文档视界 最新最全的文档下载
当前位置:文档视界 › 导热高分子材料研究进展

导热高分子材料研究进展

导热高分子材料研究进展
导热高分子材料研究进展

导热高分子复合材料的研究进展

摘要:主要介绍导热高分子复合材料的导热机理、开发及应用近况,结构型和填充型两类导热高分子复合材料的研究进展,并对进一步开发导热高分子复合材料提出展望和建议。

关键词:导热高分子导热机理本征型填充型复合材料

导热材料在各行业领域被广泛应用,可以说是最为常见的功能性材料之一。长期以来,

使用最多的导热材料为金属材料,但是随着科技日益发展需要,人们对导热材料提出了新的要求,希望材料具有优良的综合性能,如耐化学腐蚀、耐高温、优异的电绝缘性。传统的导热材料多为金属、金属氧化物以及非金属材料,其自身耐化学腐蚀性和电绝缘性差、加工成型成本高、力学性能不能满足实际需要等使其应用受到了限制。20世纪90年代发展起来的高分子材料,因其可被赋予优良的电绝缘性及良好的力学性能、耐化学腐蚀性和可靠的加工性能等,人们希望以高分子材料为基材制备新型导热材料。

而又由于大多数聚合物导热性能普遍较差,为了提高聚合物的热传导性能,可以制备具有结晶和高取向结构的聚合物材料,即合成本征型导热高分子材料;也可以向聚合物基体中添加导热填料来制备导热复合材料,即合成填充型导热高分子材料。制备结构型导热高分子材料加工工艺复杂,成本较高,且仅适用于少数聚合物,通常比较困难,但优点是可同时具备高导热性和其他优良性能;采用填充导热填料来制备导热高分子材料,制备工艺简单,投资成本低,缺点是要以牺牲力学及其它性能为代价,是目前制备导热高分子复合材料的主要方法。

1、导热机理

根据热动力学说,热是一种联系到分子、原子、电子等以及它们的组成部分的移动、转动和振动的能量。因此,物质的导热本身或机理就必然与组成物质的微观粒子的运动密切关联。不同状态的物质,其导热机理和导热能力都是不同的,然而所有的物质在所有的状态下,都是由物质内部微观粒子相互碰撞和传递的结果。大多数聚合物是饱和体系,无自由电子存在,分子运动困难,热传导主要是晶格振动的结果,声子是主要热能载荷者。。高分子自身的导热能力主要取决于结晶度、取向度、交联度、极性基团的数量和极性基团偶极化的程度, 另外也取决于分子内部的紧密结合程度。结晶高聚物的导热性与其结晶

度有关,增加聚合物的结晶度可提高其热导率。但由于聚合物链的无规缠结,使结晶度较低,有很大的非晶部分,因此,聚合物材料的导热性能更多地取决于含极性基团的多少和极性基团偶极化的程度。填充型导热高分子材料的热导率则主要取决于填料自身的导热能力、填料的形状、填充量、填料在基体中的分散程度和与基体界面的相互作用。

2、导热填料填充复合材料研究现状

导热填料主要分为两种:导热绝缘填料和导热非绝缘填料,前者主要用于电子元器件封装材料等对电绝缘性能有较高要求的场合, 后者则主要用于化工设备的换热器等对电绝缘性

能要求较低的场合。填料的类型、粒径大小及分布、填充量和填料与基体间的界面性能对复合材料的热导率都有影响。

2.1导热绝缘填料

导热绝缘填料主要有金属氧化物填料和金属氮化物填料。常见的金属氧化物填料如Al 2O 3、Zn O等, 与其他填料相比, 热导率不高, 但其价格较低, 来源广泛, 且具有优良的电

绝缘性能, 因而常用作绝缘导热聚合物的填料。。当材料对电绝缘性能和导热性能要求较高时, 就需采用纯度较高、结构致密、晶格缺陷少、同时价格也较昂贵的高导热金属氮化物填料作为导热填料填充。

2.2导热非绝缘填料

导热非绝缘填料主要有金属填料和碳基填料两种。常用的金属填料有银、铜、铝、铁等。从性能、价格考虑, 铝是首选金属填料, 因为它导热系数相对较高, 密度小, 填充率高。碳基填料主要包括石墨、碳纤维、碳纳米管等, 是一类重要的导热非绝缘填料。碳基填料还往往具有其他的一些独特的优点。如石墨具有典型的片层结构, 在提高材料导热性能的基础上, 可以起到减摩润滑作用。碳纤维的轴向强度和模量很高, 无蠕变, 耐疲劳性好, 热导率高, 热膨胀系数小, 耐腐蚀性好, 在改善材料导热性能的同时, 可以改善材料的力学性能、耐磨性能。

