303 352 NaOAc 275 305(sh) 372 NaOAc/H3BO3 266 300 353 IR:V KBr max cm-1 3401, 1655, 1606, 1504 1HNMR (DMSD-d6,TMS) δppm 3.2~3.9 (6H, m) 3.9~5.1 (4H, 加D2O后消失) 5.68(1H,d,J=8.0) 6.12 (1H, d, J=2.0) 6.42 (1H, d, J=2.0) 6.86 (2H, d, J=9.0) 8.08 (2H, d, J=9.0) 请根据以上提供的信息填空,写出结晶Ⅰ的结构式,并指出 苷键的构型。

黄酮类化合物药理作用的研究进展_曹纬国

西北植物学报2003, 23( 12): 2241—2247 Acta Bot . Boreal .-Occident. Sin. 文章编号: 1000-4025( 2003) 12-2241-07 黄酮类化合物药理作用的研究进展 曹纬国1, 2,刘志勤1,邵云1,陶燕铎* ( 1 中国科学院西北高原生物研究所,西宁 810001; 2中国科学院研究生院 ,北京 100031) 摘要:总结黄酮类化合物在药理作用方面的研究近况,在阐述黄酮类化合物的生物活性、药理作用的同时,结合结构分析和作用机制,揭示与其部分活性相关的构效关系,并对黄酮类化合物药理作用的研究提出进一步的展望. 关键词:黄酮类化合物;药理作用;构效关系 中图分类号: Q 946. 8文献标识码: A A progress in pharmacological research of flavonoids C AO Wei -g uo1, 2 , LIU Zhi -qin1 , SHAO Yun1 , T AO Yan-duo* ( 1 No rthw est Institute of Plateau Biology, Chinese Acad emy of Sciences , Xining 810001, China; 2 Graduate Sch ool of the Ch i-nes e Academy of Sciences, Beijing 100031, China) Abstract: This paper summa rizes the recent status of flav o noid co mpounds in pha rmaco logica l research. Ex pa tiating bioactiv ity and pha rm acolog ical functio ns of flav o noid com pounds, the thesis po sts some struc-ture-activity relatio nship of flav onoid com po und co ncerning structure analysis and m echa nism of actio n, and bring s fo rw ard prospect about its pharmacological functio n research. :;;- Key words flav onoids compounds pha rmaco logica l effect structure activity relationship *通讯联系人. Co rrespond ence to: T AO Yian-ze. 黄酮类化合物( flav onoids com po unds)是植 物次生代谢产物,广泛地存在于自然植物中,以游离态 或与糖结合为苷的形式存在,不仅数量种类繁多,而且 结构类型复杂多样,表现出多种多样的药理活性,能 防治心脑血管系统的疾病和呼吸系统的疾病,具有抗 炎抑菌,降血糖,抗氧化,抗辐射,抗癌,抗肿瘤以及增 强免疫能力等药理作用.近年来,黄酮类化合物的研究 进入了一个新的层次,随着对其构效关系的深入研究, 发现了部分药理作用的作用机制,为其在医药、食品 领域的应用提供了理论依据,加快了黄酮类化合物的 开发利用. 1 黄酮类化合物的功能结构 黄酮类化合物是一类多酚化合物( poly pheno lic 收稿日期: 2003-01-20;修改稿收到日期: 2003-07-07 基金项目:中国科学院生命科学与生物技术局十五预研项目作 者简介:曹纬国( 1978- ) ,男,汉族,在读硕士研究生.

黄酮类化合物

黄酮测定的研究进展 简要:黄酮类化合物(Flavonoids),又称生物黄酮(Bioflavon-oids)或植物黄酮,是植物在长期自然选择过程中产生的一些次级代谢产物,黄酮类化合物有着广泛的生物活性和多种药理活性,比如抗氧化、抗炎、抗诱变、抗肿瘤形成与生长等,特别是近年来关于黄酮在心血管、脑血管、肿瘤等方面的研究已经比较深入,此外黄酮类物质还有低毒性的特点,因此长期以来一直是天然药物和功能性食品研究开发的热点[1]。 关键词:黄铜,含量,测定方法,研究进展 前言:黄酮类物质是植物光合作用产生的一种天然有机物。植物界中分布广泛,主要分布于芸香料、唇形科、豆科、伞形科、银杏科、菊科等。根据化学方法定义黄酮类物质为含一个共同的苯基苯并二氢吡喃环结构,有一个或多个羟基取代基,包括其衍生物。在食物中,黄酮类物质一般以酯类、醚类或配糖类衍生物及混合物的形式存在,共有5000 多种化合物。对于哺乳动物,只能通过饮食获取黄酮物质,这些食物包括水果、蔬菜、谷物、坚果、茶及红酒。在日常膳食中,黄酮类物质通常表现为具有抗氧化性的羟基衍生物形态,显示出多种生物活性,对于一些疾病,例如癌症和心血管疾病,胃和十二指肠的病理性失调,以及病毒和细菌感染的预防和治疗。此外,类黄酮还被发现有广泛的药物特性,包括抗氧化性、抗过敏、抗病毒及预防糖尿病,对肝和胃的保护,抗病原体及抗瘤活性。除在医药工业上已广泛应用其生理活性外,目前也将黄酮类物质作为功能食品的添加剂[2] 。 (一)测定黄铜的几种方法 1 紫外分光光度法 紫外分光光度法具有重复性好、准确、简便、易掌握、不需要复杂的仪器设备, 加之所需试剂便宜易得, 因此该方法应用于测定植物中黄酮含量最为广泛[ 3]。 1.1 直接测定法 大多数黄酮类化合物分子中存在桂皮酰基和苯甲酰基组成的交叉共轭体系, 其MeOH 谱200 nm~400 nm的区域内存在两个主要的紫外吸收带, 峰带I(300 nm~400nm)和峰带Ⅱ( 220 nm~280 nm)[ 4]。 1.2 比色法 向供试样品中加入显色剂后测定吸光度以测定其含量, 这种方法称为比色法。黄酮类化合物分子中若具有3- 羟基、5- 羟基或邻二酚羟基, 易于与金属盐类如铝盐、锆盐、锶盐、镁盐等反应, 生成有色金属络合物。常用于黄酮类化合物含量测定的金属盐试剂有Al(NO3)3、A1Cl3等,这些络合物作用在光

