文档视界 最新最全的文档下载
当前位置:文档视界 › 无机含氧酸的酸性及氧化性的比较

无机含氧酸的酸性及氧化性的比较

无机含氧酸的酸性及氧化性的比较
无机含氧酸的酸性及氧化性的比较

无机含氧酸的酸性及氧化性的比较

1 无机含氧酸的酸性

无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R 吸引羟基氧原子电子的能力。如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。含氧酸的酸性一般存在如下规律[1]:

(1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO

〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕

(2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4

〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。〕

(3)在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左

至右增强。如HClO4>H2SO4>H3PO4

(4)〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增

大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕

(5)查阅相关资料可知此类酸的酸性强弱可以有鲍林规则来初步判断,具体规则如下:鲍

林规则[2]:

(6)规则Ⅰ:

(7)多元酸的逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…

(8)如:H3PO4 Ka1=7.6×10-3 Ka2=6.3×10-8 Ka3= 4.4×10-13

(9)在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它

如 H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ。规则Ⅱ:

(10)具有ROm-n(OH)n形式的酸,其Ka值与n的关系是Ka1=105(m-n)-7, m-n为

非羟基氧原子的数目。

(11)第一类:当m-n=0,是很弱的酸,Ka1<10-7;

(12)第二类:当m-n=1,是弱酸,Ka1=10-2~10-3;

(13)第三类:当m-n=2,是强酸,Ka1=102~103;

(14)第四类:当m-n=3,是极强的酸, Ka1>108。

(15)m-n与酸的强度关系见下表:

(16)①表中例外的是H3PO3和H3PO2,对亚磷酸来说,若取P(OH)3的形式,则m-n=0

估算其Ka1≈10-7,这是因为亚磷酸是二元酸,其结构简式为HPO(OH)2,它有二个羟基,一个非羟基氧原子,亦即 m-n=1,于是:

(17)K a1≈105(m-n)-7=10-2

(18)②同理次磷酸(H3PO2)的结构简式为H2PO(OH)为一元酸,它有一个羟基和一

个非羟基氧原子,亦即(m-n)=1,所以Ka1≈10-2。

(19)另外,H2CO3的Ka1值过去测得为4.16×10-7,现经纠正后为2×10-4。

(20)③碳酸(H2CO3)违背上述的理由则不同,按它的结构简式Co(OH)2,预计H2CO3

的Ka1≈10-2,但实验测得的Ka1≈10-7,原因是溶质CO2在溶液中所形成的“碳酸”

是松驰的水化CO2,不是以Co(OH)2形式存在的。查阅相关资料[3]可知:298K时,1L水中溶1.45克约〔0.033mol〕,溶解在水中CO2的大部分以弱的水合分子存在,只有1%~4%的CO2与H2O反应生成H2CO3,实验测得:「CO2」/「H2CO3」=600..

经改进实验所测得的 Ka1≈2×10-4,这与预料的结果相接近。

(21)④ H3BO3R的结构结构简式可以写成B〔OH〕3,每个硼原子用3个SP3杂化轨道与

3个羟基中的氧原子以共价键结合,但硼酸是一元弱酸也有人认为其为三元弱酸,但它的酸性不是由它本身给出的质子,而是由于它是缺电子分子,接受了来自H2O分子上的孤对电子,而释放出质子,所以才显微弱酸性,所以其不符合上述规则。

(22)补充说明:(不同周期元素的含氧酸之间的关系)

(23)纵观p区同族元素最高氧化态含氧酸的酸性,通过不同周期的对比可得出结论[4]:

(24)a. 第二周期最高氧化态含氧酸的酸性比同族第三周期要强。如硝酸(103)大于磷酸

(10-2); b. 第四周期最高氧化态含氧酸的酸性比同族第三周期有的略强如H4GeO4(10-9)大于H4SiO4(10-10);有的相近如H3PO4与H3AsO4(10-2)。

(25)c. 第五周期最高氧化态含氧酸的酸性明显地弱于第三、四周期。如H5IO6

(10-3)、 H6TeO6(10-7)均为弱酸

2 无机含氧酸的氧化性

(1) 无机含氧酸的氧化性反映的实质是指其成酸元素得电子的能力,成酸元素得电子能力越强,则其氧化性越强。

(2) 氧化性酸的强氧化性表现在如下几个方面:

①能与排在常见金属活动性顺序表中氢后面的金属单质反应。如:

Cu+2H2SO4(浓)= CuSO4+SO2↑+2H2O 3Ag+4HNO3(稀)= 3AgNO3+NO↑+O2↑

②能将变价金属从零价氧化成较高的价态。如:

2Fe+6H2SO4(浓)= Fe2(SO4)3+3SO2↑+6H2O 3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O ③能与不太活泼的非金属单质反应。如:

C+2H2SO4(浓)= CO2↑+2SO2↑+2H2O C+4HNO3(浓)= CO2↑+4NO2↑+2H2O P+5HNO3(浓)= H3PO4↑+5NO2↑+H2O I2+10HNO3(浓)= 2HIO3↑+10NO2↑+4H2O

④能多种元素从较低价态氧化到较高介态。例如:

4HNO3(稀)+FeS=Fe(NO3)3+S↓+NO↑+2H2O

HClO+H2SO3=HCl+H2SO4

(3) 氧化性酸的氧化性强弱,一般情况下存在以下规律:

①对于同一氧化性酸,浓度越大(或溶液中氢离子浓度越大)氧化性越强。

例如:浓硝酸比稀硝酸氧化性强,稀的高氯酸氧化性很弱,但浓高氯酸却有很强的氧化性。从电极电势上看,增大酸根或氢离子的浓度,氧化能力增强,例如:硝酸根及氢离子浓度增大(尤其是氢离子浓度)电极电势的值变大。这可由Nernst方程解释:

E=Eθ+0,0591/n lg(ox)m/(red)n

〔对于有 H+ 参加的反应,氧化态物质应包括 H+ 和酸根,否则不用考虑 H+〕

由此方程式可知:增大H+和酸根离子的浓度,均可提高电极电位,从而使酸的氧化性增强。

②同一种元素形成的不同价态的含氧酸,一般低价态的比高价态的氧化性强。

例如: HClO>HClO2>HClO3>HClO4 HNO2>HNO3

③同周期主族元素形成的最高价含氧酸或相对应的低价含氧酸,从左到右,氧化性依次增强。例如,高氯酸常温下氧化性很强,硫酸浓度大加热时才表现出强氧化性,磷酸则几乎无氧化性。HClO3>H2SO3