3、几种常用的导热高分子复合材料研究进展

3.1环氧树脂(EP)导热复合材料

EP 具有优异的粘接性、电绝缘性、力学性能、化学稳定性, 成型加工容易,应力传递性较好和成本低廉,已在包括电子电气和航空航天等许多领域得到广泛应用。。目前通过结构改性制备导热EP 难度较大,通常采用的方法是在EP 中填充高导热性填料,借助其原子晶体和致密结构,以声子为载流子,提高EP 的导热性能。主要有如下几种类型:金属氧化物填充型、金属粉末填充型、碳化物填充型、氮化物填充型、无机碳材料填充型和多元导热填料改性EP 导热复合材料。

3.2硅橡胶复合导热材料

由于目前对导热硅橡胶的研究多集中在填充型硅橡胶方面,因而硅橡胶材料导热性能的优劣主要取决于硅橡胶基体、加工工艺与填料3个因素。目前,提高硅橡胶导热性能的研究主要集中在填料的表面处理和改性及填料粒径分布等方面,从而导致了目前开发的导热硅橡胶材料普遍具有热导率低的缺点。因此使用新型导热填料、新型填料复合技术及探索结构型导热硅橡胶复合材料,大幅度提高材料的导热性、抗热疲劳性及使用稳定性是今后导热硅橡胶研究和开发的主要趋势。

3.3聚乙烯(PE)复合导热材料

PE 综合性能好、价格低廉,是我国合成树脂中产能大、进口量多和应用广的塑料品种。近年来,一些对材料导热性有较高要求的领域也提出了用PE 作导热基材。线性低密度聚乙烯具有较好的导热性能,具有优良的耐环境应力开裂能力、韧性、较高的冲击强度、撕裂强度、拉伸强度,很好的刚性、抗蠕变能力和脱模容易、优良的成膜性及较好的热封性能,正在逐渐取代传统的PE 品种。

4、导热高分子复合材料应用与发展前景

导热高分子复合材料从基础理论到产品开发等各方面都是高分子材料研究的重要内容之一。,到目前为止的研究还有很多问题有待解决,主要表现在:结构型导热材料范围太过狭窄,应用不够广泛;填充型导热塑料大部分采用物理填充,导热性能不高,机械性能下降严重,导热系数预测理论局限于经验模拟,缺乏导热机理的理论支持等。对于结构型材料,可考虑完善结晶度和提高在热流方向上的取向度来提高材料的热导率。对于填充型材料,首先对填料进行表面处理以提高其与基体的相容性,使其在基体中能均匀分散;其次考虑多种填料混合填充的方式来提高材料热导率,并寻找出最合适的填料比例;最后采用一定的成型加工工艺,使得能够在较少填料量下,在提高材料热导率同时保证其他性能的稳定,使高分子材料能更有效地替代传统导热材料,推动其他电子、科技行业的迅速发展。

参考文献

[1] 王亮亮,陶国良.导热高分子复合材料的研究进展[J].工程塑料应用,2013,9(31):70-72.

[2] 马传国,容敏智,章明秋.导热高分子复合材料的研究与应用[J].材料工程,2012,8(7):40-45.

[3] 范伟,冯刚,赵加伟.导热高分子复合材料的研究与应用进展[J].工程塑料应

用,2011,39(12):101-104.

[4] 孔娇月,陈立新,蔡聿锋.导热高分子复合材料研究进展[J]. 中国塑料,2011,25(3):7-12.

[5] 刘运春,殷陶,陈元武,等. PPS/A12O3导热复合材料的性能及应用[J]. 工程塑料应用,2009,37(2):48—51.

[ 6] 李侃社, 王琪.聚合物复合材料导热性能的研究[ J ]. 高分子材料科学与工程, 2002 , 18 ( 4):10-15.

[ 7] 周文英, 张亚婷.本征型导热高分子材料[J ].合成树脂及塑料, 2010, 27 ( 2):69-73

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

有机硅材料

作业(论文)题目:有机硅材料的研究进展 Thesis topic:The silicone materials research progress 所修课程名称:现代化学功能材料 修课程时间:2013 年 02 月至 2013 年 06 月完成作业(论文)日期: 2013 年 06 月 评阅成绩: 评阅意见: 评阅教师签名:年月日

摘要 综述了国内外有机硅材料的制备、应用等方面的研究进展。介绍了有机硅材料在灌封,LED封装方面的用途并展望了有机硅材料的研究进展及发展趋势。关键词:有机硅灌封LED封装

Aspects of the preparation, application of silicone materials at home and abroad. Silicone materials in potting, LED packaging, prospects silicone materials research progress and trend s. Key words:Silicone Potting LED packaging

概述 (1) 第一章有机硅在灌封方面的应用 (2) 1.1加成型液体灌封硅橡胶 (2) 1.2导热有机硅灌封硅橡胶 (3) 第二章 LED封装用有机硅材料 (4) 2.1 有机硅改性环氧树脂LED封装材料 (4) 2.2 有机硅LED封装材料 (6) 第三章结论 (8) 参考文献 (9)

