文档视界 最新最全的文档下载
当前位置:文档视界 › 车载电源管理系统设计

车载电源管理系统设计

车载电源管理系统设计
车载电源管理系统设计

2009年5月电工技术学报Vol.24 No. 5 第24卷第5期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY May 2009 车载电源管理系统设计

张新丰杨殿阁薛雯陆良连小珉

(清华大学汽车安全与节能国家重点实验室北京 100084)

摘要设计了一种适用于分布式汽车电气控制系统的车载电源管理系统。根据车载电源管理的需要,以分布式控制的设计思想设计了智能继电器,实现了对电源通道的控制。针对电源通道过电流保护的要求,采用了选择性过载保护、瞬动保护和后备保险丝三种保护方法,达到了对多种过电流情况的保护功能。最后设计出该系统的原型样机,通过实验测试,并且得到应用。

关键词:车载电源电源管理系统过电流保护智能继电器电源通道

中图分类号:TM561

Automotive Electrical Power Management System Design

Zhang Xinfeng Yang Diange Xue Wen Lu Liang Lian Xiaomin

(Tsinghua University Beijing 100084 China)

Abstract A kind of electrical power management system(EPMS) which is suitable for automotive distributed electrical system is proposed. According to the requirement of power supply in automotive distributed control system, a kind of smart relay is designed to manage the electrical power supply. Selective overload protection, instant protection and fuse protection method are adopted to meet over current protection requirement. Prototype is developed and tested, which has come into application.

Keywords:Automotive electrical source, electrical power management system, over current protection, smart relay, power supply channel

1引言

随着总线技术的广泛应用,汽车电气系统总的发展趋势是分布式控制系统代替集中式控制系统[1],且智能化器件越来越多[2-3]。在这样的系统中,最后的发展结果是电力线束与信号(通信、控制)线束互相独立[4],汽车的电源网络作为一个相对独立的系统存在。

出于燃油经济性、动力性和舒适性的原因,车载电力电子设备广泛使用,汽车上电器的总功率不断增加,高端轿车的平均电功率从20世纪70年代不到500W上升到2005年的3000W,且还在不断增加[5],因此汽车用电安全越来越受重视[6],车载电源的管理问题也越来越重要。车载电源管理系统是今后汽车电气系统不可缺少的组成部分。

本文针对分布式汽车电气控制系统对车载电源的要求,基于分布式控制和分散控制的思想,提出了一种基于智能继电器的车载电源管理系统,目的在于加强车载用电的安全和管理。

2 车载电源管理系统

2.1 车载电源管理系统的功能

国内外许多学者提出了未来各种可能的车载电源的结构和设计方法[7,9],未来的车载电源很可能是12V/24V/36V多种电制并存或混合多电制的电力系统;未来的车载电力负载包括各种控制器、车身附件和起动机,还可能增加许多现在用机械来驱动的负载,比如空调压缩机等。

车载电源管理系统在车载电源和车载电力负载之间,起到对车载电源的管理作用,包括:①对蓄电池进行SOC检测,以实现对蓄电池的亏电保护。

②稳压电源输出,以满足车载部分特殊控制器对稳

北京市科委“智能电气”资助项目(041502305)。收稿日期 2007-12-05 改稿日期 2008-05-30

210 电工技术学报 2009年5月

定电压的需求。③电源控制功能,即对整车电力网络的断开和接合控制。④过电流保护功能,包括对电力网络输电线的短路保护和用电器过电流保护。

2.2 分布式系统结构

车载电源管理系统的原理框图如图1所示,12V 稳压控制模块,用于输出12V常通电源和12V可控稳定电压。其中12V常通稳压电源用于车载常通用电器供电,比如某些CPU时钟或需要供电的内存等,12V可控稳定电压用于行驶状态下对需要稳定电源的ECU数字电路部分供电。霍尔电流传感器H 监测蓄电池的充放电电流和电压,用于估计蓄电池SOC值。

图1 车载电源管理系统原理框图

Fig.1 Schematic of automotive electrical power

management system

电源管理系统以电源通道的形式给整车电气系统供应电能。每个通道由1个智能继电器进行控制。如图1中智能继电器R0~R n,分别对电源通道P0~P n的电流进行控制。

2.3 基于智能继电器的电源通道设计

电源通道是具有电流控制功能并具备过电流保护功能的电能传输通道。智能继电器实现了对电源通道的电流控制和电流保护功能。

模拟半导体功率器件,如MOS场效应晶体管、IGBT等,由于有诸多优点[10],正在取代汽车上传统的继电器进行电流控制[11]。某些功率半导体器件甚至集成了过电压、过电流和过热的保护功能[12-13]。但由于半导体功率器件其导通内阻较大,焦耳热效应会引起较大的能量损失,因此在车载大直流电源(几十安到上百安)开关控制上的应用仍受到限制[14]。

本研究选择了一种普通车用继电器,在其基础上添加了一个单片机控制系统,如图2所示。它包括电压检测电路、电流检测电路、瞬动保护电流和初级线圈驱动电路,此外还有与车载总线通信的总线接口。