④同族副族元素含氧酸的氧化性随原子序数Z的增加而略有下降。

⑤同主族元素形成的同价态含氧酸,氧化性强弱的规律复杂,一些常见各族元素含氧酸的氧化性强弱顺序如下:

HBrO4≈H5IO6>HClO4 HBrO3>HClO3>HIO3 HClO>HBrO>HBrO

H2SeO4≈H6TeO6>H2SO4 HNO3>H3AsO4>H3PO4

(4) 影响含氧酸氧化能力强弱的因素

一种含氧酸被还原的难易程度主要取决于四方面的因素[4]:

①中心原子(即成酸元素的原子,用R表示)结合电子的能力

②中心原子电负性愈大,愈容易获得电子而被还原,因而氧化性愈强。该因素可说明主族

元素含氧酸氧化还原能力强弱。

③如: HNO3 > H2SO4 > H3PO4

④例外情况 H2SeO3 ≈ H6TeO6 > H2SO4 HBrO3>HClO3>HIO3 ②中心原子和氧

原子之间键(R-O键)的强度

⑤含氧酸还原为低氧化态或单质的过程包括R-O键的断裂。影响R-O键强度的因素有中

心原子的电子层结构、成键情况、H+离子反极化作用等。

⑥下面是一些含氧酸根的分子构型及成键情况:

分子构型实例孤电子对成键情况

直线 ClO- 、BrO-、IO- 3 不等性sp3杂化

V型ClO2- 、BrO2-、IO2- 2 不等性sp3杂化

三角锥形 ClO3- 、BrO3-、IO3- 1 不等性sp3杂化

正四面体ClO4- 、BrO4- 0 等性sp3杂化

⑦SO42- 、PO43-、SiO44- 0 等性sp3杂化,d←pπ键

⑧B(OH)44- 0 不等性sp3杂化,缺电子

平面三角形NO3- 、CO32- 0 不等性sp2杂化,∏46

⑨正八面体 IO65- 0 sp3d2 杂化

?③在含氧酸还原过程中伴随发生的其它过程的能量效应

?在实际的反应中常伴随有一些非氧化还原过程的发生,如水的生成、溶剂化和去溶剂化作用、离解、沉淀的生成、缔合等。这些过程的能量效应有时在总的能量效应中占有很大比重。如果这些过程放出的净能量愈多,则总反应进行趋势愈大,即含氧酸的氧化性愈强。

?④含氧酸根自身的稳定性

?(其稳定性与酸根的结构构型,对称性及R-O键强度有关)。如:硫酸根比亚硫酸根稳定,硝酸根比亚硝根稳定,所以氧化性:

?H2SO4(稀)

? 3 含氧酸的氧化性与酸性的关系

?(1) 同一族过渡元素随周期增加其含氧酸的R- O键增强,使酸稳定性增大,酸性依次增强,氧化性逐渐减弱。

?原因:含氧酸中心原子和氧原子之间存在着配位键和d-pπ键,相当于一个双键。根据

组成分子轨道的能量近似原则,生成的d-pπ键的倾向顺序是3d<4d<5d。,。如Tc、Re 的R-O键强,不易断裂。

?(2) 对于同一元素形成的几种没同氧化态的酸来说,一般是弱酸(低氧化态)的氧化性强于稀的强酸(高氧化态)。例如: HNO2强于稀HNO3;H2SO3强于稀H2SO4,这是因为在弱酸分子中存在着H+离子对含氧酸中心原子的反极化作用,使R-O键易断裂。?(3) 同一元素不同氧化态的含氧酸,通常是高氧化态酸的氧化能力弱,而酸性强。例如:酸性 HClO4>HClO3>HClO2>HClO H2SO4 > H2SO3 HNO3>

21HNO2 氧化性:HClO >HClO2 >HClO3 >HClO4 H2SO4(稀)

22其原因可能是因为在还原过程中氧化态愈高的含氧酸需要断裂的R-O键愈多的缘故。酸根离子愈稳定,氧化性愈弱。

高一化学选修3溶解性手性无机含氧酸分子的酸性

第2课时溶解性手性无机含氧酸分子的酸性P26 1.下列现象不能用“相似相溶”解释的是() A.氯化氢易溶于水 B.氯气易溶于NaOH溶液 C.碘易溶于CCl4 D.碘难溶于水 答案 B 解析HCl为极性分子易溶于水,I2为非极性分子,易溶于CCl4,难溶于水。Cl2易溶于NaOH溶液是因为Cl2和NaOH溶液发生了化学反应。 2.根据“相似相溶”的一般规律,能正确说明溴、碘单质在四氯化碳中比在水中溶解度大的是() A.溴、碘单质和四氯化碳中都含有卤素 B.溴、碘是单质,四氯化碳是化合物 C.Br2、I2是非极性分子,CCl4也是非极性分子,而水是极性分子 D.以上说法都不对 答案 C 解析根据“相似相溶”的一般规律可知,C项正确。 3.下列最适合溶解硫粉(S8)的溶剂为() A.H2O B.CS2(二硫化碳) C.CH 3OH(甲醇) D.HCOOH(甲酸) 答案 B 解析根据“相似相溶”原理,S8是非极性分子,易溶在非极性溶剂中。 4.下列无机含氧酸分子中酸性最强的是() A.HNO2B.H2SO3C.HClO3D.HClO4 答案 D 解析四个选项分子中的非羟基氧原子数分别为1、1、2、3,非羟基氧原子数目越多,酸性越强。 5.下列分子不是手性分子的是()

答案 B 解析一个碳原子连有四个不同的原子或原子团,含有这种碳原子的分子就是手性分子。 6.有机物具有手性,发生下列反应后,分子仍有手性的组合是() ①与H2发生加成反应②与乙酸发生酯化反应 ③发生水解反应 A.①②B.②③ C.①③D.以上都不是 答案 B 解析题干有机物中与—OH相连的碳原子为手性碳原子,与H2加成后,连有两个乙基,不再具有手性;与乙酸发生酯化反应,所连4个取代基不同,该碳原子仍具有手性;发生水解反应后,所连4个取代基也不同,该碳原子仍具有手性。 7.下列说法中不正确的是()