概述 有机硅材料是分子结构中含有硅元素的有机高分子合成材料。有机硅聚合物形式多样,按主链结构的不同可分为聚硅氧烷、聚硅氮烷、聚硅烷、聚硅碳烷等。、由于同时具有Si-O-Si主链及有机侧链的特殊分子结构和组成,有机硅聚合物具有独特的优异性能:如介电性能在较大的温度、湿度、频率范围内保持稳定;耐氧化、耐化学品、电绝缘、耐辐射、耐候、憎水、阻燃、耐盐雾、防霉菌等特性优良;同时兼有高分子材料易加工的特点,可根据不同要求制成满足各种用途的产品。有机硅材料的这些优异的性能,使其在航空航天、电子电气、轻工、化工、纺织、机械、建筑、交通运输、医疗卫生、农业等方面均己得到了广泛的应用。有机硅材料与高新技术息息相关,被誉为现代工业和科学技术的“工业味精”,是当今材料发展的一个热点,也是衡量一个国家特种高分子发展水平的重要标志之一,己经成为国民经济中重要而且不可缺少的新型高分子材料。目前,国外各大有机硅厂商纷纷加大投资规模,率先发展有机硅,国内各省市也将有机硅材料作为高新技术产品给予高度重视和优先发展。

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

导热高分子材料的发展历程(精)

导热高分子的发展历程 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

发展历程 1聚苯胺在19世纪中叶首次由Henry Letheby描述,他研究了苯胺在酸性介质中的电化学和化学氧化产物。他指出,还原形式是无色的,但氧化形式是深蓝色。第一高导电性有机化合物是电荷转移络合物。在20世纪50年代,研究人员报告说,多环芳族化合物与卤素形成半导电电荷转移络合盐。在1954年,贝尔实验室和其他地方的研究人员报告了有机电荷转移络合物,电阻率低至8欧姆- 厘在20世纪70年代初,研究人员证明四硫富瓦烯的盐显示几乎金属导电性,而超导性在1980年被证明。关于电荷转移盐的广泛研究继续今天。虽然这些化合物在技术上不是聚合物,但这表明有机化合物可以携带电流。虽然有机导体以前间歇性讨论,该领域特别通过预测的超导性BCS理论发现后激发。1963年澳大利亚人B.A.博尔托Weiss及其同事报道了电阻率低至1欧姆·厘米的聚吡咯衍生物引用了类似的高电导率氧化聚乙炔的多个报道。除了电荷转移复合物(其中一些是偶数超导体)的显着例外之外,有机分子先前被认为是绝缘体或者最好是弱导电半导体。随后,DeSurville和同事报道了在聚苯胺中的高导电性。同样,在1980年,Diaz和Logan报道了可用作电极的聚苯胺膜。 尽管大多数在小于100纳米的量子领域中操作,但“分子”电子过程可以在大规模上集体表现。示例包括量子隧道效应,负电阻,声子辅助跳跃和极化子。1977年,Alan J. Heeger,Alan MacDiarmid和Hideki Shirakawa报道了氧化碘掺杂聚乙炔的相似的高电导率对于这项研究,他们被授予2000年诺贝尔化学奖“用于发现和发展导电聚合物”。自20世纪80年代后期以来,有机发光二极管(OLED)已经成为导电聚合物的重要应用。 1维基百科

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

导热高分子材料

导热高分子材料 一、概述 传统的导热物质多为金属如Ag, Cu, Al和金属氧化物如Al2O3, MgO, BeO以及其它非金属材料如石墨,炭黑,Si3N4,AlN。随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望材料具有优良的综合性能。如在化工生产和废水处理中使用的热交换器既需要所用材料具有导热能力,又要求其耐化学腐蚀、耐高温。在电气电子领域由于集成技术和组装技术的迅速发展,电子元件、逻辑电路的体积成千成万倍地缩小,则需要高导热性的绝缘材料。近几十年来,高分子材料的应用领域不断拓展,用人工合成的高分子材料代替传统工业中使用的各种材料,特别是金属材料,已成为世界科研努力的方向之一。在导热材料领域,纯的高分子材料一般是不能胜任的,因为高分子材料大多是热的不良导体(见表2 )。 在塑料工业中,导热塑料最大和最重要的应用是替代金属和金属合金制造热交换器[3]。它可以代替金属应用于需要良好导热性和优良耐腐蚀性能的环境,如换热器、太阳能热水器、蓄电池的冷却器等。电子电器工业也是应用导热塑料较多的一个领域,主要用来制造要求较高的导热电路板。另外在用作输送、盛装、封闭、装饰、埋嵌等材料,以及满足某些制品在固化时的尺寸稳定性的要求方面也有应用。 在橡胶工业中,关于导热橡胶制品的研究开发,重点集中在以硅橡胶和丁腈橡胶为基质的领域内,用于制造与电子电气元件接触的橡胶制品,既提供了系统所需要的高弹性、耐热性,又可以将系统的热量迅速传递出去。如具有良好导热性和电绝缘性能的橡胶可以用于电子电器元部件的减震器;事实上,许多橡胶制品都在动态情况下使用,由材料的形变滞后效应所造成的体系温升经常是很高的,从而使得材料的动态疲劳性能下降。以往人们总是研究怎样从配方上降低橡胶材料的动态生热,而没有很好地研究胶料本身导热性好坏及怎样进一步提高的问题。 在粘合剂工业中,随着电子元器件和电子设备向薄轻小方面发展,对于用作封装和热界面材料的导热粘合剂尤其是导热绝缘粘合剂的需求越来越高。散热在电子工业中是一个至关重要的问题。比如对于电子元器件,如果热量来不及散除将导致其工作温度升高,这样不仅会降低其使用寿命而且也将大大降低它的稳定性。 如上所述,绝大多数高分子材料本身属于绝热性材料。要想赋予高分子材料优良的导热性,主要是通过共混(熔体共混和溶液共混等)方法在高分子材料中填充导热性能好的填料。这样得到的导热材料有价格低廉、易加工成型等优点。 二、导热高分子材料的制作