生物分离与纯化技术模拟试卷三答案培训讲学

生物分离与纯化技术模拟试卷三答案

精品资料 仅供学习与交流,如有侵权请联系网站删除谢谢2 生物分离与纯化技术模拟试卷三答案 一、名词解释(每小题3分,共15分) 1.CM-Sephadex C-50:羧甲基纤维素、弱酸性阳离子交换剂,吸水量为每克干胶吸水五克。 2.絮凝:指在某些高分子絮凝剂存在下,在悬浮粒子之间发生架桥作用而使胶粒形成粗大的絮凝团的过程 3.离心过滤:使悬浮液在离心力场作用下产生的离心力压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现固液分离,是离心与过滤单元操作的集成,分离效率更高 4.膜分离:利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。 5.层析分离:是一种物理的分离方法,利用多组分混合物中各组分物理化学性质的差别,使各组分以不同的程度分布在两个相中。 二、单选题(每小题1分,共15分) 1.适合于亲脂性物质的分离的吸附剂是( B )。 A.活性炭 B.氧化铝 C.硅胶 D.磷酸钙 2.下列哪项酶的特性对利用酶作为亲和层析固定相的分析工具是必需的?( B ) A.该酶的活力高 B.对底物有高度特异亲合性 C.酶能被抑制剂抑制 D.最适温度高 E.酶具有多个亚基 3.盐析法沉淀蛋白质的原理是( B ) A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH到等电点 4.凝胶色谱分离的依据是(B)。 A、固定相对各物质的吸附力不同 B、各物质分子大小不同 C、各物质在流动相和固定相中的分配系数不同 D、各物质与专一分子的亲和力不同 5.如果要将复杂原料中分子量大于5000的物质与5000分子量以下的物质分开选用(D)。 A、Sephadex G-200 B、Sephadex G-150 C、Sephadex G-100 D、Sephadex G-50 6.工业上强酸型和强碱型离子交换树脂在使用时为了减少酸碱用量且避免设备腐蚀,一般先将其转变为(B)。 A、钠型和磺酸型 B、钠型和氯型 C、铵型和磺酸型 D、铵型和氯型 7.下面哪一种是根据酶分子专一性结合的纯化方法( A )。 A. 亲和层析 B. 凝胶层析 C. 离子交换层析 D. 盐析 8.以下哪项不是在重力场中,颗粒在静止的流体中降落时受到的力( B ) A.重力 B. 压力 C.浮力 D. 阻力 9.关于用氢键形成来判断各类溶剂互溶规律,下列(A)项是正确的叙述。 A、氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。 B、氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。 C、氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。 D、氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。 10.关于萃取下列说法正确的是(C) A. 酸性物质在酸性条件下萃取 B碱性物质在碱性条件下萃取 C. 两性电解质在等电点时进行提取 D. 两性电解质偏离等电点时进行提取 11.下列关于固相析出说法正确的是(B) A.沉淀和晶体会同时生成 B析出速度慢产生的是结晶 C.和析出速度无关 D.析出速度慢产生的是沉淀 12.那一种膜孔径最小(C) A.微滤 B超滤 C.反渗透 D. 纳米过滤 13.酚型离子交换树脂则应在(B )的溶液中才能进行反应 A. pH>7 B pH>9 C. pH﹤9 D. pH﹤7 14.一般来说,可使用正相色谱分离(B) A. 酚 B带电离子 C. 醇 D. 有机酸 15.离子交换层析的上样时,上样量一般为柱床体积的(C)为宜。 A. 2%-5% B1%-2% C. 1%-5% D. 3%-7% 三、判断题(每小题1分,共10分) 1.珠磨法中适当地增加研磨剂的装量可提高细胞破碎率。(×) 2.进料的温度和pH会影响膜的寿命。(√) 3.应用有机溶剂提取生化成分时,一般在较高温度下进行。(×) 4.溶剂的极性从小到大为丙醇>乙醇>水>乙酸。(√) 5.蛋白质为两性电解质,改变pH可改变其荷电性质,pH﹤pI蛋白质带正电。(√) 6.进行水的超净化处理、汽油超净、电子工业超净、注射液的无菌检查、饮用水的细菌检查使用孔径为0.2μm的膜。(×) 7.只有树脂对被交换离子比原结合在树脂上的离子具有更高的选择性时,静态离子交换操作才有可能获得较好的效果。(√) 8.制备型HPLC对仪器的要求不像分析型HPLC那样苛刻。(√) 9.Sephadex LH-20的分离原理主要是分子筛和正相分配色谱。(√) 10.水蒸气蒸馏法是提取挥发油最常用的方法。(√) 四、填空题(每小题1分,共15分) 1.常用的蛋白质沉析方法有(等电点沉淀),(盐析)和(有机溶剂沉淀)。 2.蛋白质分离常用的色谱法有(凝胶色谱法),(多糖基离子交换色谱法),(高效液相色谱法)和(亲和色谱法)。 3.离子交换树脂由(载体),(活性基团)和(可交换离子)组成。 4.膜分离过程中所使用的膜,依据其膜特性(孔径)不同可分为(微滤膜),(超滤膜),(纳滤膜)和(反渗透膜)。 五、简答题(每小题7分,共35分) 1.在色谱操作过程中为什么要进行平衡? 答:1、流速平衡:流速是柱层析操作当中的主要影响因素,流速的快慢直接影响着分离的效果,流速过快,混合物得不到完全的分离,流速过慢,整体分离的时间要延长,因此在分离前首先要确定留宿。