图2 智能继电器基本结构

Fig.2 Structure of smart relay

电流检测电路包括霍尔传感器和低通运算放大电路两部分,智能继电器能实时检测线路上的电流并根据由总线获得的参考电流大小实现过载保护。智能继电器采用LIN总线与车载网络进行信息交换。

普通继电器具有对一定倍数的过载电流进行分断的能力,但对于短路大电流无法断开[14]。因此短路保护仍需要添加短路保护器件,本研究选择了双金属型自恢复熔丝作为后备的短路电流保护器件。

3 电源通道的过电流保护方法

3.1 电源通道保护设置

智能继电器设置了3个电流保护点对电源通道进行过电流保护,以实现各种不同过电流情况的保护,如图3中A、B、C所示。

图3 电源通道保护设置

Fig.3 Protection points of power supply channel

其中A为短路电流分断保护点,主要对瞬时短路电流进行分断保护,依赖图2所示的车用自恢复保险;B为基于硬件控制电路的继电器分断保护点,对继电器分断能力范围内的过载电流进行快速分断;C是基于单片机控制的延时过载保护点,该保护是一种限时电流分断保护,以获得电源通道保护的选择性[15]。

由于电源通道同时供给多个负载,发生在负载处的过电流必须由负载对应的保护器件加以切断,如图3所示的D处的控制器内部保护点,只有在该器件失效的情况下,C处的保护点才能发生作用,因此选择性是必须的。

3.2 基于参考电流的选择性保护

目前智能断路器普遍采用三段式过载保护特

第24卷第5期

张新丰等 车载电源管理系统设计 211

性,即长延时过载保护、短延时过载保护及短路保护[16],以获得良好的选择性效果。选择性保护以实时参考电流为依据,并采用长延时过载保护和短延时过载保护方法。

参考电流是根据车载电器的工作状态估计出的理论上的电源通道中电流的大小,记做I R 。参考电流的计算是将该通道上所有工作中的负载的额定电流相加得到,智能继电器可以从车载网络的信息中获得该值。设电流通道中的实际电流值为I ,设过电流倍数为K

R

I K I =

(1)

长延时过载保护特性针对在一定范围内长时间过载的保护,短延时过载保护特性适用于过载比较大的情况,这两种延时保护均具有反时间特性,即电流越大动作时间越短。

由于采用了参考电流而非电流通道的额定电流作为判断的依据,因此延时保护曲线仅以过电流倍数为主要保护依据。长延时和短延时过载保护采用模拟断路器触头的发热过程的方法,其动作时间T 与过电流倍数K 的关系可以表示为

21112222

2K T K t K K K K T K t K K

?=<

(2) 式中 K 1——起保护作用过电流倍数;

K 2——起短延时保护的过电流倍数; t 1, t 2——对应过电流倍数下的动作延时。 图4a 是本文设计的基于参考电流的过载保护特性曲线,K 1、K 2、t 1和t 2可根据实际情况设定;图3中D 处用到一种高分子PTC 的熔丝作为负载的保护器件,其动作曲线如图4b 所示。那么根据选择性要求,图4b 中的2条曲线均应位于图4a 曲线的下方,过电流倍数K 1和K 2分别设置为1.35和2;

图4 过载保护特性曲线

Fig.4 Protection curve of over load current

延时参数t 1和t 2应小于对应过电流倍数下所有控制器内保护延时的最小值。 3.2 短路电流双重保护

图3中A 、B 为短路电流的保护点。当发生瞬时大电流时,在极短时间内需要完成电路切断,实际上,基于参考电流的过载保护一方面由于存在较大的采样和计算判断的间隔,另一方面电器负载的电流远远小于电源通道的额定值,因此无法在瞬间起到断开保护的作用。普通继电器的分断能力非常有限,而短路电流往往数倍甚至数十倍于继电器额定电流,因此还需要考虑继电器分断失败的情况。本研究不仅采用了一个瞬动保护电路来实现继电器的分断保护,而且采用了双金属自恢复保险作为继电器分断保护失败的后备保护器件。

瞬动保护电路如图5所示,U 1是霍尔传感器输出的实际电流对应的电压值,U 0是瞬动保护动作点的基准电压。

图5 瞬时动作保护电路 Fig.5 Instant protection circuit

U 1经RC 滤波和跟随器后与U 0进行比较,若U 1超过U 0,则比较器输出低电平信号,使R&D 触发器的Q 端输出低电平,这样光隔离器截止,场效应晶体管也截止,达到控制继电器断开的目的。断开后尽管继电器电流返回到零,U 1返回到小于U 0的状态,但由于R&D 触发器的状态锁存作用,光隔离器和场效应晶体管仍然保持截止,直到单片机的控制信号P 0对上述电路作出复位为止。

瞬动保护电路动作延时由如下几个部分组成: (a )RC 滤波环节,它是一阶惯性环节,其延时t RC 为

1ln 11RC RC t T K K ?

?=??>??

??