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

导热硅脂的运用

CPU的散热硅脂怎么涂才是正确的? 回答; 1.在cpu外壳中央点少量导热硅脂,硅脂的容器不一定是针管,也可能是小瓶,可以用牙签等挑少量硅脂置于相同位置。 2.如果硅脂粘稠度低,可以直接安装散热器,依靠散热器底座将硅脂压开,扩散为薄薄的一层。如果硅脂粘稠度较高就用小纸板或塑料片刮硅脂,使硅脂均匀的在cpu外壳上,摊开为薄薄的一层(注意尽量不要弄到手上,导热硅脂粘到手上很难洗掉)。 3.硅脂不易涂太厚,因为它的导热系数毕竟没有金属高,更不要溢出cpu外壳边缘,粘到主板上。 4.两块金属紧密的直接接触的导热效果是最好的。但现实总是“残酷”的,肉眼看着光滑无比的cpu金属外壳,在显微镜下的真实表面状态,硅脂的作用就是为了填补这些微小坑洼。如果没有硅脂的存在,那么这些坑洼内导热介质就是空气,而导热能力的强弱排位是这样的:金属(铜、铝)>硅脂>空气。因此,薄薄的一层硅脂,才是正确的涂法。 cpu导热硅脂一般多久换一次? 回答 ; 一般来说CPU温度65度算是很正常的温度,应该不可能引起关机才对。如果你查看CPU温度不上90的话关机应该不是cpu温度高引起的。可以找找其他原因。 当然要是长时间90度左右还是很高了。需要改善散热。

如果你已经把风扇拔下来清理过后,那确实要重新涂抹硅脂。如果只是把风扇上的灰清理了就不用动了。硅脂抹上,安装好风扇后,没什么问题的话一般是不需要更换的。 CPU导热硅脂导电吗? 回答 ; 那种最普通白色的硅脂是不导电的,但硅脂有很多产品,不同的硅脂其电气特性,导热能力也是不相同的。为了提高导热率,就有了渗银硅脂,渗铜硅脂,这样掺入金属颗粒的硅脂,其就有了导电性,像笔记本CPU,涂抹硅脂就需要注意不能流出cpu芯片顶盖,到CPU四周的电容上, 导热硅脂是不是绝缘的? 回答 ; 导热硅脂是绝缘的。 导热硅脂俗称散热膏,导热硅脂以有机硅酮为主要原料,添加耐热、导热性能优异的材料,制成的导热型有机硅脂状复合物,用于功率放大器、晶体管、电子管、CPU等电子原器件的导热及散热,从而保证电子仪器、仪表等的电气性能的稳定。

生物功能材料的研究进展

生物功能材料的研究进展 随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 生物功能材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化”, “功能化”的方向发展, 赋予了高分子材料以新的生命力。 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。 ﹙1﹚天然生物材料 天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。﹙2﹚合成生物材料 由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。 合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅

导热高分子影响热导率因素(精)

导热高分子 影响热导率的因素 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

1.影响热导率的因素 1.1树脂基体 虽然有聚乙炔、聚亚苯基硫醚、聚噻吩等本征型导电、导热高分子材料,但绝大多数高分子材料本身属于绝热材料。赋予其优异的导热性的主要途径是通过共混(如机械共混、熔体共混或溶液共混等)的方法在高分子材料中填充导热性能好的填料,从而得到导热性能优良、价格低廉、易加工成型的导热高分子材料。表1是一些材料的热导率: 1.2导热填料 1.2.1填料的种类及填充量 填料主要包括金属填料和非金属填料。填料的种类不同,其导热机理、热导率及适用范围也不同。一般来说,在特定条件下,填充量越大,导热效果越好

