文档视界 最新最全的文档下载
当前位置:文档视界 › 铅酸电池和锂电池区别全解

铅酸电池和锂电池区别全解

铅酸电池和锂电池区别全解
铅酸电池和锂电池区别全解

1,环保性,锂电池没有污染(不绝对),而铅酸电池有重金属铅的污染

2,安全性,动力型锂电池(锰酸锂、磷酸铁锂)材料不同安全性有所差别,铅酸电池技术已经相当成熟,安全性比锂电池高。

3,比能量,锂电池的质量比和体积比能力都高于铅酸电池大概约40%。

4,价格方面,相同容量的锂电池价格是铅酸电池的一倍还多些

5,使用寿命,目前通用的磷酸铁锂充电1500次,没有记忆效应,充电1500次后约85%的存储能力,而铅酸电池为500次左右,而且记忆效应明显

6,自放电率,锂电池月自放电<3%,铅酸电池15~30%,差异明显7,放电特性,简单的说同样容量的电池,大电流放电的情况下,锂电池要比铅酸电池多放出来约30%的电

8,电压平台,锂电池电压平台都>3V,铅酸电池是2V

废旧铅酸蓄电池回收利用流程:

一、将废旧铅酸蓄电池利用专用环保车辆运至熔炼厂仓库;

二、将废旧铅酸蓄电池的电解液倒入沉淀池进行药物处理;

三、拆解废旧铅酸蓄电池,将外壳送至塑料回收厂进行专业处理;

四、分拣废旧铅酸蓄电池的隔板,送至专业厂回收处理;

五、将分拣后的废极板送入大型反射炉冶炼,做成铅锭,循环

利用;

六、冶炼过程中产生的废水流入沉淀池,和电解液一起进行药物处理;

七、冶炼过程中产生的废渣,送专业炼铁厂处理;

八、冶炼过程中产生的废烟,经布袋除尘装置处理后,安全排放,至此,废旧铅酸蓄电池环保回收流程结束。

固体废物、危险废物跨省转移许可固体、危险废物包装、运输、利用或处置方案;接受单位利用和处置固体、危险废物可行性技术证明材料

固体废物、危险废物跨省转移许可对于专业从事危险废物收集、利用、处置的接收单位,须提供危险废物经营许可证

固体废物、危险废物跨省转移许可暂存、运输、利用、处置固体、危险废物的安全规章制度、污染防治措施、事故应急救援措施

固体废物、危险废物跨省转移许可《安徽省工业危险废物跨省转移申请书》及县(区)环保局初审意见

固体废物、危险废物跨省转移许可固体、危险废物性状清单(包括废物名称、类别编号、物理/化学性状、主要污染物成分及含量、处置方式)

固体废物、危险废物跨省转移许可固体、危险废物产生、运输和接收单位法人营业执照影印件;固体、危险废物转移处置意向书或合同复印件

企业收购(或出售)需要办理;

1、寻找有资质的生产(或处理)单位和运输单位,签订合同。

2、资料报当地环保部门(固废中心),并获得批准。

3、办理联单。

4、拍照(包括运输的汽车、贴有标识的固废包装)存档,再起运。

5、联单回执(送环保局一份,自留一份)备案。

个人收购目前没有规定。

有关国家或地区废旧电池回收处理与环保法规

摘要:从清洁生产、环境保护、资源再生利用和循环经济考虑,特别是全社会环保意识的提高,废旧电池对环境的影响已被全社会所关注。本文汇集了欧洲国家、美国、日本和中国等国家或地区在废旧电池回收处理和再生利用方面所提出的相关环保政策法规和管理措施,以方便企业及有关人员了解电池出口目标市场有关电池的环保法规,促进电池进出口贸易。目前,国内外有关废旧电池管理的法规主要注重于含汞、镉和铅类有害物质的电池。

关键词:汞;镉;铅;废旧电池;环境保护;管理;法规

0前言

2004年,世界电池年总产量约450亿只,这些电池产品主要包括:普通锌锰电池、碱锰电池、锌空气电池、锌氧化银电池、镉镍电池、氢镍电池、一次锂电池、锂离子电池、铅酸蓄电池等。电池中所含的有害物质,一般认为是汞、镉和铅,因此有关国家或地区与废旧电池相关的环保法规,主要是针对如何控制与管理废旧镉镍电池、铅酸蓄电池和含汞类电池。了解这些环保法规,有助于电池进出口贸易,有助于制定和实施我国有关废旧电池回收处理与再生利用的环保法规,有助于电池产业健康、稳定、持续发展。有关国家或地区电池环保法规介绍如下:

1、废旧电池的属性

(1)废镉镍电池、废氧化汞电池以及废铅酸蓄电池属于危险废物

固体废物中对环境危害较大的部分属于危险废物。危险废物在环境管理中往往采用特殊的管理系统。所以废电池的危险属性也成为废电池环境管理的焦点。

根据国际上通行的共识,废镉镍电池、废氧化汞电池以及废铅酸蓄电池属于危险废物。《控制危险废物越境转移及其处置的巴塞尔公约》附件八“巴塞尔公约所辖废物名录A”中A1160“废铅酸性电池,完整或破碎的”,A1170“混杂废电池,但不包括名录B所列(B1090)电池的混合体”。

美国《电池法》和《资源再生法》(RCRA)规定,废镉镍电池和废小型密封铅酸电池属于危险废物。

根据危险废物特性定义、各国的管理实践以及实验结果,可以认定废弃的镉镍电池、汞电池和铅酸蓄电池属于危险废物,20 01年12月17日,我国国家环境保护总局、国家经济贸易委员会、科学技术部联合发布《危险废物污染防治技术政策》。(2)用铅、镉或汞制造的电池产品不属于危险品

而“不属于巴塞尔公约所辖废物名录B”中B1090“符合某一规格的电池,不包括用铅、镉或汞制造的电池”。废弃的普通锌锰电池和碱性锌锰电池不应属于危险废物,特别是已达到无汞化的废电池。

(3)危险废物的鉴别方法

危险废物的鉴别方法主要采用浸出实验。实验结果与浸出实验前的破碎程度有关。日本京都大学进行的实验是将废电池破碎到5mm以下进行的。实验结果见表1。几乎所有废电池的浸出液汞的浓度都超过0.05mg/L(日本危险废物鉴别标准),其中废汞电池超过数千倍;废普通锌锰电池的镉浓度都超过0.3mg/L (日本危险废物鉴别标准)。但实验采用的是1985年前制造的电池,还没有实现无汞化(汞含量小于0.0001%,或1mg/kg),现在这种电池在日本市场上已经不存在了。我国清华大学采用20 02年生产的废碱性电池进行浸出实验。在浸出实验前将废电池外皮剥开,但不进行破碎。实验结果表明(表2),浸出实验结果均低于危险废物鉴别标准。

2、污染物释放进入环境的方式和特点

在收集、运输、贮存、处置和回收利用过程中,废电池中的化学物质可能由于电池包壳的机械破损或化学腐蚀作用逐渐进入环境中。由电池结构可知,在构成电池的化学物质的外层都包有一层较为坚硬的包壳。在电池的使用过程中,包壳用来隔离发生作用的化学物质同外界环境。在电池废弃后,电池包壳在不发生自身侵蚀的条件下,同样起到隔离电池内部化学物质同外界环境的作用。