(3)

式中,T RC =R ×C ,是RC 环节的时间常数。滤波环节的延时取决于过电流倍数和时间常数;

(b )霍尔电流传感器的响应时间,约为O (×10?6)s ;

(c )R&D 触发器的响应时间,为O (×10?9)s ; (d )光隔离器断开的延时,典型值为50×10?6s ; (e )功率MOSFET 管的导通和截止时间,约为

212

电 工 技 术 学 报 2009年5月

10?9s ;

(f )继电器的断开延时,为2×10?3s 。 根据分析,与(a )和(f )相比,(b )~(e )环节的延迟均可忽略不计,因此瞬动保护电路延时t IPC 为

3IPC 1ln 1210s RC t T K ??

?=??+×????

(4)

自恢复保险作为后备保护,其额定电流大小等

于电源通道的额定电流,保证在电源通道额定电流下持续工作。

4 电源管理系统设计验证及应用

4.1 电源管理系统原型样机

图6所示是本研究设计的电源管理系统原型样机。

图6 车载电源系统原型样机

1—电源通道 2—普通车用继电器 3—霍尔电流传感器 4—继电器的控制器 5—熔丝盒 6—发电机 7—起动机

8—蓄电池正极接线柱

Fig.6 Prototype of EPMS

12V 稳压电源输出直接采用DC/DC 稳压模块输出,并有蓄电池的充放电电流测量。该系统有5路50A 和2路100A 的电源通道。 4.2 选择性过载保护算法实现

选择性过载保护算法基于8位单片机来实现。单片机对电源通道电流进行采样,设采样周期为T S ,同时从车载网络接收参考电流。

由式(1)计算第i 时刻的过电流倍数为K i ,由式(2)计算得到对应的保护延时为T i ,定义剩余时间比τi 为该时刻距离发生保护动作的时间t 与当前电流对应的理论延时的比

/i i t T τ=

(5)

电流保护动作的算法过程为

01S 1

/i i i

T T τττ?==?

(6)

当距离发生保护动作时间t 满足下列关系时保护动作发生,即控制继电器断开

t <T S 即 S

i i T T τ<

(7) 即距离保护动作剩余时间不到1个采样周期时,在该周期内发生保护动作。

根据控制器内部保护器件的特点,过电流倍数

K 1和K 2分别设置为1.35和2;t 1和t 2分别取45s 和5s 。

4.3 电流保护试验

电流保护功能的测试采用AV-900型电池测试设备,对蓄电池进行固定倍率定时放电,以模拟过载和短路电流。利用Canalyzer 模拟车载网络环境,输入参考电流,同时将智能继电器测得的实际电流值输出到总线上,达到监测目的。

对电源通道进行过载电流测试,通过CAN 总线输入智能继电器的参考电流为10A ,设定AV —

900电柜放电参数为15A —60s 和25A —60s ,其结果如图7所示。

图7 过载保护延时特性

Fig.7 Time delay of over load protection

当过载系数为1.5和2.5时,智能继电器分别在

36s 和3.2s 后进行了分断,符合3.2节中设定的选

择性保护延时要求。

对额定电流为50A 的电源通道进行短路电流测试,设定AV —900电柜放电参数为100A —1s 和

150A —1s ,对电源通道电流的检测结果如图8所示。

第24卷第5期张新丰等车载电源管理系统设计

213

图8 短路电流保护结果

Fig.8 Short current protection

从实验看出,继电器虽然不具备分断大电流的能力,但是由于瞬动保护电路的作用,电流在上升的过程中已被分断,分断时电流为预计的额定电流。此时自恢复保险(即图3中A处的保护)尚未起作用,也就是说一旦继电器分断不成功,短路保护仍然有效。

4.4 电源管理系统应用

该电源管理系统样机已用于某豪华旅游客车上。该客车的分布式电气系统包括1个CAN网络(23个CAN节点)和6个LIN网络。分布式电气系统的电源网络如图9所示,其中C1~C10为CAN 网络上的功率需求点,L1~L6是LIN网络上的功能需求点。

图9 某大客车分布式系统的电源网络

Fig.9 Electrical power net in bus

利用该电源管理系统,对整车的功率负载分配,见下表。整车所有电能均来自电源管理系统,该系统能持续正常工作。

表 基于电源通道的功率分配

Tab. Power distribution based on power supply channel

通道电流/A功率需求点功率/W

1 50 C1, C2, C5, L1, L

2 1170

2 50 L

3 1220

3 50 C6, C7, C8, C9, L4, L5, L6 1150

4 50 预留0

5 50 预留0

6 150 C10 800

7 150 C11 800 5 结论

本文根据汽车分布式系统对电源的要求,设计

了一个基于智能继电器的车载电源管理系统。原型

样机的测试结果证明,基于单片机的选择性电流过

载保护算法有良好的过载延时断开功能,而瞬动保

护电路具有对短路电流的瞬间分断保护功能。原型

样机的应用表明,该系统能满足车载电源管理的基

本要求,适合于为分布式汽车电气控制系统提供电

源管理功能。

参考文献

[1] Leen G, Heffernan D, Dunne A. Digital networks in

the automotive vehicle[J]. Computing & Control

Engineering Journal, 1999, 10(6): 257-266.

[2] Mark E Russell. Integrated automotive sensors[J].

IEEE Transaction on Microwave Theory and

Techniques, 2002, 50(3): 674-677.