1.2.2.填料的尺寸 填料填充复合材料的热导率随粒径增大而增加,在填充量相同时,大粒径填料填充所得到的复合材料热导率均比小粒径填料填充的要高。但是,导热填料经过超细微化处理可以有效提高其自身的导热性能;譬如在丁苯橡胶中分别添加纳米氧化铝或微米氧化铝,在相同填充量下,发现纳米氧化铝填充丁苯橡胶的热导率和物理力学性能均优于微米氧化铝填充的丁苯橡胶,且丁苯橡胶的热导率随着氧化铝填充量的增加而增大。 1.2.3.填料的形状 分散于树脂基体中的填料可以是粒状、片状、球形、纤维等形状,填料的外形直接影响其在高分子材料中的分散及热导率。在相同的情况下,热导率最低的是粉状,其次是纤维,最高的则是以晶须形态填加的复合材料。 1.2.4.基体与填料的界面 导热高分子复合材料是由导热填料和聚合物基体复合而成的多相体系,在热量传递(即晶格振动传递)过程中,必然要经过许多基体一填料界面,因此界面间的结合强度也直接影响整个复合材料体系的热导率。 基体和填料界面的结合强度与填料的表面处理有大关系,取决于颗粒表面易湿润的程度。这是因为为填料表面润湿程度影响填料与基体的粘结程度、基体与填料界面的热障、填料的均匀分散、填料的加入量等一些直接影响体系热导率的因素。增加界面结合强度能提高复合材料的热导率。表面处理剂的加入既可以改善填料的分散能力,又可以减少硅橡胶受外力作用时填料粒子与基体间产生的空隙,减少应力集中导致的基体破坏。 表面处理剂对热导率的影响应该是“桥联”和“包覆”共同作用的结果。一方面,其“桥联”作用改善了填料与基体的界面相容性,减少了界面缺陷及可能

智能高分子材料的研究进展

智能高分子材料的研究进展 大学材料学院高分子1201 摘要:智能高分子材料是材料研究的新领域,本文综述了智能高分子材料的分类及研究现状。主要介绍了形状记忆高分子材料、智能高分子膜、智能药物释放体系、智能高分子凝胶、智能纤维织物的研究现状及应用,并展望了智能高分子材料的前景。 关键词:智能高分子;薄膜;形状记忆;药物释放;凝胶;纤维织物;应用 前言: 智能高分子材料又称机敏材料,也被称为刺激-响应型聚合物或环境敏感聚合物,是智能材料的一个重要的组成部分。它是通过分子设计和有机合成的方法使有机材料本身具有生物所赋予的高级功能:如自修与自增殖能力,认识与鉴别能力,刺激响应与环境应变能力等。环境刺激因素很多,如温度、pH值、离子、电场、磁场、溶剂、反应物、光(或紫外光)、应力和识别等,对这些刺激产生有效响应的智能聚合物自身性质会随之发生变化。它的研究涉及到众多的基础理论研究,波及信息、电子、生命科学、宇宙、海洋科学等领域,不少成果已在高科技、高附加值产业中得到应用,已成为高分子材料的重要发展方向之一。 1.智能高分子材料的类别及应用 智能材料按材料的种类可分为金属类智能材料、非金属类智能材料、高分子类智能材料和智能复合材料。其中,智能高分子材料的研究最广。其不完全类别及应用如下表: 2.智能高分子材料的研究进展 2.1形状记忆高分子材料

形状记忆高分子材料是利用结晶或半结晶高分子材料经过辐射交联或化学交联后具有记忆效应的原理而制造的一类新型智能高分子材料。高分子材料的形状记忆性,是通过它所具有的多重结构的相态变化来实现,如结晶的形成与熔化、玻璃态与橡胶态的转化等。迄今开发的形状记忆高分子材料都具有两相结构,即能够固定和保持其成型物品固有初始形状的固定相以及在一定条件下能可逆地发生软化与固化,而获得二次形状的可逆相。这两相结构的实质就是对应着形状记忆高分子部多重结构中的结点和这些结点之间的柔性链段。故形状记忆过程可简单表述为:初始形状的制品-二次形变-形变固-形变回复[1]。 形状记忆高分子材料种类很多,根据形状回复原理大致可分为:电致感应型、光致感应型、化学感应型、热致感应型等。其中热致感应型材料应用围较广,是目前形状记忆高分子材料研究和开发较为活跃的品种。 2.1.1 电致感应型 电致感应型是通过电流产生的热量使体系温度升高,致使形状回复,所以既具有导电性能,又具有良好的形状记忆功能,主要用于电子通讯及仪器仪表等领域,如电子集束管、电磁屏蔽材料等。 2.1.2 光致感应型 光致感应型是将某些特定的光致变色基团引入高分子主链或侧链中,当受到光照射时,光致变色基团发生光异构化反应,使分子链的状态发生显著变化,材料在宏观上表现为光致形变;光照停止时,光致变色基团发生可逆的光异构化反应,分子链的状态回复,材料也回复其初始形状。用作印刷材料、光记忆材料、“光驱动分子阀”和药物缓释剂等。 2.1.3化学感应型 某些高分子材料在化学物质的作用下,也具有形状记忆现象。它利用材料周围介质性质的变化来激发材料变形和形状回复。常见的化学感应方式有PH变化、平衡离子置换、螯合反应、相转变反应和氧化还原反应等,这类物质有部分皂化的聚丙烯酰胺、聚乙烯醇和聚丙烯酸混合物薄膜等。该材料用于蛋白质或酶的分离膜[2]、“化学发动机”等特殊领域。 2.1.4热致感应型 热致感应型是指在一定温度下,即记忆温度下,具有橡胶的特性,主要表现