随着电池产品的不断更新换代,包壳越来越坚固。目前,普遍使用的主要是锌锰干电池,此类废电池的产生量约占除铅蓄电

池之外的小型家用废电池总量的90%以上。锌锰干电池的结构有了重大改进,电池的贮存期大大延长。其中,糊式锌锰干电池的贮存期为1至2年,碱性锌锰干电池的贮存期可达5年以上。其他类别的电池,如镉镍电池采用不锈钢或镍铁合金做包壳,其贮存期可能达到3年以上,而目前广泛使用的手机电池采用不锈钢做包壳,贮存期可能达到十几到几十年。由此可见,电池中的污染物质释放进入环境需要一段时间。

目前废电池收集有混合收集和分类收集两种方式;与垃圾混合收集的废电池处理处置方式有堆放、填埋、焚烧;分类收集的废电池处理处置方式有贮存、填埋和回收利用。在不同收集方式和处理处置过程中,废电池中化学物质进入环境的可能释放方式如图1所示。

表1:日本京都大学进行的各种干电池浸出实验结果

表2:清华大学进行的废干电池浸出实验结果(mg/L)

废电池中化学物质释放进入环境的过程有如下特点:

(1)废电池中化学物质释放进入环境过程是在电池包壳破损后发生的,或者是电池包壳本身发生侵蚀作用。电池的包壳在未破损前,由于其自身是以金属态存在的,较为稳定,故可以认为包壳是废电池污染环境的一种天然屏障。

(2)普通家用干电池中的污染物质大多呈固态,由电池内部迁移到环境中是一种缓慢的过程。电池中的污染物质,释放到环境

中需要一段时间。

图1.废电池中化学物质的释放到环境中

3、废电池收集、处理和处置方式及其对环境危害的关系

废电池对生态环境和人体健康危害,主要是由于废电池中化学物质释放进入环境,随后在环境介质中迁移、最后富集到食品中所造成。因此,其危害的大小不但取决于废电池中污染物的种类及其含量,而且与废电池的收集、处理、处置方式密切相关。

3.1污染和危害途径

进入环境中的化学物质,会污染地下水、土壤和大气环境,最终通过食物链进入人体,危害健康。其主要的污染途径示意如图2所示。

图2废电池中化学物质对环境和人体健康危害途径

3.2直接进入环境的废电池产生的污染问题

被直接丢弃进入环境的废电池,即使电池的包壳较好,在环境中也会因长期腐蚀作用,使得电池包壳破损,导致其内的重金属与酸碱等逐渐泄露进入环境中。电池包壳质量越好,废电池包壳破损越难,在废电池进入环境后污染物质开始释放的时间越长。特别是直接集中堆放于环境中的废电池,当有电池发生腐蚀后,则由于电化学腐蚀的微电池作用,可能加剧其他废电池包壳的腐蚀和污染物泄露速度,加快对土壤环境或地下水的污染。由于集中堆放,污染物的释放量相对较大,对环境的危害性也就较为严重。

人为将废弃的铅酸电池和大型镉镍电池中含有的废酸、废碱以及其他成分废电解液直接倒入环境,会引起即时的重金属和电解液污染。如废铅酸电池塑料槽内含有大量废硫酸和沉积在底

部的铅泥,并有相当数量的铅粉悬浮在硫酸之中,随意抛弃铅酸废电池将对环境造成严重污染。据分析,受此种废酸污染的土壤,平均含铅量在1-50g/kg范围内,严重超过土壤中铅含量的本底值。废镉镍电池的污染与铅酸电池类似,其电解液中含有废碱,同时含有金属镉和镍,直接弃置于环境中,同样可能产生重金属和电解液对土壤的污染。

3.3同生活垃圾共同处理处置的废电池的环境污染

目前,大多数的废电池进入城市生活垃圾,随生活垃圾进入到填埋、焚烧、堆肥的过程中。

在焚烧过程中,由于金属汞、镉、砷、锌高温时易挥发,焚烧后部分成为底灰;部分则受热气化挥发而被烟气带走,遇冷空气后凝结成为均匀小粒状物,粒径在1μm以下,难以捕集;部分金属物在炉中参与反应生成氯化物、硫化物或氧化物,比原金属元素更易气化挥发,这些物质再冷凝成为小粒状物,最终多转化成为底灰残留物。从而使得灰渣中的重金属含量增大,难于处理。因此,焚烧处理含镉、含汞、含铅废电池都可能造成严重的大气污染,同时产生上述金属富集程度很高的灰渣,难于处理,可能成为更大的重金属污染源。

日本东京都公害研究所进行的焚烧实验表明,废电池与生活垃圾混合焚烧会造成汞对大气的污染。在这一实验中,当向垃圾焚烧炉中投入1只汞电池或1只碱性锌锰电池后,在2-3分钟内焚烧烟气中汞的浓度提高10-50倍。

在垃圾堆肥过程中废电池的主要贡献在于大大增加了堆肥产品中重金属的总量。而且堆肥过程中废电池可能同堆肥产品中的其它成分发生作用,加速重金属的溶出,从而增大堆肥产品重金属含量,甚至超过标准。但这种污染很大程度上取决于废电池在进行堆肥处理的生活垃圾中所占的比例。

当废电池的数量很低时,则不会对于堆肥产品构成污染。

填埋是现今生活垃圾处置最常用的方法。在此过程中所产生的环境污染程度取决于废电池在生活垃圾中所占的比例。就我国目前填埋场情况而言,填埋处置水准较低,许多垃圾处于简单堆放状态,废电池中的重金属会通过渗滤作用直接污染水体或土壤。在填埋场发生的各种反应、特别是产酸阶段,更易于有金属溶出。如果填埋完全安全符合标准,由于电池中化学物质到达受污染介质的过程非常缓慢,并且浓度较低,所以并不一定产生很大的污染。

日本福冈大学自80年代初开始进行垃圾填埋场中废电池汞的

迁移规律进行了长达15年的研究。在这一实验中,分别采用不同填埋构造,在不同的填埋柱中填入不同种类、不同数量的废干电池。在填埋柱内,各装填4吨垃圾;垃圾分别由焚烧灰、草木、塑料、玻璃、金属、污泥、垃圾堆肥、砂土等组成。在每个柱子内,分别混合装填入废弃的1号、2号、3号锌锰电池、3号碱性锌锰电池、汞电池,垃圾中含有的废电池汞量分别有9. 9克、11.8克、0.9克、0,垃圾中汞的吨当量分别为2.7克、

3.2克、0.4克、0.2克。整个实验进行了10年。在10年中,各个实验柱产生的垃圾渗滤液中汞的浓度在0.0001mg/L和0.0 0035mg/L之间变化,均小于日本0.0005mg/L的水环境质量标准。而且装填废电池的垃圾实验柱渗滤液汞含量与没有装填废电池的对照柱渗滤液汞含量相比,没有明显差异。

在实验期间,填埋柱内不同填埋层中汞的气化浓度分别是0.1μg/m3和0.5μg/m3之间,是大气中汞浓度的10-100倍,是W HO推荐作业区环境标准(15μg/m3)的1/10-1/100。而且,在几个实验柱内气化汞浓度没有明显的差异。经过10年的实验,实验填埋柱解体时测定柱内汞的气化浓度分别是1.0μg/m3和50μg/m3之间,而且填装碱性锌锰电池的碱柱浓度最高,以下依次为填装各种电池的混合柱和填装锌锰电池的锰柱。这一顺序恰恰也是在实验初期填埋柱内含汞量的高低顺序。解体后各个填埋柱内的汞的残留量见表3。