卤素含氧酸的稳定性及其盐氧化还原性的比较

卤素含氧酸的稳定性及其盐氧化还原性的比较 姓名:杨颖聪指导教师:桑亚丽 赤峰学院化学系09级化学本科班 引言 恩格斯说过:“科学的发生和发展过程,归根结底是由生产所决定的。”化学正像其他学科一样,是人类活动实践的产物。那么,化学研究的是什么呢?简单地说,化学就是研究物质的组成、结构、性质和变化的科学。下面,就卤素含氧酸的稳定性及其盐氧化还原性做如下讨论: 一、卤素及其含氧酸(盐)的结构特征 1、卤素原子的结构特征 元素周期系第ⅦA族元素包括氟、氯、溴、碘和砹五种元素,总称为卤素。卤族元素都是典型的非金属,其价层电子构型均为ns2np5,它们很容易得到一个电子形成卤离子,或与另一个原子形成共价键,所以卤素原子都能以-1氧化态形式存在[1]。除氟外,在一定的条件下,氯、溴、碘的外层ns np成对电子受激发可跃迁到nd轨道,nd轨道也参与成键,故可呈现+Ⅰ、+Ⅲ、+Ⅴ、+Ⅶ氧化态,这些氧化态突出地表现在氯、溴、碘的含氧化合物或含氧酸根中,如:+1: HXO (次卤酸)、+3: HXO?(亚卤酸)、+5: HXO?(卤酸)、+7: HXO?(高卤酸)。 2.卤素含氧酸(盐)的结构特征: 含氧酸是酸根中含有氧原子的酸。非金属元素的含氧酸的酸根,即含氧阴离子,属于 多原子离子。在这样的离子中,中心成键原子与氧原子之间除了形成σ键以外,还可能形成 π键,不过由于中心原子的电子构型不同,形成的π键类型不完全一样[2]。但是,在这些 含氧酸的结构中,都含有X─O─H键,有的亦含有X─O键等。 二、卤素含氧酸(盐)的稳定性 1、影响含氧酸(盐)热稳定性的因素: 含氧酸(盐)的热稳定性与含氧酸根离子的变形性和阳离子的极化作用有关,组成盐的 阳离子的离子热越大,且阴离子的变形性越大,则极化作用越强,越易于分解;其次,含氧 酸盐分解的焓变大小也是其影响热稳定性的主要因素。一般来讲,分解焓变越大,盐的热稳 定性越高【3】。

氧化性还原性强弱的判断方法

氧化性,还原性强弱的判断方法 (一)根据氧化还原反应的方向判断 氧化剂(氧化性)+还原剂(还原性)===还原产物+氧化产物 氧化剂--得电子--化合价降低--被还原--发生还原反应--还原产物 还原剂--失电子--化合价升高--被氧化--发生氧化反应--氧化产物 氧化性:氧化剂>氧化产物还原性:还原剂>还原产物 氧化性:氧化剂>还原剂还原性:还原剂>氧化剂 (二)根据元素活动性顺序比较 (1)金属活动顺序:K>Ca>Na>Mg>Al>Mn>Zn>Cr>Fe>Ni>Sn>Pb>(H)>Cu>Hg>Ag>Pt>Au 从左到右,金属还原性逐渐减弱,对应阳离子氧化性逐渐增强 (2)非金属活动性顺序(常见元素):F---Cl---Br---I---S 从左到右,原子(或单质)氧化性逐渐减弱,对应阴离子还原性增强 氧化性:F2>Cl2>Br2>Fe3+>I2>SO2>S 还原性:S2->SO32->I->Fe2+>Br->Cl->OH->含氧酸根>F- (三)根据反应条件判断,当不同氧化剂分别于同一还原剂反应时,如果氧化产物价态相同,可根据反应条件的难易来判断。反应越容易,该氧化剂氧化性就强。 (四)根据氧化产物的价态高低来判断 当含有变价元素的还原剂在相似的条件下作用于不同的氧化剂时,可根据氧化产物价态的高低来判断氧化剂氧化性强弱。 (五)根据元素周期表判断 (1)同主族元素(从上到下) 非金属原子(或单质)氧化性逐渐减弱,对应阴离子还原性逐渐增强。 金属原子还原性逐渐增强,对应阳离子氧化性逐渐减弱 (2)同周期主族元素(从左到右) 单质还原性逐渐减弱,氧化性逐渐增强 阳离子氧化性逐渐增强,阴离子还原性逐渐减弱。 (六)根据元素最高价氧化物的水化物酸碱性强弱比较 酸性越强,对应元素氧化性越强 碱性越强,对应元素还原性越强 (七)根据原电池的电极反应判断 两种不同的金属构成的原电池的两极。负极金属是电子流出的极,正极金属是电子流入的极。 其还原性:负极金属>正极金属;电解池则相反 (八)根据物质的浓度大小判断 具有氧化性(或还原性)的物质浓度越大,其氧化性(或还原性)越强,反之则越弱。 (九)根据元素化合价价态高低判断

含氧酸地酸性和氧化性

无机含氧酸的酸性及氧化性的比较 1无机含氧酸的酸性 无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R 吸引羟基氧原子电子的能力。如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。 含氧酸的酸性一般存在如下规律[1]: (1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO 〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕 (2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4 〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。〕 (3) 在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。如HClO4>H2SO4>H3PO4

常见酸的酸性强弱的比较(1) (1)

常见酸的酸性强弱的比较 含氧酸的酸性强弱的判据: ①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3 ②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。如酸性HClO4>HClO3>HClO2>HClO,H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2 无氧酸(气态氢化物的水溶液)酸性强弱的判据: ①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强,如酸性:HI>HBr>HCl>HF(弱酸) ②非同一主族元素的无氧酸酸性,需靠记忆。如酸性:HCl>HF>H2S 由反应方向判据: 酸A+盐B→盐A’+酸B’则酸性A>B’如: CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O, 则酸性:H2CO3>H3BO3>HCO3- 由R-O-H模型来判据: R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H2SiO3、H3PO4、H2SO4、HClO4。自左至右,碱性减弱,酸性增强。 由电子效应来比较: 羧酸酸性强弱跟烃基和羧基的相互影响有一定的关系,这种相互影响常用诱导效应来加以解释。且有Cl3CCOOH>CHCl2COOH>CH2ClCOOH>CH3COOH 碱的碱性强弱的比较 总原则:根据碱的电离常数的大小:碱的电离常数越大,该碱的碱性越强。 推论:金属阳离子的水解常数越大,由该金属原子在该价态组成的氢氧化物的碱性越弱。 1、金属元素的电负性越小,该金属的最高价氧化物对应的水化物(即氢氧化物)的碱性越强。