硅橡胶的研究进展 综述

硅橡胶的应用及发展前景 摘要:由于硅橡胶本身具有耐高低温、耐老化、透明度高、生理惰性、与人体组织和血液不粘连、生物适应性好、无毒、无味、不致癌等一系列优良的特性,所以硅橡胶在各个领域有着广泛的应用。本文简要介绍了硅橡胶的种类、不同制备方法的反应机理、最新的研究进展及其应用。 关键字:硅橡胶;应用;加成;缩合;氧化;分类 硅橡胶为一特种合成橡胶,它是由二甲基硅氧烷单体及其它有机硅单体,在酸或碱性催化剂作用下聚合成的一类线型高聚物(生胶),经过混炼、硫化,可以相互交联成为橡胶弹性 体,其基本结构链,表示通式: 硅橡胶的性能特点如下: (1)物理机械性能:硅橡胶在室温下物理机械性能比其他橡胶低,但在150℃高温以上其物理机械性能高于其他橡胶,一般硅橡胶除弹性较好以外,拉伸强度、伸长率、撕裂强度都很差。 (2)耐高低温性能:硅橡胶可在-100℃-250℃长期使用,若适当配合的乙烯基硅橡胶可在250℃下工作数千小时,300℃下工作数百小时。热空气老化后仍能保持橡胶特性,低苯基硅橡胶的玻璃化转变温度为-140℃,其硫化胶在-70℃-100℃下仍具有弹性,硅橡胶可耐数千度的瞬时高温。 (3)优异的耐臭氧老化、热氧老化、光老化和气候老化性能:硅橡胶硫化胶在自由状态下室外暴晒数千年后性能无显著变化。 (4)优良的电绝缘性能:硅橡胶硫化胶在受潮、遇水和温度升高时的电绝缘性能变化很小。 (5)特殊的表面性能:硅橡胶是疏水的,对许多材料不粘可起隔离作用。 (6)优异的生理惰性:硅橡胶无水、无毒,对人体无不良影响,具有良好的生物医学性能。 (7)良好的透气性:硅橡胶的透气率较普通橡胶大数十至数百倍,而且对不同气体的

导热高分子的概述(精)

导热高分子材料的概述 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

1.概述 1.1概念 指具有较高导热系数的高分子材料,固体中传导热量的载体包括电子、声子、磁激发和电磁辐射等;从本质上讲,绝大多数聚合物的导热性能与无机材料相比均不理想。 1.2发展历程 1聚苯胺在19世纪中叶首次由Henry Letheby描述,他研究了苯胺在酸性介质中的电化学和化学氧化产物。他指出,还原形式是无色的,但氧化形式是深蓝色。第一高导电性有机化合物是电荷转移络合物。在20世纪50年代,研究人员报告说,多环芳族化合物与卤素形成半导电电荷转移络合盐。在1954年,贝尔实验室和其他地方的研究人员报告了有机电荷转移络合物,电阻率低至8欧姆- 厘在20世纪70年代初,研究人员证明四硫富瓦烯的盐显示几乎金属导电性,而超导性在1980年被证明。关于电荷转移盐的广泛研究继续今天。虽然这些化合物在技术上不是聚合物,但这表明有机化合物可以携带电流。虽然有机导体以前间歇性讨论,该领域特别通过预测的超导性BCS理论发现后激发。1963年澳大利亚人B.A.博尔托Weiss及其同事报道了电阻率低至1欧姆·厘米的聚吡咯衍生物引用了类似的高电导率氧化聚乙炔的多个报道。除了电荷转移复合物(其中一些是偶数超导体)的显着例外之外,有机分子先前被认为是绝缘体或者最好是弱导电半导体。随后,DeSurville和同事报道了在聚苯胺中的高导电性。同样,在1980年,Diaz和Logan报道了可用作电极的聚苯胺膜。 尽管大多数在小于100纳米的量子领域中操作,但“分子”电子过程可以在大规模上集体表现。示例包括量子隧道效应,负电阻,声子辅助跳跃和极化子。1977年,Alan J. Heeger,Alan MacDiarmid和Hideki Shirakawa报道了氧化碘掺杂聚乙炔的相似的高电导率对于这项研究,他们被授予2000年诺贝尔化学奖“用于发现和发展导电聚合物”。自20世纪80年代 1维基百科