表3:实验柱内汞的残留量

*包括填埋柱内覆土和填埋柱底部的残留量。

由实验数据可以看出,在10年内,填埋柱内废电池中汞的残留率在93-94%之间,即有6-7%的汞从废电池中逸出。但是可以看出,在混合柱和碱柱内废物中汞的残留量比空白柱中要高。可以认为这些高出的部分是废物吸附(或截留)的从废电池中逸出的汞。这部分汞分别占逸出的汞的61.3%和4.6%。

10年内实验柱内随渗滤液流出的汞的量占柱内汞的总量的0.0 08%至0.1%。而由废电池扩散到大气中的汞占废电池中汞的总量的0.05%-0.1%之间。

3.4废电池单独收集管理过程中的环境污染

除以上提到的废电池直接进入环境的污染外,对于废电池实行管理过程中,也可能产生污染问题。

(1)废电池收集、储存、运输过程中产生的环境问题

由于有些废电池中还残存有能量,废电池单独收集后,在集中储存和运输过程中可能引起爆炸等事故。另外,由于长期的机械磨损或腐蚀作用,废电池可能渗漏,腐蚀容器、运输工具等。在储存过程中,由于大量重金属集中在一起,在发生淋溶作用时,可能会产生大量重金属溶解进入土壤等现象。

(2)处理处置过程中的环境污染问题

废电池对环境和人体健康的危害与收集、处理处置方式有密切关系。进行填埋,如果填埋过程符合安全标准,其中重金属应该不会对于环境造成大的危害。废电池中含有大量重金属,不可能进行堆肥处理。进行焚烧处理,则可能产生重金属如镉、汞的挥发,且很难捕及,会产生大气污染。同时,部分重金属富集于底灰中,产生难处理灰渣,造成大的污染源。

(3)废电池回收利用过程的环境污染问题

从环境保护和资源管理的各个角度来看,优选的废电池处理、处置方案是进行再生利用,但再生利用过程中也可能产生严重的环境污染问题。如果再生利用技术落后,在处理过程中可能引起环境污染问题。如在再生铅的处理过程中,目前小型和土法冶炼厂,通常在冶炼之前未对铅膏进行脱硫、分选等预处理,或对废蓄电池破碎用人工分选,废硫酸液任意流入大地;冶炼采用反射炉,温度一般高达1200-1400℃,开炉鼓风时烟雾密布。废气除带出一部分机械粉尘外,还可能将在生产过程中由

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: 充满电后的磷酸铁锂蓄电池静置15分钟后回落到,电池开口电压。 单体工作电压为~。 在以下可以充电性能稳定。 单体电池放电时,以下电压下降很快。

综合以上信息,建议48V直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。 基站可分为如下两种: (1)宏基站和室内分布信源站 GSM宏基站的功率可按载频计算,分为乡镇(4/4/4)46A、市区(12/12/12)130A、特大密集市区(15/15/15)160A。 TD宏基站的功率分为单频段站(含1个BBU和3个RRU)1200W 25A、双频段站(1个BBU和6个RRU)2100W 44A,其中1个BBU300W,1个RRU300W。 室内分布信源站的功率分为单频段站(含1个BBU和5个RRU)1000W 21A、双频段站(1个BBU和10个RRU)1400W 29A、三频段站(1个BBU和15个RRU)2100W 44A,其中1个BBU600W,1个RRU80W。 宏基站和室内分布信源站的蓄电池后备时间为:市区3h,乡镇5h,山区7h。 (2)室内分布的RRU 室内分布的RRU,可包括1个或多个RRU,单个RRU耗电量80W ,需电池后备时间4小时。 根据计算,采用铅酸蓄电池的配置如下:

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析(圣阳电源)

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析 山东圣阳电源高海洋 随着科学技术的提高和制造水平的进步,电源技术也在新一代技术变革中不断提高,面对如今新能源电动汽车对动力电源的迫切需求,现阶段似乎哪一种动力电池都不能完全适合作为动力源用在电动汽车上。 目前来说,电动汽车上普遍采用的动力电池有三种:铅酸电池、锂电池以及镍氢电池。比较这三类动力性蓄电池就需要从两方面分析比对:一个是比能量,另一个是比功率,简单说,就是指电池的可持久性和力量大小。比能量高的蓄电池可以长时间工作,持续的能量较多,里程长;比功率高的蓄电池,速度快,力量大,可以保证汽车的加速性能。下面从这两方面对这三类动力蓄电池进行对比分析: 铅酸电池 作为目前电动汽车使用最广泛的蓄电池,在国内已经生产的电动汽车上,使用比例占到90%,这主要得益于其优点:技术较为成熟,比功率较大,循环寿命可达800~1000次,且成本低。不过,铅酸电池缺点也较明显,那就是比能量很低,仅为40W·h/kg左右,快速充电技术也尚未成熟(一般慢充都在8小时以上),而且污染严重,受到环保制约。 锂离子电池 相对来讲,其比能量和比功率都很高,可达150W·h/kg和1600W/kg,循环寿命长,约1200次,且充电时间较短,为2~4h,使用电压可达到4V,安全性相对较好。但锂离子电池缺点在于其价格较高、快速充放电性能差、过充和过放电保护性差,影响了其应用和发展的空间。 镍氢蓄电池 其的优点是比能量和比功率都相对中等,快速充电能力较好,15分钟可充满容量的40%~80%,适宜温度范围宽。但镍氢蓄电池循环使用寿命较短,为600次,价格昂贵,只有期待大批量生产,才有望降低成本。 结语 显而易见,比能量高、比功率大、价格便宜、易于维护的动力蓄电池才是电动汽车动力源的首选,从上面分析可以得知,每种蓄电池都存在这样或那样的问题。总体来看,现在的动力电池比能量都较低,以三种电池中性能最好的锂电池为例,在能量密度上,它与达到10000~12000W·h/kg的汽油相比还相差甚远,仔细计算,1L汽油约重0.742kg,按车载50L 计算,就是满载37.1kg的汽油,约相当于2968~3091kg锂电池所含有的电量,如果将汽油机较低的效率计算进去,两者之间也有约50倍的差距。所以现在电动汽车上安装的蓄电池数百公斤重,再加上高昂的价格,电动汽车形成高价格门槛便成为必然。 另外,不同类型电动汽车对电池的要求也不一样,纯电动汽车(PEV)由于只有电池驱动,所以需要较高的比能量,而在一般混合动力汽车(HEV)中,电池往往担任制动能量回收、辅助起步加速的作用,因而对电池的比功率要求苛刻,所以说要针对不同车型需求来设计作为动力源的动力蓄电池,现阶段还没有完美的设计方法。 2012.09.04