[3] Chindris Garbriel. Integrating sensor devices in a LIN

bus network[C]. 26th International Spring Seminar on

Electronic Technology, 2003:150-153.

[4] Kassakian J G, Wolf H C, Miller J M. Automotive

electrical systems circa 2005[C]. IEEE Spectrum,

1996, 33(8): 22-27.

[5] Kassakian J G. Automotive electrical systems-the

power electronics market of the future[C]. 15th

Annual on Applied Power Electronics Conference and

Exposition, 2000:3-9.

[6] Price C J, Snooke N A, Lewis S D. A layered

approach to automated electrical safety analysis in

automotive environments[J]. Computers in Industry,

2006, 57(5): 451-461.

[7] Khan I A. Automotive electrical systems: architecture

214 电工技术学报 2009年5月

and components[C]. Proceedings of 18th Digital

Avionics Systems Conference, 1999, 2: 24-29.

[8] Afridi K K. Evaluation of advanced automotive

electrical system architectures using MAESTrO[J].

Power Electronics in Transportation, 1998:85-92.

[9] Altes J M, Dolcet E G, Solorzano B P. Analysis of the

most appropriate electrical architecture and communication bus for the new dual voltage 14/42 V

system[C]. IEEE 2002 28th Annual Conference of the

Industrial Electronics Society, 2002, 2:1687-1692. [10] 英飞凌科技公司. 半导体技术[M]. 德国慕尼黑:英

飞凌科技公司, 2004.

[11] David J Perreault, Khurram Afridi, Iftikhar A Khan.

Automotive applications of power electronics[C].

Power Electronics Handbook, 2007: 635-659.

[12] 黄先进, 蒋晓春, 叶斌, 等. 智能化IGBT驱动电路

研究 [J]. 电工技术学报, 2005, 20(4):89-93.

Huang Xianjin, Jiang Xiaochun, Ye Bin, et al.

Research on intelligent IGBT drive circuit[J].

Transactions of China Electrotechnical Society, 2005,

20(4):89-93.

[13] Sakamoto Kozo, Fuchigami Nobutaka, Takagawa

Kyoichi. Intelligent power MOSFET with reverse battery protection for automotive applications[C].

IEEE International Symposium on Power Semicon-

ductor Devices & ICs , 1996:57-60.

[14] 夏天伟, 丁明道. 电器学[M]. 北京:机械工业出版

社, 1999.

[15] 谷水清, 李凤荣. 电力系统继电保护[M]. 北京: 中

国电力出版社, 2005.

[16] Klaus Kosack. 低压开关电器和开关设备手册——

选用准则与设计指南[M]. 胡明忠, 等译. 北京: 机

械工业出版社, 1999.