黄酮类化合物生物活性的研究进展_王慧

黄酮类化合物生物活性的研究进展 王 慧 (山东博士伦福瑞达制药有限公司,山东 济南 250101) 摘 要:黄酮类化合物是广泛存在于自然界的一类多酚化合物,有许多潜在的药用价值。现就黄酮类化合物抗肿瘤、抗心血管疾病、抗氧化抗衰老、抗菌抗病毒、免疫调节等作用的研究进展作一综述,以期为开发利用该类药物提供参考。关键词:黄酮类化合物;生物活性;综述文献 中图分类号:R282.71 文献标识码:A 文章编号:1672-979X (2010)09-0347-04 收稿日期:2010-05-31 作者简介: 王慧(1974-),女,山东临沭人,主管药师,从事质量控制工作 E-mail : wanghui0602@https://www.docsj.com/doc/e09586044.html, Progress in Bioactivity of Flavonoids WANG Hui (Shandong Bausch & Lomb Freda Phar. Co., Ltd., Jinan 250101, China ) Abstract: Flavonoids are polyphenols widely found in nature and they have many potential medicinal values. This paper reviews the progress in anti-tumor, anti-cardiovascular disease, anti-oxidation and anti-aging, antibacterial and antivirus, immunological regulation of flavonoids, which can provide the references for the development and utilization of flavonoids. Key Words: flavonoids; bioactivity; review 黄酮类化合物是一类低分子植物成分,具有C6-C3-C6 基本构型,为植物体多酚类代谢物。主要分为黄酮及黄酮醇类、二氢黄酮及二氢黄酮醇类、黄烷醇类、异黄酮及二氢异黄酮类、双黄酮类,以及查尔酮、花色苷等[1]。黄酮类化合物独特的化学结构使其对哺乳动物和其它类型的细胞有重要的生物活性。黄酮类化合物有高度的化学反应性,例如清除生物体内的自由基;又有抑制酶活性、抗肿瘤、抗菌、抗病毒、抗炎症、抗过敏、抗衰老、抗心血管疾病糖尿病并发症等药理作用,且无毒无害。黄酮类化合物还是茶及黄芩、银杏、沙棘等众多中草药的活性成分。因此受到广泛关注,研究进展很快。1 黄酮类化合物的理化性质 黄酮类化合物多为晶体且有颜色,少数如黄酮苷类为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,余者则无。黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有差异,一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂。其中,黄酮、黄酮醇、查儿酮等平面型分子因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等系非平面型分子,排列不紧密,分子间引力较小,有利于水分子进入,水溶解度稍大[2]。 2 黄酮类化合物的生物活性2.1 抗肿瘤活性 黄酮类对多种肿瘤细胞有明显的抑制作用,主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞 [11] Denyer S P, Baird R M. Guide to microbiological control in pharmaceuticals and medical devices[M].2nd ed. Boca Raton: CRC Press, 2006: 325-326. [12] Mao k, Masafumi U, Takeshi K, et al Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo [J].Cornea , 2010, 29(1): 80-85. [13] Noecker R. Effects of common ophthalmic preservatives on ocular health[J]. Adv Ther , 2001, 18: 205-215. [14] Kostenbauder H B. Physical factors influencing the activity of antimicrobial agents// Block S S. Disinfection, Sterilization and Preservation[M]. 3rd ed. PhiladelpHia: Lea and Febiger, 1983: 811-828. [15] Berry H, Michaels I. The evaluation of the bactericidal activity of ethylene glycol and some of its monoalkyl ethers against Bacterium coli [J]. J Pharm Pharmacol , 1950, 2: 243-249.