锂电池与铅酸电池对比

一、动力锂离子电池与铅酸电池的经济性对比 当前认为电动汽车采用动力锂离子电池的经济性比铅酸电池差的观点是不正确的。虽然动力锂离子电池的购置费用仍高于铅酸电池,但从购置费用在使用寿命内的成本摊销、有效运能和能源效率方面综合考量,采用动力锂离子电池的经济性比采用铅酸电池更具有显著优势。 为了便于讨论,设定讨论条件如下: 阀控铅酸电池按2008年12月国产电池市场报价:150Ah/12V蓄电池为980元/只。 85Ah/12V水平铅酸蓄电池2008年市场报价为:民用品价格为1500元/只,军用品价格为3 500元/只。本文采用民用品价格(1500元/只)。 当前,动力锂离子电池价格相差较大。根据当前市场情况,磷酸亚铁锂动力电池每Ah价格分别采用6.50元、7.00元、8.00元、10.00元。锰酸锂动力电池每AH价格分别采用10.00元、10.00元、14.00元、15.00元。本文仅以150Ah/24V电池组进行比较,不计算电子电路的费用。 (一)购置费用对比 图1.1是各种150AH/24V电池组购置费用对比。 图1.1中,水平铅酸蓄电池按民用价格(每个85Ah/12V电池1500.00元)计算。锰酸锂蓄电池按15.00元/Ah,磷酸亚铁锂动力电池按8.00元/Ah计算。 鉴于当前锂离子蓄电池市场价格相差较大,表1列出了当前各种典型价格的150Ah/24V电池组价格和与铅酸电池的相对比值。 表1150Ah/24V电池组购置费用对比(深色格为当前可能价格)

由表1可见,当前磷酸亚铁锂动力电池与国产阀控铅酸蓄电池比,价格仍高4~5倍;价格最高的锰酸锂动力电池比国产阀控铅酸蓄电池贵8倍。 (二)使用寿命对比 图1.2是阀控铅酸蓄电池和动力锂离子电池使用寿命(典型值)的对比。 图1.2阀控铅酸蓄电池和动力锂离子电池循环使用寿命(典型值) 阀控铅酸蓄电池额定循环使用寿命约250个充放电循环,水平铅酸蓄电池循环使用寿命小于200个充放电循环。动力锂离子电池额定使用寿命(容量下降到额定容量的80%时为寿命终结):锰酸锂动力电池大于800个充放电循环循环;磷酸亚铁锂动力电池大于1200个充放电循环。动力锂离子电池成组后的使用寿命与成组技术和产品性能相关。若成组技术和产品不符合动力锂离子电池的要求,使用寿命将大幅度缩短。若成组技术和产品符合锂离子蓄电池要求,成组后的动力锂离子电池的充放电循环使用寿命则与单体电池的充放电循环相同。本文作者将动力锂离子电池容量下降到额定容量的60%时定义为工况使用寿命。锰酸锂蓄电池工况使用寿命可大于1200个充放电循环,是阀控铅酸电池的5倍左右。磷酸亚铁锂动力电池工况使用寿命可大于1600个充放电循环,为阀控铅酸蓄电池的6倍以上。 (三)蓄电池在不同放电倍率时的容量 图1.3是阀控铅酸蓄电池和动力锂离子电池在不同放电倍率时的容量对比图。

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

锂电池和铅酸蓄电池优劣势比较

锂电池和铅酸蓄电池的优劣势比较相比发展成熟的铅酸蓄电池,锂离子电池的单位重量储能高,价格也不昂贵,基本无毒。因此现在的新能源汽车普遍倾向于采用新型锂电池。 锂离子电池简单说来就是锂电池,在新能源汽车、电动车局部车型已被广泛使用,对于锂离子电池第一次充电,锂离子电池充电时间和方法的问题,锂电池观光小火车厂家武汉蒂森在此与大家进行说明。 锂离子电动车电池正确使用方法 锂电池正确使用方法其实归结起来就一下3点,DISING观光小火车对下述3大充放电问题进行了归纳: 1、按照标准的时间和程序充电,即使是前三次也要如此进行;(特别是不要进行超过12个小时的超长充电) 2、当电动车行驶过程中锂电池出现电量过低提示时,应该尽快及时给锂电池充电。(PS:这里强烈不建议快速充电站,超级损坏电池。市面上有关电池电量用完再充和电池长时间充电的说法不是全部都对,这也要看电池的种类,对于“尽量把电动车电池的电量用完,最好用到跑不了路”的做法,其实只是用在镍电池上,目的当然就是避免电池记忆效应发生。) 3、锂电池电动车激活并不需要特别的方法,在电动车行驶中锂电池会自然激活。如果你刻意要用流传的“前三次12小时长充电激活”方法的话,只会徒劳无功,没有任何效果。 锂离子电动车电池错误使用方法 一味地追求12小时超长充电和锂电池电量用到自动没电的做法,都是错误的。如果你以前是按照错误的说法做的,请你及时改正。

锂离子电池日常维护保存 锂原电池自放电很低,一般可保存3年之久,在冷藏的条件下保存,效果会更好。将锂原电池存放在低温的地方,不失为是一个很好的方法。 锂离子电池在20℃下可储存半年以上,这是由于它的自放电率很低,而且大部分容量可以恢复。锂电池存在的自放电现象,如果电池电压在3.6V以下长时间保存,会导致电池过放电而破坏电池内部结构,减少电池寿命。因此长期保存的锂电池应当每3~6个月补电一次,即充电到电压为3.8~3.9V(锂电池最佳储存电压为3.85V左右)为宜,不宜充满。锂电池的应用温度范围很广,在北方的冬天室外,仍然可以使用,但容量会降低很多,如果回到室温的条件下,容量又可以恢复,受一定的温度影响。锂原电池与锂离子电池不同,它不能充电,充电十分危险。其他注意事项,与锂离子电池相当。 铅酸电池的特性: 1. 车辆行驶时震动大,蓄电池极板容易脱粉; 2. 存储时间短,自放电大;经常车子停开几天,电池就没有电,不能起动发动机。 3. 高温情况下,自放电大,失水率高,蓄电池寿命缩短; 4. 低温情况下,蓄电池起动困难; 5. 端柱与壳体受热膨胀系数不同,会产生缝隙,有酸雾渗出; 6. 铅酸蓄电池对环境污染严重; 7. 充电时间慢,可用电容量小;常表现为汽车电能不足,不能驱动汽车其它用电器的正常工作;

