文档视界 最新最全的文档下载
当前位置:文档视界 › 第三章晶体的宏观对称性

第三章晶体的宏观对称性

第三章晶体的宏观对称性
第三章晶体的宏观对称性

第三章 晶体的宏观对称

第三章晶体的宏观对称 第一节:对称性概述 教材上关于对称的形象化描述非常好:对称,顾名思义就是不同的物体或同一物体的不同部分相对又相称,因此将这不同的物体或同一物体的不同部分的空间位置以某种方式对换一下好像没动过一样(复原)。 晶体的宏观对称就是指晶体表面几何要素(但并非只是几何要素)的有规律重复。 一、几个相关术语 1.等同图形(同形等大的图形); 2.对称操作; 3.对称元素; 4.关于左右型图形 的问题;5.对称图形的阶次和对称要素的阶次。 二、宏观对称元素 1.反映对称面(符号用P);描述:面不动,阶次为2。 2.对称中心(符号用C):描述:点不动。对称中心可以产生左右型、阶次为2。 3.旋转对称轴(用L n表示):描述:线不动,阶次为n.;基转角、对称定律(画 图并作几何推导)。 对称定律:对应的对称轴只可能是L1、L6、L4、L3、L2。 4.旋转反伸对称轴(用L-n表示):描述:点不动。基转角、旋转反伸对称轴次、 先旋转后反伸与先反伸后旋转、旋转反伸轴是一个复合对称操作,阶次为n。 反伸轴的等价对称操作: 一次反伸轴等于对称中心(L-1=C)(证明) 二次反伸轴等于对称面(L-2=P)(证明) 三次反伸轴等于三次对称轴加对称中心(L-3=L3C)(证明) 四次反伸轴无等价对称操作(独立)(证明) 六次反伸轴为三次反伸轴加反映对称面(L-6=L3P,优选L-6)(证明) 所以真正存在的旋转反伸轴只有四次反伸轴L-4和六次反伸轴L-6两种。 三、宏观对称要素和点阵的几何配置 1.对称中心对应于点阵点 2.旋转轴对应于点阵行列并垂直于点阵面网(包含平行) 3.对称面对应于点阵面(包含平行) 四、宏观对称要素与宏观晶体几何配置 对称中心总是位于晶体中心。 对称轴的出露点总是位于晶面中心、晶棱中心或角顶 对称面的出露位置可以平分晶面、平分或包含晶棱

晶体的宏观对称性

晶体的宏观对称性 物理科学学院 季淑英 31 摘 要: 晶体是内部原子或离子在三维空间呈周期性重复排列的固体,通过对晶体三类宏观对称操作的介绍,找出了晶体的8种基本宏观对称操作。 关键词:对称中心; 反映面; 旋转轴 一 什么是晶体 人们最早认识晶体是从石英开始的,只知道它天然的具有规则的几何多面体,真正揭开晶体内部结构是在1914年,人类首次测定了Nacl 的晶体结构。此后,人们积累大量测定资料开始认识到:无论晶体的外形是否规则,它们内部的原子有规则地在三维空间呈周期性重复排列。 所以,晶体是内部原子或离子在三维空间呈周期性重复排列的固体,或着说晶体是具有格子结构的固体。而晶体的规则几何外形,只是晶体内部格子构造的外在部表现。 二 晶体的宏观对称 对称性是晶体的基本性质之一,一切晶体都是对称的;但不同的晶体的对称性往往又是互有差异的。 1 对称操作 对一种晶体而言,其内部结构的质点表现出某种对称性的规律排列,当在进行某种操作(线性变换)后能使自身复原,这种对称性是晶体的一个客观存在的基本性质,是晶体内部结构的规律在几何形状上的表现,晶体的许多宏观性质都与其结构上的对称性有密切关系。 对称操作:维持整个物体不变而进行的操作称作对称操作,物体在某一正交变换下保持不变,即:操作前后物体任意两点间的距离保持不变的操作。一个物体的对称操作越多,其对称性越高。例如密度ρ作为位矢r 的函数,即)r (ρ。我们可以定义一个引起坐标变换的操作g 满足 ’r gr r =→,