《生物分离与纯化技术》授课教案

《生物分离与纯化技术》授课教案 第一章绪论 教学目的:熟悉生物物质的概念、种类和来源;了解分离纯化技术及其基本原理;熟悉分离纯化工艺的优化、放大和验证工作;掌握分离纯化的特点与一般步骤;了解生物分离纯化技术的发展历史;熟悉生物分离纯化技术的发展趋势。 教学重点:生物物质的概念、种类和来源;分离纯化工艺的优化、放大和验证工作;分离纯化的特点与一般步骤;生物分离纯化技术的发展趋势。 教学难点:分离纯化技术及其基本原理;分离纯化工艺的优化、放大和验证工作。教学课时:4 学时 教学方法:多媒体教学 教学内容: 第一节生物分离与纯化的概念与原理 一、生物物质的概念、种类和来源 1. 生物物质:氨基酸及其衍生物类、活性多肽类、蛋白质、酶类、核酸及其降解 物、糖、脂类、动物器官或组织制剂、小动物制剂、菌体制剂 2. 生物物质来源:动物器官与组织、植物器官与组织、微生物及其代谢产物、细胞培养产物、血液、分泌物及其代谢物 二、生物分离纯化概念 指从发酵液、动植物细胞培养液、酶反应液或动植物组织细胞与体液等中分离、纯化生物产品的过程。 三、生物分离纯化技术

生物技术 上游:基因工程、细胞工程、酶工程、发酵工程及组织工程;下游:生物产品的回收——生物分离与纯化技术,主要包括离心技术、细胞破碎技术、萃取技术、固相析出技术、色谱技术和膜分离技术等。 四、分离纯化基本原理 有效识别混合物中不同组分间物理、化学和生物学性质的差别,利用能够识别这些差别的分离介质或扩大这些差别的分离设备来实现组分间的分离或目标产物的纯化。

第二节分离纯化策略 一、生物分离纯化技术的特点 1. 环境复杂、分离纯化困难 2. 含量低、工艺复杂

银杏叶黄酮类化合物的提取研究进展

银杏叶黄酮类化合物的提取研究进展 银杏树Ginkgo biloba L.又称白果树、公孙树,是我国古老的树种之一,具有“活化石”的美称。由于其生长规律特殊,抗病能力强而受到国内外的重视。有关银杏叶的有效成分及疗效的研究日益受到重视,已开发出保健品、化妆品、药品等多达100多种,形成国际市场上销售额20多亿美元的新兴产业。银杏叶的化学成分有黄酮类、萜类、内酯类、酚酸类以及生物碱、聚异戊二烯等化合物。黄酮类为银杏叶的主要有效成分之一,含量随品种、产地、树龄、不同的采摘时间而不同。黄酮类化合物优异的抗氧化、抗病毒、防治心血管疾病、增强免疫力等作用而受世人瞩目。 药学研究表明,有38种银杏黄酮类化合物从银杏叶中分离出来,其中黄酮类化合物主要有3类:黄酮(醇)及其昔28种:如槲皮黄酮等;黄烷醇类:如儿茶素等4种;双黄酮:如白果双黄酮等6种(儿茶素)。 1 银杏叶黄酮的提取分离 1.1 溶剂提取法目前国内外掀起了研究开发银杏叶热。国内银杏叶常用溶剂例如乙醇、丙酮、醋酸乙酯、水以及某些极性较大的混合溶剂浸泡银杏叶进行提取,溶剂提取方法一般有:煎煮、冷浸、回流、渗施等经典方法。 1.1.1 水提取树脂分离法有关水浸提银杏黄酮苷的文献报道不多。肖顺昌等报道了用l 6倍量沸水分3次浸提银杏叶,得到的水溶液,经冷藏、分离杂质得溶液,然后用D101型吸附树脂吸附得到浓度达38%的黄酮苷。胡敏等研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法,结果表明:水为提取剂,在9 0℃水溶回流浸提银杏叶2次,4h/次,经沉淀,过滤,浓缩后,用树脂精制、冷冻干燥后,制得总黄酮苷含量高的提取物、产品得率为银杏叶干重的 1.2%-1.5%。 水提取成本低,没有任何环境污染,产品安全性高,但是水对有效成分的选择性差,提取率低。