非金属和金属含氧酸及盐氧化还原性变化规律或特殊性

非金属和金属含氧酸及盐氧化还原性变化规律或特殊性 摘要:氧化还原性是非金属和金属含氧酸及盐最重要的化学性质之一。氧化还原性的变化规律是非金属与金属原子结构变化规律的体现。文章总结归纳了大学无机化学课本中出现的几种主要非金属及金属元素含氧酸及盐氧化还原变化的规律与特殊性,使对氧化还原性能有一种更系统性的认识,通过氧化还原性的规律性与特殊性,进一步掌握物质结构对性质的影响。 关键词:非金属含氧酸(盐),金属含氧酸(盐),氧化还原性,规律性,特殊性 多氧化态的成酸元素的含氧酸(盐)的一个特征就是它们具有氧化还原性。高氧化态含氧酸(盐)表现氧化性;低氧化态化合物表现为还原性;而处于中间氧化态的既有氧化性又有还原性。掌握元素含氧酸(盐)氧化还原性质是大学无机化学学习的重点与难点之一,而课本中对于其氧化还原性知识点较为分散,虽有总结,但不十分全面,注重规律性而对特殊性的总结较少,故在此对课本中涉及到的一些主要非金属或金属元素的含氧酸(盐)氧化还原的规律性与特殊性作一个小结。 1非金属含氧酸(盐)氧化还原变化规律性: 各种含氧酸(盐)氧化还原性的相对强弱,通常是用标准电极电势φθ来衡量,但氧化还原反应能否发生还涉及反应机理和动力学等诸多因素的影响,情况颇为复杂。表1为p区元素最高氧化态含氧酸(或氧化物水合物,或M n+)的标准电极电势。 θ 由表1数据和其他一些已知实验事实,大致可以归纳以下一些变化规律:1.1同一周期中各元素最高氧化态含氧酸的氧化性从左至右大致递增,例如第三周期的H4SiO4和H3PO4几乎无氧化性,而H2SO4的氧化性很弱(只有浓H2SO4才有强氧化性),而HClO4则有强氧化性。 1.2在同一主族中,各元素的最高氧化态含氧酸的氧化性,大多数是随原子序数增加呈锯齿形升高。从第二周期到第三周期,最高氧化态(中间氧化态)含氧

无机含氧酸的酸性及氧化性的比较

无机含氧酸得酸性及氧化性得比较 1无机含氧酸得酸性 无机含氧酸可以得分子式为HmROn,其通式可以写成Hl-Rm-—〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,。无机含氧酸在水溶液中得酸强度取决于酸分子中羟基-O-H得电离程度,也可以用Pka值来衡量。酸分子羟基中得质子在电离过程中脱离氧原子,转移到水分子中得孤对电子对上,其转移得难易程度取决于成酸元素R吸引羟基氧原子电子得能力、如果成酸无素R得电负性越大,R周围得非羟基氧原子数目越多,则其酸性越强。原因就是成酸元素R得电负性越大,则其偏移O得电子越少,从而减小了O原子周围得电子密度增大得趋势,使得其对质子得吸引减弱,有利于质子得转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基—O-H键得极性,有利于质子得转移,其次使得整个酸基团周围得空间减小,阻碍了质子与O原子上孤对电子得结合,从而使得酸性增强。含氧酸得酸性一般存在如下规律[1]: (1) 同一成酸元素若能形成几种不同氧化态得含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO 〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基—O—H键得极性增强,质子转移程度增强,故酸性增强〕 (2) 在同一主族中,处于相同氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自上而下减弱。如H ClO〉HBrO>HIO,HClO2〉HBrO2〉HIO2、HClO3>HBrO3〉键HIO3、HClO4>HBrO4>HIO4 〔原因:同主族元素自上而下,成酸元素得电负性逐渐减小,原子半径增大,吸引羟基氧原子得能力依次减小,羟基-O—H键得极性依次减小,所以酸性依次减弱。〕 (3)在同一周期中,处于最高氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自左至右 增强。如HClO4>H2SO4>H3PO4 (4)〔原因:同一周期中,从左至右元素得非金属性逐渐增强,成酸元素得电负性逐渐增大, 吸引电子对得能力逐渐减小,电子偏向成酸元素R一方得程度增大,含氧酸分子中得氢原子得极化程度增大,所以酸性增强。〕 (5)查阅相关资料可知此类酸得酸性强弱可以有鲍林规则来初步判断,具体规则如下: 鲍 林规则[2]: (6)规则Ⅰ: (7)多元酸得逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10 -10… (8)如:H3PO4 Ka1=7.6×10-3 Ka2=6、3×10-8 Ka3= 4。4×10-13 (9)在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如 H5I O6、H6TeO6、H2SiO3不符合规则Ⅰ、规则Ⅱ: (10)具有ROm—n(OH)n形式得酸,其Ka值与n得关系就是Ka1=105(m-n)-7, m-n 为非羟基氧原子得数目。 (11)第一类:当m-n=0,就是很弱得酸,Ka1〈10-7; (12)第二类:当m-n=1,就是弱酸,Ka1=10-2~10-3; (13)第三类:当m-n=2,就是强酸,Ka1=102~103; (14)第四类:当m-n=3,就是极强得酸, Ka1>108。 (15)m-n与酸得强度关系见下表: (16)①表中例外得就是H3PO3与H3PO2,对亚磷酸来说,若取P(OH)3得形式,则m—n =0估算其Ka1≈10-7,这就是因为亚磷酸就是二元酸,其结构简式为HPO(OH)2,它

高中化学 无机含氧酸分子的酸性比较

含氧酸的酸性强弱比较规律 含氧酸一般是指,除了成酸元素外,分子组成中还含有羟基,这样的一类物质。由于这种羟基上的氢原子能以氢离子的形式被电离出来,而使水溶液表现出酸性,所以它也被称之为“羟基酸”。 成酸元素不同、或其价态不同的含氧酸,在酸性强弱方面是有区别的。含氧酸的组成与其酸性强弱间的关联,在中学化学及无机化学教学中,都占有一定的位置,也是一些化学工作者的关注点之一。以至于在某些无机化学教材及文献中,也会出现相关讨论。 笔者在这里的工作,只是试图把这些不同层次教学中,有关含氧酸酸性强弱的内容,归纳起来,并使其能有一些关联性及系统性而已。 含氧酸的酸性一般存在如下规律: (1)同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如 〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕 (2)在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。如 〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原 子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。〕