如果这导致 )r ()gr ()’r (ρρρ== 那么g 是)r (ρ的一个对称操作。 2 对称元素 对称操作过程中保持不变的几何要素:对称点,反演中心(i );对称线,旋转轴(n 或者n C )和旋转反演轴(n );对称面,反映面(m )等。 以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换: ???? ? ???????? ??=????? ??z y x a a a a a a a a a z y x 3332 31232221131211,,, 其中,M 为正交矩阵,???? ? ??=3332 312322 211312 11a a a a a a a a a M 对称中心和反演(i ) 取晶体中心为原点,将晶体中任一点()z ,y ,x 变成()z -,y -, x - ???? ? ??=1-0001-0001-M 对称面和反映(m ) 以0z =作为镜面,将晶体中的任何一点()z ,y ,x 变成()z -y x , , ???? ? ??=1-00010001M n 次旋转对称轴(n 或者n C )和n 次旋转反演轴(n ) n 次旋转对称轴(n 或者n C ) 若晶体绕某一固定轴旋转角度/n π2=α以后能自身重合,则称该轴为n 次旋转对称轴。

晶体的宏观对称性

晶体的宏观对称性 物理科学学院 季淑英 2014020231 摘 要: 晶体是内部原子或离子在三维空间呈周期性重复排列的固体,通过对晶体三类宏观对称操作的介绍,找出了晶体的8种基本宏观对称操作。 关键词:对称中心; 反映面; 旋转轴 一 什么是晶体 人们最早认识晶体是从石英开始的,只知道它天然的具有规则的几何多面体,真正揭开晶体内部结构是在1914年,人类首次测定了Nacl 的晶体结构。此后,人们积累大量测定资料开始认识到:无论晶体的外形是否规则,它们内部的原子有规则地在三维空间呈周期性重复排列。 所以,晶体是内部原子或离子在三维空间呈周期性重复排列的固体,或着说晶体是具有格子结构的固体。而晶体的规则几何外形,只是晶体内部格子构造的外在部表现。 二 晶体的宏观对称 对称性是晶体的基本性质之一,一切晶体都是对称的;但不同的晶体的对称性往往又是互有差异的。 1 对称操作 对一种晶体而言,其内部结构的质点表现出某种对称性的规律排列,当在进行某种操作(线性变换)后能使自身复原,这种对称性是晶体的一个客观存在的基本性质,是晶体内部结构的规律在几何形状上的表现,晶体的许多宏观性质都与其结构上的对称性有密切关系。 对称操作:维持整个物体不变而进行的操作称作对称操作,物体在某一正交变换下保持不变,即:操作前后物体任意两点间的距离保持不变的操作。一个物体的对称操作越多,其对称性越高。例如密度ρ作为位矢r 的函数,即)r (ρ。我们可以定义一个引起坐标变换的操作g 满足 ’r gr r =→, 如果这导致 ) r ()gr ()’r (ρρρ== 那么g 是)r (ρ的一个对称操作。 2 对称元素 对称操作过程中保持不变的几何要素:对称点,反演中心(i );对称线,旋转轴(n 或者n C )和旋转反演轴(n );对称面,反映面(m )等。 以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换:

晶体学基础知识点小节

第一章晶体与非晶体 ★相当点(两个条件:1、性质相同,2、周围环境相同。) ★ 空间格子的要素:结点、行列、面网 ★ 晶体的基本性质: 自限性: 晶体能够自发地生长成规则的几何多面体形态。 均一性:同一晶体的不同部分物理化学性质完全相同。晶体是绝对均一性,非晶体是统计的、平均近似均一性。 异向性:同一晶体不同方向具有不同的物理性质。例如:蓝晶石的不同方向上硬度不同。 对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。最小内能性:晶体与同种物质的非晶体相比,内能最小。 稳定性:晶体比非晶体稳定。 ■本章重点总结:本章包括3 组重要的基本概念: 1)晶体、格子构造、空间格子、相当点;它们之间的关系。 2)结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系. 3)晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。 第二章晶体生长简介 2.1 晶体形成的方式 ★液-固结晶过程:⑴溶液结晶: ①降温法②蒸发溶剂法③沉淀反应法 ⑵熔融结晶: ①熔融提拉②干锅沉降③激光熔铸④区域熔融 ★固-固结晶过程: ①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化 2.2 晶核的形成 ?思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。 ★均匀成核:在体系内任何部位成核率是相等的。 ★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。 ?思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶? 2.3 晶体生长 ★层生长理论模型(科塞尔理论模型)层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。 ★ 螺旋生长理论模型(BCF 理论模型) ? 思考:这两个模型有什么联系与区别?联系:都是层层外推生长;区别:生长新的一层的成核机理不同。 ?思考:有什么现象可证明这两个生长模型?环状构造、砂钟构造、晶面的层状阶梯、螺旋 纹 2.4 晶面发育规律 ★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。 为什么?面网密度大—面网间距大—对生长质点吸引力小—生长速度慢—在晶形上保留—生长速度快—尖灭 ★ PBC (周期性键链)理论: 晶面分为三类:F面(平坦面,两个Periodic Bond Chain PBC)晶形上易保留。 S面(阶梯面,一个PBC)可保留或不保留。K面(扭折面,不含PBC),晶形上不易保留。 ★居里-吴里弗原理(最小表面能原理):晶体上所有晶面的表面能之和最小的形态最稳定。 ?思考:以上三个法则-理论-原理的联系?

晶体的宏观对称

第四章晶体的宏观对称 在第二章中已经介绍,晶体的生长过程,实质上就是质点按照空间格子规律有规则地进行堆积的过程;所以,只要生长时有足够的自由空间,晶体就必然会长成一定形状的几何多面体。例如石盐常成立方体,而α-石英经常长成带有尖顶的六方柱体,等等。 在具有几何多面体外形的晶体——结晶多面体上,最突出的一个性质就是它的对称性。晶体外形上的对称性是由其内部格子构造的对称性所决定的。所以,一切晶体都是对称的。不过,不同晶体之间的对称性往往又是有差别的,这表现在它们的对称要素可以有所不同,并且因此构成不同的对称型。所以,有必要同时也有可能,根据晶体的对称特点来对晶体进行分类,即划分出不同的晶族和晶系。 由于晶体的对称性从本质上来讲取决于其内部的格子构造,因此,晶体的对称性不仅包含几何意义上的对称,而且也包含物理意义上的对称,亦即晶体中凡是具有方向性的物理性质,例如折射率、电导率、弹性模量、硬度等等,它们也都呈现相应的对称关系。这是因为,晶体的各项物理性质都是取决于其组成质点的种类和它们的排列方式的。所以,晶体的对称性决定并影响着晶体中涉及到几何及物理两方面的一切性质。反过来,根据晶体的几何外形以及它们的一系列物理性质,又可以用来正确地确定晶体的对称性。所以晶体的对称性对于我们认识晶质矿物的一系列特性都具有重要的意义。另一方面,晶体的对称性对于晶体的利用还具有指导意义。 在本章中我们将依次阐述以上的有关内容,但限于讨论晶体外形上的对称,即晶体的宏观对称。 第一节对称的概念和晶体对称的特点 一、对称的概念 图形相同部分有规律的重复,称为对称。具有对称特征的图形,称为对称图形。 对称是自然科学中最普遍的一种基本概念。自然界许多东西都具有对称特点,如植物枝叶的对生与互生,花瓣、动物形体及器官的对称生长、晶体界限要素的对称分布等;建筑物、交通工具、生活用品等,常具有对称的外形;在装饰、装潢设计、纺织品中也常可见到对称图案。所有对称物体和对称图案统称为对称图形。

相关文档