黄酮类化合物

黄酮类化合物 黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化 合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。此外,它还常与糖结合成苷。多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。黄酮类化合物不同的颜色为天然色素家族添加

了更多色彩。这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。3、显色:1.盐酸-镁粉(或锌粉) 反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。而与其它黄酮类化合物均不显色。3. 黄酮类化合分子中常含有下列结构单元,故常可与铝盐、铅盐、锆盐、镁盐、锶盐、铁盐等试剂反应,生成有色络合物。与1%三氯化铝 或硝酸铝溶液反应,生成的络合物多为黄色(λmax=415nm),并有荧光,可用于定性及定量分析。4、黄酮对身体的好处黄酮广泛存在自然界的某些植物和浆果中,总数大约有4千 多种,其分子结构不尽相同,如芸香苷、橘皮苷、栎素、绿茶 多酚、花色糖苷、花色苷酸等都属黄酮。不同分子结构的黄酮可作用于身体不同的器官,如山楂--心血管系统,兰梅-- 眼睛,酸果--尿路系统,葡萄--淋巴、肝脏,接骨木果--免疫系统,平时我们可以通过多食葡萄、洋葱、花椰莱、喝红酒、多饮绿茶等方式来获得黄酮,作为身体的一种补充。 黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清

人教版高中化学选修5第一章第四节有机化合物的分离提纯练习

第1课时有机化合物的分离、提纯 课后篇巩固提升 基础巩固 1.下列各组混合物能用分液漏斗进行分离的是( ) A.四氯化碳和碘 B.苯和甲苯 C.溴苯和水 D.乙醇和乙酸 ,溶液不分层,不能用分液的方法分离,而溴苯 不溶于水,液体分层,可用分液漏斗分离,C项正确。 2.下列物质的提纯,属于重结晶法的是( ) A.除去工业酒精中含有的少量水 B.提纯苯甲酸 C.从碘水中提纯碘 D.除去硝基苯中含有的少量Br2 ,乙醇是被提纯的物质,液体的提纯常用蒸馏的方法,即工业酒精可用蒸馏的 方法提纯,A错误;苯甲酸为无色、无味片状晶体,含杂质的粗苯甲酸因制备苯甲酸的方法不同所含 的杂质不同,均可采用溶解→加入氢氧化钠溶液→过滤→加适量稀盐酸→冰水冷却→过滤→重结晶 →纯苯甲酸,B正确;碘是固态的物质,在不同溶剂中的溶解度不同,碘易溶于四氯化碳或苯,难溶于水,从碘水中提取碘单质,可以加入四氯化碳萃取,不适合用重结晶的方法,C错误;Br2易溶于硝基苯中,提纯的方法是向混合物中加入足量NaOH溶液,生成溴化钠和次溴酸钠,溶于水,但硝基苯不溶于水,然后用分液的方法分离,取上层液体得纯净的硝基苯,所以提纯硝基苯不适合用重结晶法,D错误。 3.化学家从有机反应RH+Cl2(g)RCl(l)+HCl(g)中受到启发,提出的在农药和有机合成工业中可 获得副产品的设想已成为事实,试指出从上述反应产物中分离得到盐酸的最佳方法是( ) A.水洗分液法 B.蒸馏法 C.升华法 D.有机溶剂萃取法 HCl极易溶于水,而有机物一般难溶于水的特征,采用水洗分液法得到盐酸是最简便易行 的方法。 4.工业上食用油的生产大多数采用浸出工艺。菜籽油的生产过程为将菜籽压成薄片,用有机溶剂浸泡,进行操作A;过滤,得液体混合物;对该混合物进行操作B,制成半成品油,再经过脱胶、脱色、脱 臭即制成食用油。操作A和B的名称分别是( ) A.溶解、蒸发 B.萃取、蒸馏 C.分液、蒸馏 D.萃取、过滤 A是用有机溶剂浸泡,该过程属于萃取;有机溶剂与油脂的混合物则需用蒸馏的方法分离。