作者简介

张新丰男,1980年生,博士研究生,主要研究方向为车载网络、汽车电子控制系统。

杨殿阁男,1973年生,博士,副教授,主要研究方向为汽车电子和车载自主导航。

电动汽车车载充电机设计与实现

科技信息2013年第5期 SCIENCE&TECHNOLOGYINFORMATION作者简介:瞿章豪(1987—),男,硕士,从事电力电子器件、电动汽车充放电研究。徐正龙(1989—),男,硕士,从事电力电子器件、电动汽车充放电研究。 0引言 随着现代高新技术的发展和当今世界环境、能源两大难题的日益突出,电动汽车以优越的环保和节能特性,成为了汽车工业研究、开发和使用的热点。电动汽车的发展包括电动汽车以及能源供给系统的研究和开发,其中能源供给系统是指充电基础设施,供电、充电和电池系统及能源供给模式。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是电动汽车商业化、产业化过程中的重要环节。因此,电动汽车充电设施作为电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展[1]。研究发现,电池充电过程对电池寿命影响很大,也就是说,大多数的蓄电池是“充坏”的。因此,开发出一种性能优良的充电系统对电池的寿命和电动汽车性能具有重大的作用。 1车载充电机硬件电路设计 车载充电机电路模块如图1所示。主要包括三个部分:功率单元、保护及控制单元、辅助管理单元,其中功率单元在控制单元的配合下是把市电转换成蓄电池充电需要的精电;控制模块通过电力电子开关器件控制功率单元的转换过程,通过闭环控制方式精确完成转换功能。辅助模块主要是为控制模块的电力电子器件提供低压供电及实现系统与外界的联系。此三个单元协同作用组成闭环控制系统。下面对此系统按照所分单元进行解析。 图1 车载充电机硬件电路模块图 Figure.1 The hardware circuit module chart of Electric Vehicle ’s charger 1.1 功率单元设计解析 功率单元作为充电能量传递通道,主要包含EMI 抑制模块、整流模块、PFC 校正模块、滤波模块、全桥变换模块、直流输出模块。为防止电网与充电机之间的谐波相互影响,在电网与充电机之间加入由X 电容、Y 电容、共模电感组成的(Electro-Magnetic Interference EMI )抑 制器;为提高转换效率及降低谐波影响,在整流后加入基于BOOST 拓扑的主动式(Power Factor Correction PFC )功率因数校正器;车载充电器为高压输出,在此为提高系统抗电压应力能力,采用全桥DC/DC 拓扑变换电路。为提高输出精度,滤波单元采用π型滤波方式。在控制器作用及其他单元配合下,各模块协同作用,把电网粗电转换成电池充电所需的精电。 1.2保护及控制单元设计解析 控制单元在辅助单元及检测反馈配合下,在此单元主控器内加入智能控制算法提高系统充电能量转换效率。主要包含原边检测及保护模块、过流检测及保护模块、过压/欠压监测及保护模块、DSP 主控模块。保护及检测模块是由电阻组成的检测网络检测功率单元电压信号,通过LM317组成放大网络对检测到的信号放大,再通过光耦将此信号传递到控制端;由电流互感器TAK17-02组成的检测网络检测功率单元电流信号传到控制端。由DSP28335电路及脉冲变压器隔离驱动电路组成的控制器单元根据采集到的功率单元的电流和电压信息,对DC/DC 全桥变换器模块作出相应的充电、保护控制,使充电器能够更加安全、高效、快速的为蓄电池充电,在完成控制能量转换的同时实现保护功能。 1.3辅助管理单元设计解析 辅助单元负责为整个系统本身提供运行能量及信息交付接口。辅助管理单元主要包括CAN 通信模块、辅助电源模块、人机交互模块。CAN 通信通过研究充电器与BMS 之间通信技术,最终实现充电机与BMS 之间的通信,从而实现实时监测电池特性根据电池特性,选择电池最优充电曲线充电,加快充电速度,减少充电等待时间。系统内部需要多种压值的供电电源,因此辅助电源需满足可同时提供多路输出电源,从调整性要求出发,本文辅助电源模块采用以UC3854为主控芯片的(Flyback )反激拓扑电路,考虑对驱动电路提供驱动能量及成本、空间要求,此电路工作于CCM 模式,同时以DSP28335供电输出回路为反馈控制端,以提高系统稳定性。电池在不同的使用周期,其充电接受功率改变,同时为满足系统升级需求,加入人机交互模块,从而加入人工智能提高系统适应性。 2 车载充电机软件设计 2.1 常用充电控制方法问题分析 作为车载充电器中通用的控制方法,控制电路通常采用固定开关频率,改变脉冲宽度的方法。充电器总是工作在同样开关频率下,所需充电功率的大小靠调节脉冲宽度来实现。所需充电功率小,脉冲较窄,充电电流较小;所需充电功率大,脉冲较宽,充电电流较大[2]。在上述控制方法中,所需充电功率大的情况下,充电效率高,但所需充电功率小的情况下充电功率低。车载充电机的损耗主要有两类功率损耗:导通损耗和开关损耗。导通损耗主要由负载电流大小决定,而开关损耗与开关次数成正比,开关次数越少,开关损耗就越低。在所需充电功率小的情况下,用恒频控制方法,此时开关频率与所需充电功率大的频率相同,所以两种情况下的开关损耗相同,此为固定开关频率控制方法 电动汽车车载充电机设计与实现 瞿章豪徐正龙 (重庆邮电大学自动化学院,中国重庆400065) 【摘要】本文设计了一种适用于电动汽车充电的充电系统,为提高充电效率,提出一种针对电池的充电的超前补偿控制算法。文中详细介绍了系统硬件电路组成及算法实现过程。充电实验结果表明,硬件设计结构合理,同时该算法控制的充电过程可以达到更高的充电效率。 【关键词】电动汽车;车载充电机;超前补偿控制;变频控制技术 The Charger's Design and Implementation Based on Electric Vehicle QU Zhang-hao XU Zheng-long (Chongqing University of Posts and Telecommunications ,Chongqing ,400065,China ) 【Abstract 】This paper designs a battery charging system that ’s suitable for electric vehicle,in order to improve the charging efficiency,this paper puts forward a battery charging control algorithm based on the lead compensation.This paper introduces the hardware circuit ’s structure and the algorithm ’s realization process of the system,in detail.The Charging experimental results show that the algorithm controls the charging process can achieve more higher charging efficiency 。 【Key words 】Electric Vehicle;Vehicle ’s charger;Lead compensation control;Variable frequency control technology ○机械与电子○ 133

电力用户用电信息采集系统

三系统功能 1、术语和定义 1)电力用户用电信息采集系统 是对电力用户的用电信息进行采集、处理和实时监控的系统,实现用电信息的自动采集、计量异常监测、电能质量监测、用电分析和管理、相关信息发布、分布式能源监控、智能用电设备的信息交互等功能。包括5类用户和1个公变考核计量点: A类——大型专变用户 B类——中小型专变用户 C类——三相一般工商业用户 D类——单相一般工商业用户 E类——居民用户 F类——公变考核计量点 2)用电信息采集终端 是对各信息采集点用电信息采集的设备,简称采集终端。可以实现电能表数据的采集、数据管理、数据双向传输以及转发或执行控制命令的设备。用电信息采集终端按应用场所分为专变采集终端、集中抄表终端(包括集中器、采集器)、分布式能源监控终端等类型。 3)专变采集终端 专变采集终端是对专变用户用电信息进行采集的设备,可以实现电能表数据的采集、电能计量设备工况和供电电能质量监测,以及客户用电负荷和电能量的监控,并对采集数据进行管理和双向传输。 4)集中抄表终端 集中抄表终端是对低压用户用电信息进行采集的设备,包括集中器、采集器。集中器是指收集各采集器或电能表的数据,并进行处理储存,同时能和主站或手持设备进行数据交换的设备。采集器是用于采集多个或单个电能表的电能信息, 并可与集中器交换数据的设备。 采集器依据功能可分为基本型采集器和简易型采集器。基本型采集器抄收和暂存电能表数据,并根据集中器的命令将储存的数据上传给集中器。简易型采集器直接转发集中器与电能表间的命令和数据。 5)分布式能源监控终端 是对接入公用电网的用户侧分布式能源系统进行监测与控制的设备,可以实现对双向电能计量设备的信息采集、电能质量监测,并可接受主站命令对分布式能源系统接入公用电网进行控制。