(3)在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。如 〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强〕 ?无机含氧酸: ?可以的分子式为H m RO n,其通式可以写成(HO)m RO n,也可写成RO m-,其中R称为成酸元素,无机含氧酸在水溶液中的酸强度取决于酸n OH n 分子中羟基-O-H的电离程度,也可以用Pka值来衡量。酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。 一、元素周期表与含氧酸酸性的关系 在中学化学有关元素周期表的教学中,为进行元素间非金属性强弱的比较,特别提出了一个判据。那就是,如果元素的非金属性越强,那

氧化性还原性强弱比较习题

氧化还原反应(氧化性还原性强弱比较) A.基础训练 1.在3Cl2 +8NH3 =6NH4Cl +N2反应中,还原性最强的物质是( ) A、Cl2 B、NH3 C、NH4Cl D、N2 2.在反应KI +5KIO3 +3H2S =3I2 +3K2SO4 +3H2O 中,被氧化的碘元素和被还原的碘元素的质量比是 A、1:5 B、5:1 C、6:1 D、1:6 3.下列变化中,需加入氧化剂才能进行的是( ) A、Br-→Br2 B、Cr2O72-→Cr3+ C、S2-→HS- D、NO3-→NO 4.已知:2BrO3-+Cl2=Br2 +2ClO3-;5Cl2 +I2 +6H2O =2HIO3 +10HCl;ClO3-+5Cl-+6H+ =3Cl2+3H2O判断下列物质氧化能力强弱顺序为( ) A、ClO3->BrO3->IO3->Cl2 B、BrO3->Cl2>ClO3->IO3- C、BrO3->ClO3->Cl2>IO3- D、Cl2>BrO3->ClO3->IO3- 5.已知X2、Y2、Z2、W2四种物质的氧化能力为W2>Z2>X2>Y2,下列氧化还原反应能发生的是 A、2NaW + Z2= 2NaZ + W2 B、2NaX + Z2 = 2NaZ + X2 C、2NaY + W2 = 2NaW + Y2 D、2NaZ + X2= 2NaX + Z2 6.用KClO3制氧气和用KMnO4制氧气,若制得相同质量的氧气,上述反应中转移的电子数之比为( ) A、1:1 B、1:2 C、2:1 D、2:3 7.在xR2++y H++O2 =m R3++n H2O 的离子反应中,m 的值为( ) A、2x B、4 C、y/2 D、2n 8.元素从化合物中被置换成单质时,该元素( ) A、一定被氧化 B、一定被还原 C、可能被氧化,也可能被还原 D、既不被氧化,也不被还原 B.提高训练9.下列反应需要加入氧化剂才能实现的( ) A、SO3→SO42- B、HCl →Cl2 C、HCO3-→CO2↑ D、Cl2→C l O- 10.根据硫元素的化合价判断,下列既有氧化性、又有还原性的物质是( ) A、SO2 B、H2S C、H2SO4 D、SO3 11.在3S+6KOH =2K2S +K2SO3 +3H2O 的反应中,被氧化的硫与被还原的硫的质量比( ) A、1∶3 B、3∶4 C、2∶1 D、1∶2 12.已知在某温度时发生如下3个反应:①C+CO2 =2CO;②C+H2O =CO +H2; ③CO +H2O =CO2 +H2,由此可判断在该温度下,C、CO、H2的还原性强弱顺序是( ) A、CO >C>H2 B、CO>H2>C C、C>H2>CO D、C>CO>H2 13.下列反应中,水作氧化剂,且该反应属于置换反应的是( ) A、2Na + 2H2O = 2NaOH +H2↑ B、2F2 +2H2O = 4HF + O2 C、H2O+Cl2 =HCl =HClO D、2H2O2H2↑ +O2↑ 14.由相同条件下的三个反应:2A +B2 =2B +A2;2C +A2 =2A +C2;2B +D2 =2D +B2;可判断( ) A、氧化性:A2>B2>C2>D2 B、还原性:C->A->B->D- C、2A-+D2 =2D-+A2可进行 D、2C-+B2 =2B-+C2不能进行 15.对于反应14CuSO4 +5FeS2 +12H2O =7Cu2S +5FeSO4 +12H2SO4来说,下列结论正确的是( ) A、FeS2既是氧化剂,又是还原剂 B、只有CuSO4作氧化剂 C、被氧化的硫和被还原的硫质量比是3:7 D、被氧化的硫和被还原的硫质量比是1:1 16.现有下列三个反应:①2FeCl3+2KI=2FeCl2+2KCl+I2②2FeCl2+CL2=2FeCl3 ③2KMnO4+16HCl=2KCl+2MnCl2+5Cl2 +8H2O 若FeCl2溶液中含有I-杂质,氧化除去I-杂质可加入试剂( ) A、Cl2 B、盐酸 C、KMnO4 D、FeCl3