液体有机化合物的分离和提纯

2-5 液体有机化合物的分离和提纯 在生产和实验中,经常会遇到两种以上组分的均相分离问题。例如某物料经过化学反应以后,产生一个既有生成物又有反应物及副产物的液体混合物。为了得到纯的生成物,若反应后的混合物是均相的,时常采用蒸馏(或精馏)的方法将它们分离。 一、简单蒸馏 通过简单蒸馏可以将两种或两种以上挥发度不同的液体分离,这两种液体的沸点应相差30℃以上。 1. 简单蒸馏原理 液体混合物之所以能用蒸馏的方法加以分离,是因为组成混合液的各组分具有不同的挥发度。例如,在常压下苯的沸点为80.1℃,而甲苯的沸点为110.6℃。若将苯和甲苯的混合液在蒸馏瓶内加热至沸腾,溶液部分被汽化。此时,溶液上方蒸气的组成与液相的组成不同,沸点低的苯在蒸气相中的含量增多,而在液相中的含量减少。因而,若部分汽化的蒸气全部冷凝,就得到易挥发组分含量比蒸馏瓶内残留溶液中所含易挥发组分含量高的冷凝液,从而达到分离的目的。同样,若将混合蒸气部分冷凝,正如部分汽化一样,则蒸气中易挥发组分增多。这里强调的是部分汽化和部分冷凝,若将混合液或混合蒸气全部冷凝或全部汽化,则不言而喻,所得到的混合蒸气或混合液的组成不变。综上所述,蒸馏就是将液体混合物加热至沸腾,使液体汽化,然后,蒸气通过冷凝变为液体,使液体混合物分离的过程,从而达到提纯的目的。 2. 蒸馏过程 通过蒸馏曲线可以看出蒸馏分为三个阶段,如图2-20所示。 图2-20 简单蒸馏曲线图 在第一阶段,随着加热,蒸馏瓶内的混合液不断汽化,当液体的饱和蒸气压与施加给液体表面的外压相等时,液体沸腾。在蒸气未达到温度计水银球部位时,温度计读数不变。一旦水银球部位有液滴出现(说明体系正处于气、液平衡状态),温度计内水银柱急剧上升,直至接近易挥发组分沸点,水银柱上升变缓慢,开始有液体被冷凝而流出。我们将这部分流出液称为前馏分(或馏头)。由于这部分液体的沸点低于要收集组分的沸点,因此,应作为杂质弃掉。有时被蒸馏的液体几乎没有馏头,应将蒸馏出来的前滴液体作为冲洗仪器的馏头去掉,不要收集到馏分中去,以免影响产品质量。

利用紫外光谱测定黄酮类化合物的结构

之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。 乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。 黄酮和黄酮醇类 黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。 黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。利用带Ⅰ的峰位不同,可以区别这两类化合物。 黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。例如,7和4'位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。有时(例如3',4'-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。 A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。 黄酮或黄酮醇的3-,5-或4'-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或 1.甲醇钠(NaOMe),主要是判断是否有4'-OH,3、4'-二OH或3、3'、4'-三OH。

黄酮类化合物提取分离纯化及其活性的研究进展

黄酮类化合物提取分离纯化及其活性的研究进展姓名常姣专业微生物学 摘要文章综述了黄酮类化合物的结构特征及提取、分离纯化技术介绍了黄酮类化合物的生物活性,并对其开发利用进行了展望。旨在为黄酮类化合物的研究、开发以及应用提供参考。 关键词黄酮;提取;分离纯化;生物活性 民以黄酮类化合物也称黄碱素, 是广泛存在于自然界的一大类化合物, 在植物体内大多与糖结合成甙的形式存在, 也有部分以游离状态的甙元存在。由于最先发现的黄酮类化合物都具有一个酮式羰基 结构, 又呈黄色或淡黄色, 故称黄酮[ 1]。 目前对天然黄酮类化合物的提取方法较多,如溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法及半仿生提取法等, 每种方法都有它各自的优点和点。用上述方法提取的黄酮类化合物仍然是一个混合物, 不仅是含有其它杂质的粗品, 而且是几种黄酮类成分的混合物, 需进一步分离纯化, 常用的方法有柱层析法、重结晶法、铅盐沉淀法和高效液相色谱法等。 黄酮类化合物具有降低血管脆性及异常的通透性、降血脂、降血压、抑制血小板聚集及血栓形成、抗肝脏病毒、抗炎、抗菌、解栓、抗氧化、清除自由基、抗衰老、抗癌、防癌、降血糖、镇痛和免疫等生理活性[ 2-5]。这些生理活性已被关注,对该类化合物的研究成为医药界的热门课题。人体自身不能合成黄酮类化合物而只能从食物中摄取,因此多年来科学家都在积极研究探讨从植物体中分离 纯度高、活性强的黄酮类化合物[6]。 1黄酮类化合物的理化性质 黄酮类化合物是以2-苯基色原酮为母核而衍生的一类通过三碳链相互连接而成的大多具有基本碳 架的一系列化合物,且母核上常有羟基、甲氧基、甲基、异戊烯基等助色取代基团。黄酮类化合物多为晶体固体,多数具有颜色,少数(如黄酮苷类)为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,其余则无旋光性) 黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有很大差异) 一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂) 其中,黄酮、黄酮醇、查儿酮等平面型分子,因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等,因系非平面型分子,故排列不紧密,分子间引力降低,有利于水分子进入,水中溶解度稍大。 2黄酮类化合物的提取分离及纯化 黄酮类化合物在花、叶、果等组织中多以苷元的形式存在,而在根部坚硬组织中,则多以游离苷元形式存在。因此,不同来源、部位、种类黄酮提取所采取的方法不同[6]。分离黄酮类化合物的方法很多,根据黄酮类化合物与混入其他化合物的极性不同可采用溶剂萃取法,根据黄酮化合物在酸性水中难溶、碱性水中易溶的特点可采用碱提酸沉法等。 2.1溶剂法 2.1.1 热水提取法