能源管理系统

能源管理系统 能源管理系统概述 能源管理系统简单的说就是把生产企业的能源消耗如:水、气(汽)、风、电的使用过程数据,监测、记录、分析、指导。实时监控企业各种能源的详细使用情况,为节能降耗提供直观科学的依据,为企业查找能耗弱点,促进企业管理水平的进一步提高及运营成本的进一步降低。使能源使用合理,控制浪费,达到节能减排,节能降耗,再创造效益的目的。通过数据分析,可以帮助企业对每条生产线、每个工作班组以及主要耗能设备进行实时考核,杜绝浪费,并可以帮助企业进一步优化工艺,以降低单位能耗成本,提高企业综合竞争力。 为企业生产管理、计量管理、节能管理提高到一个新的概念。能源管理系统的开发应用是我们对节 能减排、节能降耗实现的一种行之有效的解决方案。唐山天辰电器有限公司愿为我们共同的发展,共同的环境,实现节能环保,恢复保持绿色生态作出贡献。 第一卷能源管理系统的组成 第二卷建立能源管理系统的意义 第三卷能源管理系统方案 第四卷能源管控系统界面案例 行业应用案例>>>能源管理系统实现功能、方案 第一卷能源管理系统的组成 系统组成:服务器主机,以太网或者局域网连通的通讯网络,无线传输部分,有线传输部分和能源管理软件,各计量点(流量计、液位计、温度、压力等),电表等部分。 硬件组成: 1、各个采集点的终端表(带 485 通讯的流量计、电表等)。 2、采集和传输数据的集成箱。 3、可以通讯的有线网络。 4、上位机主机。 软件组成: 1、终端表的通讯协议。 2、采集有线网络数据的接口程序。 3、采集无线网络的抄表软件。 4、适用的数据库。 5、分析和显示数据的能源管理软件。 界面显示: 1、各个点的数据累计值和即时问询。 2、通过运算得到的能耗值。 3、具备导入导出功能,筛选和存储。

智能车载电源管理器设计方案

车栽电源管理器在汽车电气设备控制中具有非常重要的地位。采用STC12C5410AD作为主控单元被用于交通警用车车载电气设备的电源控制,该控制系统具有低成本、可靠性高、易于实现的特点,经过检测和调试,该系统运行稳定,性能良好。 0引言 随着汽车工业和电子技术的进步,车载电气设备日益增多。交通警务车因其使用要求和场合的特殊性,更是对车载电源提出了新的要求。为实现移动警务的信息处理要求,车载电脑、视频监控设备、夜间照明设备、车载雷达测速等一些大功率的电气设备被集成于汽车内部。因此,要求对上述设备电源可靠控制,并且当汽车停止运行以后,蓄电池电压降低设定值时,切断对外围设备供电,以保证汽车点火系统的正常工作和蓄电池不会因过量放电而造成损坏。几乎所有连接至汽车电池的电子组件和电路均要求保护,以免于受到抑制、瞬态电压(高达60V)和反向电压状态的损害。同时,在蓄电池电量不足时,提示用户备份车载电脑中的数据,复位机械伸缩部件,以保证车载各个部件安全可靠的工作。 对上述实际要求,本文提出以STC5410AD单片机为主控制单元,通过误差放大器、电流检测以及电压检测电路,根据设定参数进行车载电气设备供电管理。 1 STCl2C5410AD单片机的介绍 该系列单片机是新一代高速MCU,指令代码完全兼容传统8051,速度快8-12倍,内部集成MAX810专用复位电路,外部晶振20M以下时,可省外部复位电路。4路PWM,8路高速10位A/D转换,针对电机控制,强干扰场合。该系列单片机有一个全双工的串行通讯口,单片机和PC之间进行串行通讯时必须有~个电平转换电路,因为电脑的串口是I塔232电平的,而单片机的串口是11L或CMOS电平的,我们采用了专用芯片SP232EQ呵进行转换。 ·工作电压:5.5V~3.5V单片机(5V单片机)/3.8V-2.2V(3V单片机) ·工作频率范围:0-35MHz ·用户应用程序空间10K,片上集成512RAM ·GPIO口15个,可设置成四种模式:准双向口/弱上拉,推挽,强上拉,仅为输入(高阻) ·PWM(4路)/PCA(可编程计数器阵列) ·ISP(在系统编程)/IAP(在应用编程),无需专用编程器和专用的仿真器,可以方便把设计的硬件电路接应用系统中,一边调试一边通过串口(P3.0/3.1)直接下载用户程序·8路lO位高速A巾转换器,速度均可达100KHz(10万次,秒),可做温度检测、电池电压检测、按键扫描、频谱检测等。A/D转换结果计算公式如下:

汽车车载系统的电源设计浅析

2014年第03 期 随着我国经济建设的逐渐深入,我国汽车行业的发展速度越来越快,人们生活水平的大幅提高也使得人们对汽车内部车载设备的要求越来越高。由于汽车上面所涉及到的电子设备种类繁多,开关复杂,例如汽车上面装备有具有自动功能的感性负载,如雨刮器、电动车窗、电喇叭、感性线圈等等,这些电子设备在断电的瞬间都会产生很高的感应电动势,这种瞬间作用的感应电动势会直接作用到一些与蓄电池并联的器件上,从而造成电源串扰、瞬变过压等问题,以至于导致电子元件的故障破坏。因而,根据上述这些汽车电系的特点,普通的过压、过载保护已经难以适应要求,并且随着集成电路制造技术的逐渐成熟,车载电子设备正逐步朝着体积缩小化,重量减轻化,功率减小化的趋势发展,传统的电源也渐渐不能满足要求。同时,开关电源的出现以其独有的优势逐渐被广泛采用,尤其是在一些耗电量比较敏感的便携式电子设备中,基本都能见到开关电源的身影。而本文分别从12V 汽油车车载系统和24V 柴油车车载系统两种类型对电源设计进行简要阐述。1.汽车车载系统电源概况 1.1蓄电池主要作用1.1.1在发电机电压低或不发电(发动机处于怠速、停转状态)时,向车载用电设备供电。1.1.2当汽车上同时启用的用电设备功率超过了发电机的额定功率时,协助发电机供电。1.1.3在其存电不足及发电机负载不多时,将发电机的电能转换为化学能储存起来。1.1.4蓄电池相当于一个大电容,可以吸收电路中的瞬变电压脉冲,对汽车上的电气设备及电子元件起到了保护作用。1.1.5对汽车电子控制系统来说,蓄电池也是电子控制装置内存的不间断电源。1.2汽车车载系统对电源的要求1. 2.1要求蓄电池的内阻要小,大电流输出时的电压稳定,以保证有良好的起动性能。1.2.2要求蓄电池的充电性能良好、使用寿命长、维护方便或少维护,以满足汽车使用性能要求。1.2.3要求发电机在发动机转速变化范围内都能正常发电且电压稳定,以满足用电设备的用电需求1.2.4要求发电机的体积小、重量轻、故障率低、发电效率高、使用寿命长等,以确保汽车使用性能要求。2.汽车车载系统电源设计 2.112V 汽油车车载系统电源设计2.1.1分布式系统结构车载电源管理系统中,12v 稳压控制模块可用作12V 可控稳定电压和12V 常通电源。在这电源系统中,常通稳定电源主要功能是给一些车载电器进行供电,譬如仪表盘的时钟,某些需要供电的内存等等,汽车处于行驶状态下时,ECU 数字电路的电力主要来源于12v 可控稳定电压。另外,霍尔电流传感器的使用能够有效实现对蓄电池充电、放电过程的监视,并能大概估计出蓄电池的SOC 值。总体而言,汽车的电源管理系统中供应电能的形式主要是以电源通道的形式进行,其中,在每一个通道之内,都应该设计一个配套的智能继电器实现对其的有效控制。2.1.2基于智能继电器的电源通道设计所谓的“电源通道”,就是一种具有控制电流以及能够保护过电流的电能传输通道。而随着智能继电器在车载电源系统中的应用,电源通道的电流保护和电流控制等功能在某种程度上得到了有效的强化。目前,随着科技的发展,汽车电源系统中,传统的继电器已经渐渐难以满足对电流的有效控制,因而我们引入了模拟半导体功率器件(如IGBT 、MOS 场效应晶体管等等)。实际上,有些半导体功率器件甚至还能实现过热、过压和过电流等方面的保护功能,但由于其内部导通电阻相对较大,所产生的焦耳效应会伴随着大量的热量散失,所以,模拟半导体功率器件在车载大直流电源开关控制方面的应用目前还难以真正实现。因而,本设计所选用的是一种普通车载继电器,设计过程中,为辅助其运行,还特别设计了一个单片机控制系统,这一系统中主要包括电流检测电路、电压检测电路以及初级线圈驱动电路,当然,还有连接车载总线通信的总线接口。该设计结构中,为了保证智能继电器能够实现对检测电路上电流的实时保护,以及对总线电流大小形成过载保护,我们通常会在检测电路中设置低通运算和霍尔传感器两大部分来对电路进行放大。智能继电器主要是通过LIN 总线的设计保证与车载网络之间实现信息交换,而普通继电器的主要功能就是要一定限度内的过载电流确保分断,而如果是短路状况下形成的大电流,该继电器则难以发挥作用。正是因此,在短路保护结构设计中,往往还需要设置相关的短路保护器件,例如自恢复熔丝等等。2.224V 柴油车车载电源设计2.2.1正电源设计通过采用开关电源稳压转换器,在输入端接入24V 直流,使得输出端输出5V 直流。作为所输入直流电源的载体,供电线路设计上还需要设置滤波电路。为了保护电源芯片,防止电源接反和电源过压等情况的发生,往往要通过加二极管进行控制,输入端和输出端的电容是滤波电容,则在输出端要加上发光二极管DS1进行+5V 电源指示。2.2.2负电源设计一般情况下,通过采用开关电源转换器ICL7660AM JA ,能够容易实现-5V 电源。ICL7660的工作温度范围在-55℃至+125℃之间,输入电压范围在1.5V 至10V 之间,设计过程中,通过使用CMOS 工艺所制成的小功率、高效率的低压直流转换器,一方面可以保证由单电源到对称输出双电源转换的顺利进行,另一方面还能保证倍压和多倍压的输出。结语:未来,随着汽车逐渐成为大众商品,人们对汽车的设计要求不仅仅在于行驶功能,更多的在于内部舒适度、便捷度等各方面的功能指数,因而对于车载系统的研究迫在眉睫。汽车企业只有不断深入研究汽车车载系统的电源设计理论,并不断优化 种电子设备的使用,才能在激烈的竞争中取得领先优势参考文献:[1]陈广洋,陆奎.基于STC 单片机的智能车载电源管理器设计[J].微型电脑应用.2009(01)[2]张新丰,杨殿阁,薛雯,陆良,连小珉.车载电源管理系统设计[J].电工技术学报.2009(05)[3]肖宁,吕盼稂,王余涛,竺长安.基于TEF6606车载收音机模块设计[J].微型机与应用.2010(08)作者简介:刘娟,女,汉,1979年10月出生,籍贯:湖南长沙,助教,湖南大学电气工程专业毕业,专业方向:汽车机电。汽车车载系统的电源设计浅析 刘娟(长沙职业技术学院南院汽车工程系410111) 【摘要】随着我国汽车行业的高速发展,车载系统在汽车上的应用越来越频繁,许多车载产品,例如车载电视、车载点烟器在方便人们的生活之余,也逐渐成为人们汽车旅途上不可缺乏必需品之一。而车载系统中通常包括单片机和其他芯片,往往系统性能的好坏很大程度上都是由供电品质的好坏决定,因此,本文根据笔者的个人经验,主要就汽车车载系统的电源设计方面进行了简要介绍。 【关键词】汽车;车载系统;电源设计 ● ◇电源与电流◇5