铅酸蓄电池用隔板选用及对比复习进程

铅酸蓄电池用隔板选 用及对比

铅酸蓄电池用隔板选用及对比 1.隔板综述 隔板是蓄电池的重要组成,不属于活性物质。在某些情况下甚至于起着决定性的作用。其本身材料为电子绝缘体,而其多孔性使其具有离子导电性。隔板的电阻是隔板的重要性能,它由隔板的厚度、孔率、孔的曲折程度决定,对蓄电池高倍率放电的容量和端电压水平具有重要影响;隔板在硫酸中的稳定性直接影响蓄电池的寿命;隔板的弹性可延缓正极活性物质的脱落;隔板孔径大小影响着铅枝晶短路程度。 由于隔板对铅蓄电池性能多方面的作用,隔板发展的每次质量的提高,无不伴随着铅蓄电池性能的提高。隔板的主要作用是防止正、负极短路,但又不能使电池内阻明显增加。因此,隔板应是多孔质的,允许电解液自由扩散和离子迁移,并具有比较小的电阻。当活性物质有些脱落时,不得通过细孔而达到对面极板,即孔径要小,孔数要多,其间隙的总面积要大;此外,还要求机械强度好,耐酸腐蚀,耐氧化,以及不析出对极板有害的物质。 20 世纪50 年代起动用蓄电池主要用木隔板,由于必须在湿润的条件下使用,造成负极板易氧化,初充电时间长,也无法用于干荷式铅蓄电池。尤其是木隔板在硫酸中不耐氧化腐蚀,致使蓄电池寿命短。为了提高铅蓄电池寿命,提出木隔板与玻璃丝棉并用隔板,使蓄电池寿命成倍地增加,但电池内阻增加,对电池容量、起动放电有不利影响,还能满足当时的标准要求。 20 世纪60 年代中期,出现了微孔橡胶隔板,由于它具有较好的耐酸性和耐氧化腐蚀性,明显地提高了蓄电池寿命。并促进蓄电池结构改进,减小了极板中心距离,使蓄电池起动放电性能和体积比能量有较大的提高。正因为微孔橡胶隔板的优良性能,从20世纪70 年代至90 年代初期,在铅蓄电池待业中占统治地位。微孔橡胶隔板的缺点是:被电解液浸渍的速度较慢,除热带地区外,缺乏资源,制造工艺较复杂,成本价格贵。另外,不易制成较薄的成品(厚度在1mm 以下就困难)在微孔橡胶隔板生产的同时,还出现了烧结式PVC 隔板以及后来相继出现的软质聚氧氯乙烯隔板,该种隔板同橡胶隔板相差不大,但在80年代很畅销。 从1993 年,由于微孔橡胶隔板成本提高,因而形成PVC隔板供不应求的局面。20世纪90年代相继出现PP(聚丙烯)隔板、PE(聚乙烯)隔板和超细玻璃纤维隔板(商品各为10-G)及其它们的复合隔板。也曾出现纤维纸隔板,其电阻、孔率方面均较好,但耐腐蚀和机械强度较差,孔径也较大,因此未能大批量使用。目前国际上,特别是美国、西欧汽车型蓄电池大量使用的是聚乙烯袋式隔板。PE隔板具有较小的孔径,极低的电阻和极薄的基底,易于做成袋式,适用于蓄电池的连续化生产。但是目前国内尚未国产化大批生产,与此隔板相适应的装配线(包括配组机)也有限,所以使用尚不普遍;PP隔板和10-G逐渐为汽车型蓄电池厂家所接受。密闭阀控式铅酸蓄电池主要是在用AGM(吸附式玻璃纤维隔板),以下我们主要介绍一下AGM隔板.

叉车锂电池和铅酸电池哪个好

叉车锂电池和铅酸电池哪个好 叉车蓄电池发展到现在主要分两类,一类是叉车锂电池,另一类是叉车铅酸电池。那么叉车蓄电池是锂电池好还是铅酸蓄电池好呢?这个相信很多朋友都有的疑问吧。下面就简单的对比一下它们哪个更好吧。 1、从使用循环寿命上来说叉车锂电池比叉车铅酸蓄电池要好 相信大家都知道在网上很多都说锂电池的寿命是300到500次的循环寿命,这与铅酸电池比起来还要短,这不是错的吗?其实我们现在所说的叉车锂电池是指磷酸铁锂电池而不是大家常说的用于3C电子产品的一般锂电池,磷酸铁锂电池的理论使用寿命是2000次循环以上哦,要比铅酸蓄电池寿命长得多。 2、从放电性能上来说叉车锂电池比叉车铅酸蓄电池要好 从放电性能上来说,一方面叉车锂电池在大电流放电方面要比叉车蓄电池要大得多,可以持续以35C倍率放电,提供更加强劲的动力,可以提起的货物更重更多;另一方面在充电方面,叉车锂电池提供3C到5C的快速充电倍率,比叉车铅酸蓄电池充电速度要快很多,节省了很多的充电时间,大大提升工作时间和效率。 3、环境友好方面上来说叉车锂电池比叉车铅酸蓄电池要好 叉车锂电池使用的原材料对环境友好无污染,回收处理和可循环方面相对成本要低,叉车铅酸电池使用的原材料含有铅,对环境污染危害性很大,动物和人的危害非常大。因此现在国家倡导绿色环保发展下,锂电池代替铅酸电池是必然的趋势。 4、从安装更换维护上来说叉车锂电池比叉车铅酸蓄电池要好 在同等容量和放电要求相同的情况下,叉车锂电池更加轻便和体积更小,在叉车更换电池操作方面比笨重的叉车铅酸蓄电池要方便很多,节省时间,提升工作效率。 5、从安全性能上来说叉车锂电池比叉车铅酸蓄电池略差

锂电池与铅酸电池对比

锂电池与铅酸电池对比

————————————————————————————————作者:————————————————————————————————日期:

一、动力锂离子电池与铅酸电池的经济性对比 当前认为电动汽车采用动力锂离子电池的经济性比铅酸电池差的观点是不正确的。虽然动力锂离子电池的购置费用仍高于铅酸电池,但从购置费用在使用寿命内的成本摊销、有效运能和能源效率方面综合考量,采用动力锂离子电池的经济性比采用铅酸电池更具有显著优势。 为了便于讨论,设定讨论条件如下: 阀控铅酸电池按2008年12月国产电池市场报价:150Ah/12V蓄电池为980元/只。 85Ah/12V水平铅酸蓄电池2008年市场报价为:民用品价格为1500元/只,军用品价格为3 500元/只。本文采用民用品价格(1500元/只)。 当前,动力锂离子电池价格相差较大。根据当前市场情况,磷酸亚铁锂动力电池每Ah价格分别采用6.50元、7.00元、8.00元、10.00元。锰酸锂动力电池每AH价格分别采用10.00元、10.00元、14.00元、15.00元。本文仅以150Ah/24V电池组进行比较,不计算电子电路的费用。 (一)购置费用对比 图1.1是各种150AH/24V电池组购置费用对比。 图1.1中,水平铅酸蓄电池按民用价格(每个85Ah/12V电池1500.00元)计算。锰酸锂蓄电池按15.00元/Ah,磷酸亚铁锂动力电池按8.00元/Ah计算。 鉴于当前锂离子蓄电池市场价格相差较大,表1列出了当前各种典型价格的150Ah/24V电池组价格和与铅酸电池的相对比值。 表1150Ah/24V电池组购置费用对比(深色格为当前可能价格) 电池类型阀控铅酸电池水平铅酸电池锰酸锂动力电池磷酸亚铁锂动力电池6.50元/Ah 1960元 (国产) 100% 5294元/270% ~ 10588元/540% 6825/348% 7800/398% 7.00元/Ah 7350/375% 8400/429% 8.00元Ah 8400/429% 9600/490%

电动车电池是锂电池好还是铅酸蓄电池好有什么优缺点

电动车电池是锂电池好还是铅酸蓄电池好?有什么优缺 点? 别拿高科技来吓唬人,电池这个瓶颈让大家都不想买电动车。随着电动能源车电池技术的更新迭代,锂电池的发展大有要从红花双棍上升为社团老大的趋势。但是,也只是上升。受限于自身的性能、性价比等原因想要取代铅酸电池大哥的地位还有很长一段路要走,而且老大哥铅酸电池也在不断的做自我突破。一、先从铅酸电池开始讲吧:铅酸电池的祖传绝学1:金钟罩铁布衫(硬!)铅酸老大一直本着他强任他强,清风抚山岗。他横任他横,明月照大江为原则。铅酸电池好养活,任你摔摔打打,稍微修补一下,便可继续使用。2:白菜价(便宜!)铅老大之所以能够纵横电池社团多年并坐上老大的位置全是因为这个原因!便宜,除了便宜还是便宜。3:回炉重铸(可回收逆修复)铅酸电池自带可回收利用技能,在用坏之后可以去电动车店里以旧换新,补差价便可换一组新的电池,把损失降到最低,对使用者是个不小的福利。既然讲到绝学了,那也看看铅酸电池的缺点吧:体积重量大,电池容量有限,寿命较短,铅酸电池一般在深充深放电400次以内,有记忆,寿命在两年左右。锂电池的祖传绝学1:祖传轻功(重量轻,体型小)从小就轻功小成的锂电池与市面上同等容量的铅酸电池相比,锂电池体积是铅酸