黄酮类化合物的生理功能

黄酮类化合物的生理功能 黄酮类化合物广泛存在于植物中,实际上存在于植物的所有部分,包括根、心材、树皮、叶、果实和花中,光全作用中约有2%的碳源被转化成类黄酮。早在30年代人们就发现了黄酮类化合物具有维生素C样的活性,曾一度被视为是维生素P。至今法国与俄罗斯仍继续称黄酮类化合物为维生素P。Pratt等人研究了黄酮类化合物的抗氧化性质,认为黄酮是作为一级抗氧化剂而起作用的,它们具有显著的抗氧化性能。黄酮抗油脂过氧化的作用早在60年代就已经被证实了。80年代以来,对黄酮类化合物的研究逐渐转向其清除自由基的能力、抗衰老及对老年病的防治功效上。 黄酮类化合物中含有消炎、抑制异常的毛细血管通透性增加及阻力下降、扩张冠状动脉、增加冠脉流量、影响血压、改变体内酶活性、改善微循环、解痉、抑菌、抗肝炎病毒、抗肿瘤具有重要生物活性的化合物,有很高的药用价值。中草药含黄酮类化合物的很多,已经证明类黄酮是许多中草药的有效成份。例如满山红中的杜鹃素、小叶枇杷中的小叶枇杷素、矮地茶中的槲皮苷、铁包金中的芦丁、白毛夏枯草和青兰中的木犀草素、红管药中的槲皮素、葛根中的黄豆苷与葛根素、毛冬青与银杏叶中的黄酮醇苷、黄芩中的抗菌成分黄芩素和解热有效成分黄芩苷等。此外,还有很多中草药富含黄酮类成分,如槐米、陈皮、射干、红花、甘草、蒲黄、枳实、芫花、金银花、菊花、山楂、淫羊藿、桎木和地锦等。除了药用价值外,其中的部分黄酮类化合物(特别是来源自药食两用的中草药)显然可应用在功能性食品。 黄酮和黄酮醇是植物界分布最广的黄酮类化合物,广泛存在于食用蔬菜及水果中,在沙棘、山楂、洋葱等中含量较高,茶叶、蜂蜜、果汁、葡萄酒中含量丰富。椐估计人体每天从食物中摄入这类物质可达1g,产生有益的生理作用。黄酮类化合物无显著毒性,大鼠对槲皮素的经口LD50为10~50g/kg ,小鼠一次口服15g/kg,观察7d无一死亡。临床病人摄取芦丁2.25g持续7d或60mg/d连续5年,均无任何副反应。在其他一系列大剂量、长时间的动物试验中,均未发现有致癌性。显性致死试验、细胞姐妹染色体试验、微核试验证明槲皮素类衍生物无致突变作用。 黄酮类化合物的生理功能可概括为: ⑴调节毛细血管的脆性与渗透性。 ⑵是一种有效的自由基清除剂,其作用仅次于维生素E。 ⑶具有金属螯合的能力,可影响酶与膜的活性。 ⑷对维生素C有增效作用,似乎有稳定人体组织内维生素C的作用。 ⑸具有抑制细菌和抗生素的作用,这种作用使普通食物抵抗传染病的能力相当高。 ⑹在两方面表现有抗癌作用,一方面是对恶性细胞的抑制(即停止或抑制细胞的增长),另一方面是从生化方面保护细胞免受致癌物的损害。 尽管对黄酮类化合物的看法尚有矛盾的方面,但它目前仍被应用来防治下列一些疾病: ⑴毛细血管的脆性和出血。 ⑵牙龈出血。 ⑶眼的视网膜内出血。

有机物分离和提纯的常用方法(实用)

有机物分离和提纯的常用方法 分离和提纯有机物的一般原则是:根据混合物中各成分的化学性质和物理性质的差异进行化学和物理处理,以达到处理和提纯的目的,其中化学处理往往是为物理处理作准备,最后均要用物理方法进行分离和提纯。 方法和操作简述如下: 1. 分液法��常用于两种均不溶于水或一种溶于水,而另一种不溶于水的有机物的分离和提纯。步骤如下: 分液前所加试剂必须与其中一种有机物反应生成溶于水的物质或溶解其中一种有机物,使其分层。如分离溴乙烷与乙醇(一种溶于水,另一种不溶于水): 又如分离苯和苯酚: 2. 蒸馏法��适用于均溶于水或均不溶于水的几种液态有机混合物的分离和提纯。步骤为: 蒸馏前所加化学试剂必须与其中部分有机物反应生成难挥发的化合物,且本身也难挥发。如分离乙酸和乙醇(均溶于水):