无机含氧酸的酸性及氧化性的比较

无机含氧酸得酸性及氧化性得比较 1 无机含氧酸得酸性 无机含氧酸可以得分子式为HmROn,其通式可以写成Hl—Rm-—〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm—nOHn,其中R称为成酸元素,。无机含氧酸在水溶液中得酸强度取决于酸分子中羟基—O—H得电离程度,也可以用Pka值来衡量。酸分子羟基中得质子在电离过程中脱离氧原子,转移到水分子中得孤对电子对上,其转移得难易程度取决于成酸元素R吸引羟基氧原子电子得能力。如果成酸无素R得电负性越大,R周围得非羟基氧原子数目越多,则其酸性越强。原因就是成酸元素R得电负性越大,则其偏移O得电子越少,从而减小了O原子周围得电子密度增大得趋势,使得其对质子得吸引减弱,有利于质子得转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基—O—H键得极性,有利于质子得转移,其次使得整个酸基团周围得空间减小,阻碍了质子与O原子上孤对电子得结合,从而使得酸性增强、含氧酸得酸性一般存在如下规律[1]: (1) 同一成酸元素若能形成几种不同氧化态得含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO 〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基-O-H键得极性增强,质子转移程度增强,故酸性增强〕 (2) 在同一主族中,处于相同氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自上而下减弱。如H ClO>HBrO>HIO,HClO2〉HBrO2>HIO2、HClO3>HBrO3〉键HIO3、HClO4〉HBrO4>HIO4 〔原因:同主族元素自上而下,成酸元素得电负性逐渐减小,原子半径增大,吸引羟基氧原子得能力依次减小,羟基—O—H键得极性依次减小,所以酸性依次减弱、〕 (3)在同一周期中,处于最高氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自左至右 增强。如HClO4>H2SO4〉H3PO4 (4)〔原因:同一周期中,从左至右元素得非金属性逐渐增强,成酸元素得电负性逐渐增大, 吸引电子对得能力逐渐减小,电子偏向成酸元素R一方得程度增大,含氧酸分子中得氢原子得极化程度增大,所以酸性增强。〕 (5)查阅相关资料可知此类酸得酸性强弱可以有鲍林规则来初步判断,具体规则如下: 鲍 林规则[2]: (6)规则Ⅰ: (7)多元酸得逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10… (8)如:H3PO4 Ka1=7。6×10-3 Ka2=6、3×10-8 Ka3= 4、4×10-13 (9)在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如H 5IO6、H6TeO6、H2SiO3不符合规则Ⅰ、规则Ⅱ: (10)具有ROm-n(OH)n形式得酸,其Ka值与n得关系就是Ka1=105(m-n)-7, m—n为 非羟基氧原子得数目。 (11)第一类:当m-n=0,就是很弱得酸,Ka1<10—7; (12)第二类:当m-n=1,就是弱酸,Ka1=10-2~10-3; (13)第三类:当m-n=2,就是强酸,Ka1=102~103; (14)第四类:当m-n=3,就是极强得酸, Ka1>108。 (15)m-n与酸得强度关系见下表: (16)①表中例外得就是H3PO3与H3PO2,对亚磷酸来说,若取P(OH)3得形式,则m—n =0估算其Ka1≈10—7,这就是因为亚磷酸就是二元酸,其结构简式为HPO(OH)2,它有二个羟基,一个非羟基氧原子,亦即 m-n=1,于就是:

氧化性还原性强弱的判断方法

氧化性还原性强弱的判 断方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

氧化性,还原性强弱的判断方法 (一)根据氧化还原反应的方向判断? 氧化剂(氧化性)+还原剂(还原性)===还原产物+氧化产物? 氧化剂--得电子--化合价降低--被还原--发生还原反应--还原产物? 还原剂--失电子--化合价升高--被氧化--发生氧化反应--氧化产物? 氧化性:氧化剂>氧化产物? 还原性:还原剂>还原产物? 氧化性:氧化剂>还原剂还原性:还原剂>氧化剂 (二)根据元素活动性顺序比较? (1)金属活动顺序: K>Ca>Na>Mg>Al>Mn>Zn>Cr>Fe>Ni>Sn>Pb>(H)>Cu>Hg>Ag>Pt>Au? 从左到右,金属还原性逐渐减弱,对应阳离子氧化性逐渐增强 (2)非金属活动性顺序(常见元素)?:F---Cl---Br---I---S? 从左到右,原子(或单质)氧化性逐渐减弱,对应阴离子还原性增强? 氧化性:F 2>Cl 2 >Br 2 >Fe3+>I 2 >SO 2 >S 还原性:S2->SO 3 2->I->Fe2+>Br->Cl->OH->含氧 酸根>F- (三)根据反应条件判断,当不同氧化剂分别于同一还原剂反应时,如果氧化产物价态相同,可根据反应条件的难易来判断。反应越容易,该氧化剂氧化性就强。? (四)根据氧化产物的价态高低来判断? 当含有变价元素的还原剂在相似的条件下作用于不同的氧化剂时,可根据氧化产物价态的高低来判断氧化剂氧化性强弱。 (五)根据元素周期表判断? (1)同主族元素(从上到下)? 非金属原子(或单质)氧化性逐渐减弱,对应阴离子还原性逐渐增强。?

无机含氧酸的酸性及氧化性的比较与影响因素

无机含氧酸的酸性及氧化性的比较与影响因素 摘要:本文讨论了无机含氧酸的氧化性、酸性以及含氧酸的氧化性与酸性的关系。 关键词:金属离子生命活动作用 无机含氧酸的酸性及氧化性一直都是我们学习中的一个盲点和难点。中学时代,我们往往把无机含氧酸与氧化性酸混淆。通过学习,我们了解到,在不同的环境中,无机含氧酸的酸性及其氧化性不同,不同元素的含氧酸的酸性及氧化性亦不同等等问题,这一直都是我们学习中一个难以攻克的重点,下面让我们一起来探讨这类问题吧。 1无机含氧酸的酸性 无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。 含氧酸的酸性一般存在如下规律[1]: (1)同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO 〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕 (2)在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4 〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。〕 (3)在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。如HClO4>H2SO4>H3PO4 〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕

无机物性质判断题

无机物性质判断题 一、单项选择题 1.下列有关物质的性质与用途具有对应关系的是() A.铝具有良好的导热性,可用铝罐贮运浓硝酸 B.水玻璃能与酸反应,可用作生产黏合剂和防火剂 C.NaNO2具有碱性,可用于使铁零件表面生成Fe3O4 D.FeCl3溶液能与Cu反应,可用作铜制线路板的蚀刻剂 答案 D 解析A项,铝在常温下遇浓硝酸钝化,可用铝罐贮运浓硝酸,错误;B项,水玻璃可用作生产黏合剂和防火剂,与能否与酸反应无关,错误;C项,NaNO2具有氧化性,可用于使铁零件表面生成Fe3O4,错误;D项,FeCl3溶液能与Cu反应,可用作铜制线路板的蚀刻剂,正确。 2.下列有关物质的性质与用途具有对应关系的是() A.活性炭有还原性,可用作制糖业脱色剂 B.二氧化氯有强氧化性,可用于饮用水消毒 C.氯化铁溶液呈酸性,可用于蚀刻铜电路板 D.晶体硅的熔点高、硬度大,可用于制作半导体材料 答案 B 解析A项,活性炭具有吸附性,可用作制糖业脱色剂,错误;B项,二氧化氯有强氧化性,可用于饮用水消毒,正确;C项,氯化铁溶液中铁离子具有氧化性,可用于蚀刻铜电路板,错误;D项,晶体硅能导电,可用于制作半导体材料,错误。 3.下列有关物质的性质与用途具有对应关系的是() A.液氨汽化吸热,可用作制冷剂 B.明矾易溶于水,可用作净水剂 C.盐酸具有还原性,可用于除去铁锈 D.浓硝酸具有酸性,可用于钝化铁、铝 答案 A 解析A项,因NH3易液化,汽化时吸热而快速致冷,液氨常用作制冷剂,正确;B项,KAl(SO4)2===K++Al3++2SO2-4,Al3+易水解,生成氢氧化铝胶体:Al3++3H2O??Al(OH)3(胶