电池体积的2/3,重量约是铅酸电池重量的1/3。相同体积的锂电池更比铅酸电池的容量要高,体重的降低使得电动车续航能力增加大概10%左右。2:养生耐用(寿命提高)锂电池深得养生之道,锂电池平均寿命大概是年左右,比铅酸电池寿命要高1.5倍左右,充放电超过500次,电池使用无记忆,抗震性强。3:祖传气功吐纳法(耐过充,耐充放电性能好)锂电池从小就打通奇经八脉,使其在正常温度下,锂电池可以连续充电48小时不会出现电池膨胀漏液破裂等事故,容量保持在95%以上。并且在专用充电器下,可以进行快速充放电。锂电池好处虽多,但是其缺点也更明显。锂电池的制作成本高,制作设备昂贵人工成本占到制作成本的40%左右,价格大概是铅酸电池的三倍左右。其三倍的价格带来的性价比并不高,颇给人华而不实的感觉,并且锂电池不可回收,用坏了只能扔了,或者找个地方埋了,过个几千年,后人挖出来便是古董了。最重要的问题便是锂电池存在起火爆炸安全隐患,尤其是在消费者在不知情的情况下被奸商所骗导致购买劣质锂电池,在电动车这种密封条件不是太好,容易潮湿导致接触不良等原因引发可能存在的安全隐患。不过现在锂电池的技术性能也在不断提高,也正在使用高安全性的材料,存在的安全隐患也可能只是小编无谓之忧,或许过不许久便是锂电池的天下也说不定呢。究竟是锂电池好还是铅酸电池好?现阶段来说,只能凭需求来定。

锂电池与普通铅酸电池的对比

锂电池与普通铅酸电池的对比近年来,国家对绿色环保节能事业越来越重视,动力锂电池技术的也越来越成熟,锂电池电动车行业迅速升温,消费者对锂电池电动车也越来越认可。现在提倡节能环保,提供新型能源,神圣小丑锂电池电动车不仅能带给我们方便,同时绿色环保,不会排放对空气造成污染的尾气,是目前国内市场最受欢迎的电动车电池,那么神圣小丑锂电池到底有哪些好处? 神圣小丑锂电池循环寿命长:锂离子电池以1C倍率进行充、放电,其循环寿命大于等于500次,第500次时的电容量,电池容量大于70%。而普通铅酸电池即使以0.5放电,以0.15C以充电,其循环寿命小于等于350次,电容量小于等于60%; 神圣小丑锂电池低温度放电性能好:锂离子电池可在-25度时正常工作,其电容量可达标称容量的70%,而普通铅酸电池在-10度时的电容量的50%,在-25度时不:能正常工作; 神圣小丑锂电池荷电保持能力强:将充满电的锂离子电池组,放

置两个月后,其电容量大于等于80%。而普通铅酸电池放置两个月,仅为标称容量的40%-50%; 神圣小丑锂电池续行能力强:由于锂离子电池组的重量仅为普通铅酸电池的30%,因此在相同的电压,电容量下,锂离子电池的续行能力强; 神圣小丑锂电池比能量高:由于锂离子电池的体积仅为普通铅酸电池的30%,因此当使用相同的空间时锂离子电池的能量储备比普通铅酸电池大; 神圣小丑锂电池工作温度范围宽:锂离子电池可在-25度到55度范围内工作,而铅酸电池只能在10度到40度范围内工作。 神圣小丑锂电池充电时间短:由于锂离子电池具有可大电流充电的特性,因此充电时间只要4-5小时,而普通铅酸电池则需要8至10小时; 神圣小丑锂电池绿色环保性能高:与普通铅酸电池拥有大量对人体,环境有害的重金属铅相比,锂离子电池属于是高环保型的产品; 神圣小丑锂电池可以大电流放电:锂离子电池在1C倍率下大电流放电,其容量仅为额定电容量60%; 神圣小丑锂电池大电流放电不影响循环寿命:锂离子电池以1.5C 倍率下大电流放电,对其循环寿命毫无影响。而普通铅酸电池在1.5C 倍率下大电流放电,其循环寿命仅为标称循环寿命30%-40%。 电能存储,绿色革命,在资源缺席和环境污染的意义严重下,再生资源的有效存储正变得越来越重要了,神圣小丑凭借着强大而经济

电动车锂电池与铅酸蓄电池的区别

电动车锂电池与铅酸蓄电池的区别 池的区别:铅酸蓄电池是由浸渍在电解液中的正极板(二氧化铅PbO2)和负极板(海绵状纯铅Pb)组成的,电解液是硫酸(H2SO4)的水溶液。当蓄电池和负载接通放电时,正极板上的PbO2 和负极板上的Pb都变成PbSO4,电解液中的H2SO4减少,相对密度下降。 充电时按相反的方向变化:正极板上的 PbSO4还原成过氧化铅PbO2;负极板上的PbSO4还原成绒状Pb;电解液中的硫酸增加,相对密度变大。如略去中间复杂的化学反应过程,可用下式表示: 充电 PbO2 + Pb +2H2SO4 ?2PbSO4 +2H2O 正极负极电解液放电正负极(1)正极板正极板的结构是板栅中填满铅膏,板栅是铅的合金,铅膏经生产时化成和使用后主要成分是α二氧化铅PbO2和β二氧化铅PbO2。 (2)负极板负极板的结构也是板栅中填满铅膏,铅膏经生产时化成和使用后主要成分是海绵状(绒状)纯铅Pb。 正常充、放电时,正负极板上参加电化学反应的物质统称活性物质,正极主要指PbO2和PbSO4,负极主要指纯铅Pb和PbSO4。 (3)隔板隔板是电动车锂电池的重要组成,不属于活性物质。隔板本身是多孔的绝缘材料,电解液能顺利穿过它。传统的

隔板主要作用是防止正负极板短路,自从超细玻璃纤维隔板(AGM)出现后,极大地改善了铅酸蓄电池的性能,被广泛用于密封阀控电池。超细玻璃纤维隔板具有防止正负极板短路、吸附储存电解液、提供氧气通路等功能。 (4)板栅板栅在电池中的作用是:支持活性物质,充当活性物质的载体,传导和汇集电流,使电流均匀分布在活性物质上。负极的板栅与负极活性物质接触的亲和性相对正极板栅与正极活性物质间亲和性要好得多。 为了增加电池的容量,一般由多块极板组成极群,即多块正极板和多块负极板分别用连接条(也叫做汇流排)焊接到一起。上述电池构造都是指一个格(Cell),标称2V。电动车常用的电池标称电压为12V,是由6个独立格在内部串联而成,对外只有两个极耳(也叫极桩或极柱)。电动自行车用铅酸蓄电池极柱都是铜材的,内部分别和第一个独立格的正极汇流排相连以及最后一个独立格的负极汇流排相连,出口处套有“O”型密封圈,防止酸沿极耳溢出。封口处红色的环氧树脂胶带表示正极,蓝色或黑色的环氧树脂胶带表示负极。同理,标称6V的电池是由3个独立格串联而成的。相邻格的正负极群由连接桥(过桥)相连,电动车电池的过桥一般不用穿孔方式,而是像彩虹一样越过电池底槽上口跨接两端。文章来源锂电池生产厂家深圳沃尔德电子,转载请留版权。