3. 洗气法��适用于气体混合物的分离提纯。步骤为: 例如: 此外,蛋白质的提纯和分离,用渗析法;肥皂与甘油的分离,用盐析法。 有机物分离和提纯的常用方法 1,洗气 2,萃取分液溴苯(Br2),硝基苯(NO2),苯(苯酚),乙酸乙酯(乙酸) 3, a,制无水酒精:加新制生石灰蒸馏 b,酒精(羧酸)加新制生石灰(或NaOH固体)蒸馏c,乙醚中混有乙醇:加Na,蒸馏 d,液态烃:分馏 4,渗析 a,蛋白质中含有Na2SO4 b,淀粉中KI 5,升华奈(NaCl) 鉴别有机物的常用试剂 所谓鉴别,就是根据给定的两种或两种以上的被检物质的性质,用物理方法或化学方法,通过必要的化学实验,根据产生的不同现象,把它们一一区别开来.有机物的鉴别主要是利用官能团的特征反应进行鉴别.鉴别有机物常用的试剂及特征反应有以下几种: 1. 水 适用于不溶于水,且密度不同的有机物的鉴别.例如:苯与硝基苯. 2. 溴水 (1)与分子结构中含有C=C键或键的有机物发生加成反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)与含有醛基的物质发生氧化还原反应而褪色.例如:醛类,甲酸. (3)与苯酚发生取代反应而褪色,且生成白色沉淀. 3. 酸性溶液 (1)与分子结构中含有C=C键或键的不饱和有机物发生氧化还原反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)苯的同系物的侧链被氧化而褪色.例如:甲苯,二甲苯等. (3)与含有羟基,醛基的物质发生氧化还原反应而使褪色.例如:醇类,醛类,单糖等. 4. 银氨溶液(托伦试剂) 与含有醛基的物质水浴加热发生银镜反应.例如:醛类,甲酸,甲酸酯和葡萄糖等. 5. 新制悬浊液(费林试剂) (1)与较强酸性的有机酸反应,混合液澄清.例如:甲酸,乙酸等. (2)与多元醇生成绛蓝色溶液.如丙三醇. (3)与含有醛基的物质混合加热,产生砖红色沉淀.例如:醛类,甲酸,甲酸酯和葡萄糖等. 6. 金属钠 与含有羟基的物质发生置换反应产生无色气体.例如:醇类,酸类等. 7. 溶液 与苯酚反应生成紫色溶液. 8. 碘水 遇到淀粉生成蓝色溶液. 9. 溶液 与酸性较强的羧酸反应产生气体.如:乙酸和苯甲酸等.

初三化学物质的分离和提纯知识点总结

初三化学物质的分离和提纯知识点总结初三化学物质的分离和提纯知识点总结 物质的分离是把原混合物中各成份一一分开,并恢复原样品。物质的提纯〔除杂〕就是除去物质中混有的杂质,从而得到纯净的某物质,其基本方法有: 【一】物理方法 1、过滤法:适用于不溶于液体的固体与液体的分离或提纯。 2、结晶法:适用于可溶性固体与液体的分离和提纯。具体方法有两种。 ① 降温结晶法:适用于溶解度受温度变化影响较大的固态物质的分离或提纯。 ② 蒸发结晶法:适用于溶解度受温度变化影响不大固体物质的分离或提纯。 【二】化学方法: 1、原那么: ①〝不增、不减、易分〞: 不增即最终不能引入新的杂质; 不减是除杂结果不应使所需物质减少; 易分是加入试剂后,使杂质转化为沉淀、气体和水等与所需物质易于分离。 ②先除杂后干燥。 2、方法:〔以下括号里的均为杂质〕

① 吸收法:如一氧化碳混有二氧化碳可用氢氧化钠等碱性溶液吸收; ② 沉淀法:如氯化钾中混有氯化镁可加氢氧化钾溶液,再过滤; ③ 溶解法:如铜中混有氧化铜可加入过量的盐酸,再过滤; ④ 转化法:如铜中混有锌可加硫酸铜溶液再过滤; ⑤ 气化法:如氯化钠中混有碳酸钠可加入过量盐酸,再蒸发结晶; ⑥ 加热法:如氧化钙中混有碳酸钙可高温灼烧; ⑦ 综合法:当含有多种成分的杂质时,分离提纯往往不仅仅使用一种方法,而是几种方法交替使用。 【三】知识【解析】: 物质的分离与除杂〔提纯〕从内容上看,它包含着常见酸、碱、盐及其他重要物质的性质及特殊化学反应的知识;从过程上看,它是一个原理确定、试剂选择与实验方案确定、操作实施的过程。其考查点和趋势是: 1、考查物质的分离和提纯原理。根据除杂质的原那么,自选或从题给试剂中选出除杂试剂。判断题给试剂的正误等。 2、考查物质提纯的实验设计。根据物质分离和提纯的原那么设计正确的实验方案。 3、考查评价物质分离和提纯的实验方案。对题给试、步骤、操作、效果等进行评价、比较,从中选出最正确方案。 4、除去混合物中杂质,不仅要考虑反应原理正确可行,而且要考虑实际操作简便易行,同时还要注意实验的安全性和药品、能

相关文档