常见酸的酸性强弱的比较

常见酸的酸性强弱的比 较 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见酸的酸性强弱的比较 含氧酸的酸性强弱的判据: ①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。如非金属性Cl>S>P>C>Si 则酸性:HClO 4>H 2SO 4>H 3PO 4>H 2CO 3>H 2SiO 3 ②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。如酸性HClO 4>HClO 3>HClO 2>HClO ,H 2SO 4>H 2SO 3,HNO 3>HNO 2,H 3PO 4>H 3PO 3>H 3PO 2 无氧酸(气态氢化物的水溶液)酸性强弱的判据: ①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强,如酸性:HI>HBr>HCl>HF(弱酸) ②非同一主族元素的无氧酸酸性,需靠记忆。如酸性:HCl>HF>H 2S 由反应方向判据: 酸A+盐B→盐A’+酸B’ 则酸性 A>B’如: CO 2+2H 2O+NaBO 2=H 3BO 3+NaHCO 3,H 3BO 3+Na 2CO 3=NaBO 2+NaHCO 3+H 2O , 则酸性:H 2CO 3>H 3BO 3>HCO 3- 由R-O-H 模型来判据: R 元素的价态越来越高,半径越小,则R-OH 的酸性越强,R 元素的价态越低,半径越大,则R-O-H 的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH 、Mg(OH)2、Al(OH)3、H 2SiO 3、H 3PO4、H 2SO 4、HClO 4。自左至右,碱性减弱,酸性增强。 由电子效应来比较: 羧酸酸性强弱跟烃基和羧基的相互影响有一定的关系,这种相互影响常用诱导效应来加以解释。且有Cl 3CCOOH>CHCl 2COOH>CH 2ClCOOH>CH 3COOH

氧化性、还原性强弱比较练习题

氧化性、还原性强弱比较练习题 1.(2014?浦东新区一模)反应Cu2++Zn→Cu+Zn2+可在溶液中进行完全,由该反应可判断Cu2+的氧化性强于() A.Zn B.Cu C.Zn2+ D.Fe3+ 2.(2011?松江区模拟)在复杂体系中,确认化学反应先后顺序有利于解决化学问题.已知溶液中阳离子氧化性顺序为:Ag+>Fe3+>Cu2+>H+>Fe2+>Na+,下列离子反应方程式错误的是() A.2Ag++Fe→2Ag+Fe2+ B.2Fe3++Cu→Cu2++2Fe2+ C.2Fe3++3Zn→3Zn2++2Fe D.Cu2++2Na→Cu+2Na+ 3.下列对递变规律的描述正确的是() A.氧化性:Na+<K+<Rb+<Cs+ B.卤素氢化物的稳定性随核电荷数的递增依次增强 C.在卤素的氢化物中,HI的还原性最强 D.碱金属元素随核电荷数的递增,熔沸点依次升高 4.以下进行性质比较的实验,不合理的是() A.比较Cu、Fe2+的还原性:铁加入硫酸铜溶液中 B.比较氯、溴单质的氧化性:溴化钠溶液中通入氯气 C.比较镁、铝金属性:氯化镁、氯化铝溶液中分别加入过量的NaOH溶液 D.比较碳、硫非金属性:测定同条件同物质的量浓度的Na2CO3、Na2SO4溶液的pH 5.已知反应:①2BrO3-+Cl2=Br2+2ClO3-②ClO3-+5Cl-+6H+=3Cl2+3H2O下列物质氧化能力强弱顺序正确的是() A.ClO3->BrO3->Cl2 B.BrO3->Cl2>C1O3- C.BrO3->ClO3->Cl2 D.Cl2>BrO3->C1O3- 6.依据2Fe2++Cl2=2Fe3++2Cl,HClO+HCl=Cl2+H2O,2Fe3++Cu=2Fe2++Cu2+,Fe+Cu2+=Fe2++Cu 判断下列氧化剂的氧化性强弱顺序正确的是() A.Fe3+>HClO>Cl2>Fe2+>Cu2+ B.HClO>Cl2>Fe3+>Cu2+>Fe2+ C.Cl2>HClO>Fe3+>Cu2+>Fe2+ D.Fe3+>Cu2+>Cl2>HClO>Fe2+ 7.已知:①2FeCl3+2KI=2FeCl2+2KCl+I2②2FeCl2+Cl2=2FeCl3,则下列微粒还原能力由大到小的顺序正确的是() A.Fe2+>Cl->I- B.I->Fe2+>Cl- C.I->Cl->Fe2+ D.Cl->I->Fe2+ 8.Cl2、Br2、I2都具有氧化性,其氧化性Cl2>Br2>I2,Cl2能把溴从溴化物中置换出来,其余依此类推.向NaBr、NaI的混合液中,通入一定量氯气后,将溶液蒸干并充分灼烧,得

无机含氧酸的氧化性

无机含氧酸的氧化性 汪涛(2007210426)易千慧(2007210425) (华中师范大学化学学院,武汉,430079) 摘要:本文阐述了无机含氧酸的氧化性与酸度、浓度、稳定性和结构之间的关系,列举了几种常见的无机含氧酸的氧化性的递变规律并分析其影响因素。 关键词:无机含氧酸氧化性酸度稳定性 常见无机含氧酸氧化性的强弱受到多种因素的共同影响。其中,对氧化性影响最大的是其自身的结构和稳定性。溶液中的酸度、酸的浓度和酸自身的解离常数也对其氧化性有一定的影响,本文从一些常见的无机含氧酸来分别介绍这些影响因素: 1 结构 无机含氧酸的氧化性具有明显的区域性和递变规律。例如,p 区高价含氧酸就随着周期变化而变化。在第二周期p 区元素的高价含氧酸分子中均存在有∏64 键。第三周期P区元素高价含氧酸分子中均存在有∏85 键。由于π键离域的范围越大,体系的能量越低,分子越稳定,所以第三周期p 区各元素的高价含氧酸与其同族第二周期的元素相比,其氧化性减弱。第四周期的p 区元素的4d 轨道与氧原子的2p 轨道相比,能量相差较大,不能进行有效地组合,其含氧酸分子中无离域的∏85 键存在,分子的稳定性减小,氧化性较第二、三周期同族元素含氧酸的氧化性强。第五周期的p 区元素,其中心原子半径较大,且5d 轨道的成键倾向又较强,故它们能以激发态sp3d2 杂化轨道形成八面体结构,其周围的R-O 数目增加,稳定性增大,氧化性减弱。第六周期元素由于惰性电子对效应而造成其含氧酸氧化性增大。 表1 p 区高价含氧酸的电极电势(Φ/eV) 同时,酸的氧化性还受到中心原子电负性、离子电荷半径比的影响。但其影响对各元素最高氧化态含氧酸氧化性的影响完全可以归于对其中心离子电子云形状的影响,该电子云形状偏离球形对称结构的程度越大,含氧酸氧化性就越强。能够这样考虑的实质在于中心离子的球形对称结构就像一个弹性球体,当受到外来阳离子、负电荷作用时,部分区域受到压缩而靠近原子核,因受到离子