锂电池与铅酸电的比较

锂电池与铅酸电的比较 一、锂离子电池 “锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。1912年锂金属电池最早由Gilbert N. Lewis提出并研究。20世纪70年代时,M. S. Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。随着科学技术的发展,现在锂电池已经成为了主流。 锂离子电池具有如下的优点:比能量大;比功率高;自放电小;无记忆效应;循环特性好;可快速放电,且效率高;工作温度范围宽;无环境污染等。目前采用锂离子蓄电池的有电动大巴、新能源汽车、电动自行车、后备电源、储能电源、便携式电源等等在市场上已经大面积应用了。 由于锂离子蓄电池是绿色蓄电池,不会因废弃造成二次污染,容易被政府环保部门接受,并且有较好的出口前景,目前虽然价格比较贵,但仍有较大降价空间。我国政府也在积极引导市场,并对锂电池--磷酸铁锂电池应用在电动大巴、新能源汽车上国家给予补贴。应用在储能方面的国家相关部门在作补贴政策的前期调研工作,预计近几年会出台补贴政策。 二、铅酸电池和锂电池性能对比

三、锂电池作为一种高效、可循环使用的能量转换与储存方式的蓄电池,它已成为未来一系列高新技术产业发展中的重大需求。目前,国内外已经把锂电池应用在多个领域,如新能源汽车、手机、通信基站、光伏电站以及太阳能路灯等。并且锂电池随着技术的逐逐渐成熟,生产规模化,锂电池的售价也会降低,将来会应用于更多行业。综合分析,我司建议后续在采购蓄电池时选用锂电池。 北京金源环宇电源科技有限公司 2016年12月26日

锂电池与铅酸电池对比和发展趋势分析

锂电池与铅酸电池对比和发展趋势分析关键词:锂电池,铅酸电池,太阳能,石墨烯,动力电池 电池泛指能产生电能的小型装置,对发电系统的储能非常重要,特别是光伏发电系统。储能电池的种类非常多,太阳能供电系统用何种储能电池才最合适安防行业、通信行业等泛IT系统建设使用?储能电池各自的优缺点和使用特性如何?电池技术未来的发展趋势如何?本文是新竹科技结合自身多年的IT及物联网行业从业经验,对电池技术的总结和趋势分析。 目前常用的电池有三种:铅蓄电池、镍氢电池、锂离子电池。较普遍的认识是,铅蓄电池是电动车、汽车点火、太阳能光伏及UPS电源系统等行业常用的电池,缺点是重量较大、寿命断、有记忆效应,优点是价格低;锂离子电池是一般手机、电子设备等常用的电池,优点是重量轻、容量大、寿命长、无记忆效应,缺点是稳定性差(锂电的安全问题随着各种保护电路的设计使用,安全问题已经基本解决);镍氢电池应该界与两者之间,低不成高不就,所以应用范围远不及前两者。事实情况真的是这样吗?电池行业的发展趋势将向何处去?新竹科技一直立足物联网产品和应用,一直关注电池技术的发展,本文通过对比对主流的电池技术探讨电池的发展趋势。 首先,我们先对比锂电池和铅酸电池的原理和发展历程。 1、铅酸电池:铅酸电池(VRLA),是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。铅酸电池放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。在放电过程中遵循双硫酸盐反应规则,正负极材料上都有PbSO4晶粒生成,铅酸蓄电池的标称电压是2V,理论比能量是166.9Wh/kg,实际比能量为35~45Wh/kg。由于电解液存在的导电性,使得铅酸电池存在自放电和充电的时候不允许大电流充电,所以一般铅酸电池的充电都限制在0.3C以下。

铅酸蓄电池基本知识

电池:通过化学反应提供直流电能的电化学装置 电池是一种能量转化与储存的装置,它主要通过化学反应将化学能或物理能转化为电能。它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。 Cell 和 Battery的区别: ① Cell 是指一般的小型和单个电池,更强调单个单元; ② Battery是指蓄电池和电池组,更强调系统或者组; ③Battery 运用得更加广泛,是电池的通用名称,包括锂电池、镍氢电池、蓄电池、干电池等等。 一次电池与二次电池的异同点: 一次电池只能放电一次,二次电池(也叫可充电电池),可反复充放电循环使用,可充电电池在放电时电极体积和结构之间发生可逆变化,一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低,另外,一次电池的自放电远小于二次电池。 电池种类 一次电池:不可充电,如锌锰、碱性、锂电池 二次电池:可充电,如铅酸、镍氢、锂离子电池 高级电池:结构特殊,性能卓越,如锌空电池,以空气做正极,体积很小,用于助听器。 燃料电池:Fuel Cell, FC, 将存在于燃料(氢气)和氧化剂(氧气)中的化学能转化为电能的装置,不是蓄电池,是发电机,1839年由英国的Grove发明。 太阳能电池:物理电源,通过光电效应或光化学效应直接把光能转化为电能的装置,1883年Charles发明首块太阳能电池,前景广阔,目前成本高,限制了应用。 电池由外壳、正极、负极、端子、隔膜等组成 外壳:一般是塑料或金属材质 正极:电流的流出端 负极:电流的流入端 端子:内部与活性物质相连,外接用电器

铅酸电池和锂电池区别全解

1,环保性,锂电池没有污染(不绝对),而铅酸电池有重金属铅的污染 2,安全性,动力型锂电池(锰酸锂、磷酸铁锂)材料不同安全性有所差别,铅酸电池技术已经相当成熟,安全性比锂电池高。 3,比能量,锂电池的质量比和体积比能力都高于铅酸电池大概约40%。 4,价格方面,相同容量的锂电池价格是铅酸电池的一倍还多些 5,使用寿命,目前通用的磷酸铁锂充电1500次,没有记忆效应,充电1500次后约85%的存储能力,而铅酸电池为500次左右,而且记忆效应明显 6,自放电率,锂电池月自放电<3%,铅酸电池15~30%,差异明显7,放电特性,简单的说同样容量的电池,大电流放电的情况下,锂电池要比铅酸电池多放出来约30%的电 8,电压平台,锂电池电压平台都>3V,铅酸电池是2V 废旧铅酸蓄电池回收利用流程: 一、将废旧铅酸蓄电池利用专用环保车辆运至熔炼厂仓库; 二、将废旧铅酸蓄电池的电解液倒入沉淀池进行药物处理; 三、拆解废旧铅酸蓄电池,将外壳送至塑料回收厂进行专业处理; 四、分拣废旧铅酸蓄电池的隔板,送至专业厂回收处理; 五、将分拣后的废极板送入大型反射炉冶炼,做成铅锭,循环

利用; 六、冶炼过程中产生的废水流入沉淀池,和电解液一起进行药物处理; 七、冶炼过程中产生的废渣,送专业炼铁厂处理; 八、冶炼过程中产生的废烟,经布袋除尘装置处理后,安全排放,至此,废旧铅酸蓄电池环保回收流程结束。 固体废物、危险废物跨省转移许可固体、危险废物包装、运输、利用或处置方案;接受单位利用和处置固体、危险废物可行性技术证明材料 固体废物、危险废物跨省转移许可对于专业从事危险废物收集、利用、处置的接收单位,须提供危险废物经营许可证 固体废物、危险废物跨省转移许可暂存、运输、利用、处置固体、危险废物的安全规章制度、污染防治措施、事故应急救援措施 固体废物、危险废物跨省转移许可《安徽省工业危险废物跨省转移申请书》及县(区)环保局初审意见

超级电容的特点、铅酸电池的对比!