导热填料研究现状及进展-各种填料分析介绍

导热填料研究现状及进展 导热填料的技术研究现状 导热绝缘材料的研究进展 (1)无机非金属导热绝缘材料 通常金属(如Au、Ag、Cu、Al、Mg等)均具有较高的导热性,但均为导体,无法用作绝缘材料,而部分无机非金属材料,如金属氧化物Al2O3、MgO、ZnO、NiO,金属氮化物AlN、Si3N4、BN,以及SiC陶瓷等既具有高导热性,同时也具有优良的绝缘性能、力学性能、耐高温性能、耐化学腐蚀性能等,因此被广泛用作电机、电器、微电子领域中的高散热界面材料及封装材料等。 陶瓷封装具有耐热性好、不易产生裂纹、热冲击后不产生损伤、机械强度高、热膨胀系数小、电绝缘性能高、热导率高、高频特性、化学稳定性高、气密性好等优点,适用于航空航天、军事工程所要求的高可靠、高频、耐高温、气密性强的产品封装。由于陶瓷材料所具有的良好的综合性能,使其广泛用于混合集成电路和多芯片模组。在要求高密封的场合,可选用陶瓷封装。国外的陶瓷封装材料以日本居首,日本占据了美国陶瓷封装市场的90%~95%,并且占美国国防(军品)陶瓷封装市场的95%~98%。传统的陶瓷封装材料是Al2O3陶瓷,具有良好的绝缘性、化学稳定性和力学性能,掺杂某些物质可满足特殊封装的要求,且价格低廉,是目前主要的陶瓷封装材料。SiC的热导率很高,是Al2O3的十几倍,热膨胀系数也低于Al2O3和AlN,但是SiC的介电常数过高,所以仅适用于密度较低的封装。AlN陶瓷是被国内外专家最为看好的封装材料,具有与SiC相接近的高热导率,热膨胀系数低于Al2O3,断裂强度大于Al2O3,维氏硬度是Al2O3的一半,与Al2O3相比,AlN的低密度可使重量降低20%,因此,AlN封装材料引起国内外封装界越来越广泛的重视。 (2)聚合物基导热绝缘材料 由于聚合物材料具有优良的电气绝缘性能、耐腐蚀性能、力学性能、易加工性能等,人们逐步用聚合物材料代替传统的电气绝缘材料,但大多数聚合物材料的热导率很低,无法直接用作导热材料,需要通过加入导热性物质,使其成为导热绝缘材料。按获得导热性的方式,聚合物导热绝缘材料可分为本体导热绝缘聚合物和填充导热绝缘聚合物。本体导热绝缘聚合物通过在高分子合成或加工过程中改变其分子结构和凝聚态,使其具有较高的规整性,从而提高其热导率。填充型则是通过在高分子材料中加入导热绝缘填料来提高其热导率。 填料的导热性能研究 (1)填料的比例 当导热填料的填充量很小时,导热填料之间不能形成真正的接触和相互作用,这对高分子材料导热性能的提高几乎没有意义。只有在高分子基体中,导热填料的填充量达到某一临界值时,导热填料之间才有真正意义上的相互作用,体系中才能形成类似网状或链状的形态——即导热网链。 汪雨荻等在聚乙烯(PE)中填充氮化铝,并考察其导热性能;在电镜下观察到AlN与PE结合处存在间隙,这表明AlN不浸润PE。AlN/ PE复合材料在AlN体积分数小于12%时,其热导率基本保持不变;当AlN体积分数在12%~24%时,热导率增长较快;当体积分数大于24%后,热导率增长又变慢;当AlN体积分数达到30.2%时,复合材料的热导率趋于平衡,能达到2.44 W/(m·K)。 Giuseppe P等利用新型渗透工艺制备了AlN/PS互穿网络聚合物。将液泡状态PS单体及引发剂持续渗透到多孔性AlN中至平衡态,在氩气气氛中100℃、4h使PS完成聚合。从微观上在AlN骨架上形成了一个渗滤平衡的聚合物网络结构,即使PS体积分数低至12%也可形成