无机化学[第二十二章无机物性质规律讨论]课程预习

第二十二章无机物性质规律讨论 一、物质的颜色 1.d-d跃迁与荷移吸收 (1)d-d跃迁过渡金属及其化合物常常有颜色,这是过渡金属的主要特征之一。 过渡金属离子一般具有d1~9的价电子结构。在配体场的作用下,五重简并的d轨道发生分裂。当吸收一定能量时,电子可以从低能量的d轨道跃迁到高能量的d轨道,这种跃迁叫“d-d跃迁”。d-d跃迁所吸收的能量主要决定于晶体场分裂能,其大小一般为10000~30000cm-1,位于可见光范围内,这正是一般过渡金属及其化合物带有的原因。对于d的轨道全空(d2)的过渡金属离子,由于不能产生d-d跃迁,因而是无色的,如Sc3+,Zn2+,Ag+均无色。 (2)荷移吸收过渡金属最高氧化态(d0)的含氧酸根常常带有很重的颜色,一些主族金属的卤化物、氧化物和硫化物往往也有颜色,这由于电子吸收能量从一个原子的轨道跃迁到了另一个原子的轨道,这种能量吸收过程就是电荷转移吸收,这种跃迁称荷移跃迁。 2.固体化合物的颜色与能带理论 能带理论认为,当固体中原子间十分靠近时,原子轨道可以线性组合成许多能级相近的分子轨道,即组成能带。全充满的原子轨道组成的能带叫满带;部分填充的原子轨道组成的能带叫导带;满带与导带之间有一段空隙,不允许电子填充,称为禁带。 二、物质的酸性与碱性 酸性一般是指物质释放质子H+的能力,而碱性一般是指物质释放OH-的能力,或者是指物质与水解离出的OH-或H+相结合的能力。

三、无机含氧酸的氧化性 1.氧化性的规律 2.影响氧化能力的因素 (1)中心原子结合电子的能力含氧酸被还原,是中心原子获得电子的过程。原子结合电子的能力可用电负性大小来表示。因此,成酸元素的电负性越大,中心原子越容易获得电子而被还原,因而氧化性越强。如卤素含氧酸及其盐,硝酸及其盐等;而非金属性较弱的含氧酸及其盐则氧化性极微弱,如硼酸、碳酸、硅酸及其盐等。 (2)中心原子和氧原子之间R—O键的强度含氧酸还原为低氧化态或单质的过程涉及R—O键的断裂。因此,含氧酸R—O键越强,数目越多,则酸越稳定,氧化性越弱。 中心原子和氧原子之间存在着配位键和d—pπ配键,因此R—O键相当于一个双键,形成的d-pπ配键的强度顺序是3d<4d<5d。因此,同族过渡元素从上到下,其含氧酸的R—O键增强,酸的稳定性增大,氧化性减弱。 (3)中心原子抵抗H+的极化作用的能力以分子状态存在的弱酸承受H+的极化作用,致使R—O键被削弱,所以弱酸的氧化性强。稀的强酸以酸根离子的状态存在,不承受H+的极化作用,R—O键较强,氧化性较弱。同一元素不同氧化态的含氧酸,通常是较高价态含氧酸的氧化能力较弱,这与高价态含氧酸的中心

【化学】物质氧化性、还原性强弱比较规律总结

【化学】物质氧化性、还原性强弱比较规律总结 方法归纳: 物质氧化性、还原性强弱的比较,实质上是物质得失电子难易程度的比较。即物质越 易得到电子,则其氧化性越强,越难得到电子则其氧化性越弱;反之,物质越易失去电子, 则其还原性越强,越难失去电子,则其还原性越弱。 ★越易失电子的物质,失后就越难得电子;越易得电子的物质,得后就越难失去电子。 一. 利用化合价,比较物质氧化性、还原性的强弱 由同种元素形成的不同价态物质的氧化性和还原性的强弱 规律:元素的最高价态只具有氧化性,元素的最低价态只具有还原性,元素的中 间价态既具有氧化性又具有还原性,但主要呈现一种性质。 二、依据元素周期表 1.同周期,如:Na、Mg、Al、Si、P、Cl从左到右,还原性逐渐减弱,氧化性逐渐增强。 2.同主族,从上到下,还原性逐渐增强(如:Li、Na、K、Rb、Cs),氧化性逐渐减弱(如:F、Cl、Br、I、At)。

三、利用元素活泼性的不同,比较物质氧化性、还原性的强弱 1. 对金属而言,金属越活泼(金属性越强),其单质的还原性越强,其金属阳离子的氧化性越弱。 如:对金属活动性顺序表而言:K、Ca、Na、Mg、Al、Zn、Fe、Sn、Pb(H)、Cu、Hg、Ag、Pt、Au,其活泼性(金属性)依次减弱;单质的还原性 K>Ca>Na>Mg>Al>Zn>Fe>Sn>Pb>(H2)>Cu> Hg>Ag>Pt>Au;离子的氧化性:K+<Ca2+<Na+<Mg2+<Al3+<Zn2+<Fe2+<Sn2+<Pb2+<(H+)<Cu2+<Hg2+<Ag+<Pt2+<Au+ 2.对非金属而言,非金属越活泼(非金属性越强),其非金属单质的氧化性越强,其阴离子的还原性越弱。 如:对一般的非金属活动性顺序而言:F、Cl、Br、I、S,其活泼性(其金属性)依次减弱;其单质的氧化性: F2?Cl2?Br2?I2?S;其阴离子的还原性:F-<Cl-<Br-<I-<S2-。 四、利用氧化还原反应比较物质氧化性、还原性的强弱 对一般的氧化还原反应,氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物。 五、根据反应条件判断 是否加热、有无催化剂及反应温度高低和反应物浓度

相关文档
相关文档 最新文档