超级电容的特点: 1.寿命超长(1-10万次)、安全可靠、储能巨大 2.充电快速(0.3秒~15分钟)的特点 3.超级电容器充放电效率高(98%); 4.在很小的体积下达到法拉级的电容量; 5.无需特别的充电电路和控制放电电路 6.和电池相比过充、过放都不对其寿命构成负面影响; 7.从环保的角度考虑,它是一种绿色能源(活性炭),不污染环境 8.超级电容器可焊接,因而不存在象电池接触不牢固等问题; 9.在储能机理上,高度可逆,寿命很长,可千万次反复地充、放电,而且有很大的电流;具有很宽的电压范围和工作温度范围。 10.兼具传统电容器的大电流快速充放电特性与电池的储能特性,填补了普通电容器与电池之间比能量与比功率的空白,其放电比功率较蓄电池高近十倍,弥补了铝电解电容和可充电电池之间的技术缺口,同时又克服了两者的缺陷,既具有电池的能量贮存特性,又具有电容器的功率特性,它比传统电解电容器的能量密度高上千倍,可达1000W/kg数量级,而漏电流小数千倍。 11.它可在极低温等极端恶劣的环境中使用,具有安全可靠、适用范围宽、绿色环保、易维护等特点,是改善和解决电能动力应用的突破性元器件。 12.它具有高至数千法拉甚至上万法拉的超大电容量,储电能量大、时间长;能够瞬间释放数百至数千A电流,大电流放电甚至短路也不会对其有任何影响;可充放电10万次以上而不需要任何维护和保养,寿命长达十年以上。 13.它可用于以极大电流瞬间放电的工作状态,而不易产生发热着火等现象;充电时间很短,可在几秒之内完成,是一种理想的大功率二次电源。 14.超级电容器比功率大,其特性是:充电时,充电量大,充 电量快;放电时,放电量大,放电量快。(在电动车辆运行时,起步快,加速快,爬坡有力,比铅酸电池大30多倍,这是电动车能用得上最重要的性能) 超级电容器与铅酸电池调查比较: 1、超级电容器是绿色能源(活性炭),不污染环境。 2、超级电容器寿命长(1-10万次);铅酸电池寿命短(500次),

电动车锂电池与铅酸蓄电池的区别

电动车锂电池与铅酸蓄电池的区别 电动车锂电池与铅酸蓄电池的区别:铅酸蓄电池是由浸渍在电解液中的正极板(二氧化铅PbO2)和负极板(海绵状纯铅Pb)组成的,电解液是硫酸(H2SO4)的水溶液。当蓄电池和负载接通放电时,正极板上的PbO2 和负极板上的Pb都变成PbSO4,电解液中的H2SO4减少,相对密度下降。 充电时按相反的方向变化:正极板上的PbSO4还原成过氧化铅PbO2;负极板上的PbSO4还原成绒状Pb;电解液中的硫酸增加,相对密度变大。如略去中间复杂的化学反应过程,可用下式表示: 充电 PbO2 + Pb + 2H2SO4 ? 2PbSO4 + 2H2O 正极负极电解液放电正负极 (1)正极板 正极板的结构是板栅中填满铅膏,板栅是铅的合金,铅膏经生产时化成和使用后主要成分是α二氧化铅PbO2和β二氧化铅PbO2。 (2)负极板 负极板的结构也是板栅中填满铅膏,铅膏经生产时化成和使用后主要成分是海绵状(绒状)纯铅Pb。 正常充、放电时,正负极板上参加电化学反应的物质统称活性物质,正极主要指PbO2和PbSO4,负极主要指纯铅Pb和PbSO4。 (3)隔板 隔板是电动车锂电池的重要组成,不属于活性物质。隔板本身是多孔的绝缘材料,电解液能顺利穿过它。传统的隔板主要作用是防止正负极板短路,自从超细玻璃纤维隔板(AGM)出现后,极大地改善了铅酸蓄电池的性能,被广泛用于密封阀控电池。超细玻璃纤维隔板具有防止正负极板短路、吸附储存电解液、提供氧气通路等功能。 (4)板栅 板栅在电池中的作用是:支持活性物质,充当活性物质的载体,传导和汇集电流,使电流均匀分布在活性物质上。负极的板栅与负极活性物质接触的亲和性相对正极板栅与正极活性物质间亲和性要好得多。 为了增加电池的容量,一般由多块极板组成极群,即多块正极板和多块负极板分别用连接条(也叫做汇流排)焊接到一起。上述电池构造都是指一个格(Cell),标称2V。电动车常用的电池标称电压为12V,是由6个独立格在内部串联而成,对外只有两个极耳(也叫极桩或极柱)。电动自行车用铅酸蓄电池极柱都是铜材的,内部分别和第一个独立格的正极汇流排相连以及最后一个独立格的负极汇流排相连,出口处套有“O”型密封圈,防止酸沿极耳溢出。封口处红色的环氧树脂胶带表示正极,蓝色或黑色的环氧树脂胶带表示负极。同理,标称6V的电池是由3个独立格串联而成的。相邻格的正负极群由连接桥(过桥)相连,电动车电池的过桥一般不用穿孔方式,而是像彩虹一样越过电池底槽上口跨接两端。文章来源锂电池生产厂家深圳沃尔德电子,转载请留版权。

铁锂电池与铅酸对比

一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: 充满电后的磷酸铁锂蓄电池静置15分钟后回落到,电池开口电压。 单体工作电压为~。 在以下可以充电性能稳定。 单体电池放电时,以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。

二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。 基站可分为如下两种: (1)宏基站和室内分布信源站 GSM宏基站的功率可按载频计算,分为乡镇(4/4/4)46A、市区(12/12/12)130A、特大密集市区(15/15/15)160A。 TD宏基站的功率分为单频段站(含1个BBU和3个RRU)1200W 25A、双频段站(1个BBU和6个RRU)2100W 44A,其中1个BBU300W,1个RRU300W。 室内分布信源站的功率分为单频段站(含1个BBU和5个RRU)1000W 21A、双频段站(1个BBU和10个RRU)1400W 29A、三频段站(1个BBU和15个RRU)2100W 44A,其中1个BBU600W,1个RRU80W。 宏基站和室内分布信源站的蓄电池后备时间为:市区3h,乡镇5h,山区7h。 (2)室内分布的RRU 室内分布的RRU,可包括1个或多个RRU,单个RRU耗电量80W ,需电池后备时间4小时。 根据计算,采用铅酸蓄电池的配置如下:

相关文档
相关文档 最新文档