导热高分子材料的研究

导热高分子材料的研究 发表时间:2019-04-28T15:21:01.220Z 来源:《基层建设》2019年第6期作者:姜琳琳 [导读] 摘要:随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望其具有优良的综合性能,本文介绍了导热高分子材料的作用原理及导热高分子材料的导热性能的影响因素,对导热高分子材料进行了一定的研究,并提高导热高分子材料的途径,使得导热高分子材料具有了更大的进步和发展。 摘要:随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望其具有优良的综合性能,本文介绍了导热高分子材料的作用原理及导热高分子材料的导热性能的影响因素,对导热高分子材料进行了一定的研究,并提高导热高分子材料的途径,使得导热高分子材料具有了更大的进步和发展。 关键词:导热高分子材料;研究;作用原理;影响因素 0 引言 随着科技水平与日俱增,伴随我们生活的日新月异的变化,导热高分子材料的具体实践已经渗透进入了技术领域的方方面面。由于其具备特殊的性能,而被广泛投入到生产生活中。目前随着科学技术的进步,导热高分子材料的研究取得了一定的成果,在基本理论方面聚合物导热的概念、导热机理、导热系数以及影响其导热性能的因素都进行了深入的研究,并且在导热高分子复合材料的选择以及复合技术方面的研究也有了长足的进展。 1 导热高分子材料的作用原理 不同材料的导热机理是不同的,当晶体受热时,组成晶体的粒子产生热运动,从而表现出导热性能。填充的导热物质以及高分子基体是决定导热高分子材料自身性能的主要因素。对于导热高分子而言,所呈现出的特殊晶体结构,是其导热性能的重要基础,如果晶体结构被破坏,则意味着高分子材料的导热性能不复存在。在导热高分子材料中,填充物的导热性能往往会明显高于高分子基体的导热性能,所以,填充材料是导热高分子材料必不可少的组成部分。在填充材料的具体使用过程中,如果物质的填充量较少,那么粒子材料之间的空隙会比较大,空气的导热性能远低于高分子材料,所以此时高分子材料的导热性能相对较弱。而如果填充材料的数量较多,则意味着物质粒子之间的空隙减小,则很容易形成导热链,此时高分子材料的导热性能明显增强。 2 导热高分子材料的导热性能的影响因素分析 2.1 温度影响因素 温度对导热高分子材料导热性能的影响是非常复杂的,总体来讲是导热系数随着温度的升高而增大,不同材料变化规律之间会相差很多。温度对非晶聚合物 导热性能的影响呈现出曲线状态,在高于100K的温度区域内,导热系数随着温度的升高而增大,在超过一定温度后,导热系数会随着温度的升高而下降,在更高的温度时导热系数与温度的关系比低温状态时表现的要平缓,在5-15K温度范围时,导热系数与温度无关。温度对结晶聚合物的导热性能的影响是导热系数随着温度的升高而增大在达到最大值时然后开始出现逆转,在低于10K的温度范围时,导热系数开始随着结晶度的增加而下降。 2.2 取向影响因素 高分子材料的拉伸取向对其导热性能的影响也是很大的,非晶聚合物中包含非晶玻璃聚合物和非晶弹性体,它们在拉伸过程中使分子链拉伸取向增多,导热系数沿拉伸方向的增多而降低。拉伸取向对结晶聚合物导热性能的影响更加复杂,多年来经过科学家的不断实验与研究,实验结果证明了结晶完整的聚合物导热性能更强。 2.3 其他影响因素 研究人员发现高分子材料中的分子结构参数、交联程度、辐射剂量和流体静压力都对导热性能也存在着一定的影响,导热系数会随着分子链支链的增加而急剧减小,随着交联剂用量的增大而增大,随着辐射剂量的增大结晶度降低熔体导热系数增大而使聚合物导热系数减小,而流体静压力增强时,高分子聚合物的体积减小从而导热系数增大。 3 导热高分子材料的研究 3.1 导热塑料 导热塑料是一种导热高分子材料,其在绝缘方面也起到重要作用。树脂是制作导热塑料的基本原料,其优势体现在于隔离发电体,从基础上建立材料本省与绝缘器之间的关联。关于填充物的一些特性,金属氧化物通常被设计人员当做填充主体物质,并向其中掺加部分金属氮化物,从而时导热塑料的稳定性增加。试验中显示,填充物的主要作用是增加导热塑料中的纤维量,并与其融合成新型复合形态的导热器。填充物的多少也影响着导热材料的稳定性,对其比例进行合理安排。在填充物的材料选择上,我们应避免使用金属粉,因为金属会加大导热材料的导电性。要想充分发挥导热材料的作用,在材料上选择树脂,并对填充物合理安排,必将通过这种方式来实现。 3.2 导热橡胶 导热橡胶广泛应用于航天、航空、电子、电器领域中需要散热和传热的部位,同时也可起到绝缘、减震的作用。在橡胶工业中,一般从加工和使用两个角度来考虑导热性问题。在加工过程中,对导热性的研究主要是针对厚橡胶制品硫化均匀性这个问题。这种研究目前还仅限于提供了一些结论,并没有取得令人满意的实际成果。其中,关键是缺乏既能提高硫化时橡胶的导热性,同时不降低其性能的技术手段和配合剂。通常导热橡胶是以硅橡胶或硅树脂为基材,填充Al2O3,AlN,BN,TiO2等导热填料,以适应不同场合的需要。其具有良好的导热性能,目前针对这一类型导热橡胶的研究也比较多。 3.3 导热胶粘剂 导热胶粘剂作为导热高分子材料的一种,可以将导热胶黏剂进一步分成绝缘导热胶黏剂和非绝缘导热胶黏剂,研究人员表明,在导热胶黏剂制作过程中,如果将导热填充物进行固化,则可以明显提升导热高分子材料的导热性能。如果将碳纤维作为填充物添加到粘接剂中,则可以明显提高粘接剂的导热性能,在现实社会中,这一类粘接剂主要被用于散热板以及半导体封装材料中 4 提高导热高分子材料的途径 充分发挥导热高分子材料的作用,其基础是选择合适的基本材料。在生产过程中,高分子材料本身的优势就比较大,其导热性与材料的高效利用,在性能方面为生产提供更多方便,实际的操作加工中,高分子材料比以往的传统材料更加方便。可见在基体材料的选择上会

相关文档
相关文档 最新文档