配电网电能量采集管理系统应用中存在的问题及处理措施

配电网电能量采集管理系统应用中存在的问题及处理措施 发表时间:2018-07-06T11:26:20.953Z 来源:《电力设备》2018年第7期作者:李昌恽 [导读] 摘要:随着电力工业体制改革的逐步深入和电力市场的初步形成,“厂网分开,竞价上网”政策的实行,电力系统行业垄断的机制被打破,发、供电交易按照市场的规则来进行,各关口电力电量及线损的计量系统的实时、准确、可靠就尤显重要,实时采集各个关口的电力电量及线损数据是保证市场正常交易的技术基础。 (江苏东台市许河供电所 224323) 摘要:随着电力工业体制改革的逐步深入和电力市场的初步形成,“厂网分开,竞价上网”政策的实行,电力系统行业垄断的机制被打破,发、供电交易按照市场的规则来进行,各关口电力电量及线损的计量系统的实时、准确、可靠就尤显重要,实时采集各个关口的电力电量及线损数据是保证市场正常交易的技术基础。本文在利用公网资源--移动通讯网作为数据通道的基础上,讨论了配电网电能量采集及线损实时监测管理系统的研究与开发过程。 关键词:配电网;电能量采集;问题与对策 随着电力市场地不断发展,电力营销业务作为电力销售管理环节逐渐受到电力企业的重视,然而目前依靠人工抄表、手工录入的营销管理体现出的配置人员多,准确性差、效率低、同时抄表周期长等已经无法满足电力营销发展的要求。现有的营销管理模式限制了电力服务水平的提高,主要体现在电能量信息的采集以及通信技术不发达,数据处理以及分析方式的落后等原因,所以建立一套高效的电能量采集与监控系统对电力发展显得尤为重要。 1 电能量采集系统构成 1.1 硬件设计 地区电网电能平衡分析系统中,为满足计费和监测线损的严格要求,对采集终端的性能必须明确,它必须具有采集精度高、可靠性高、容量大、开放性好、性能价格比高、安装维护简便等基本特点。另外,由于各个采集终端安装的位置和工作环境不同,要求采集器要有抗雷击、防震动,可以有效的抗击各类干扰,确保设备运行可靠,数据准确安全。硬件设计的可靠性:模板化硬件设计:全部模板选用工业级标准,采用“AllInOne”单板工控机技术,模板接口采用PC总线标准。先进的数据存储方法:选用单片闪烁电子盘存储器,数据保存安全,掉电后可以永久保存。非易失性实时时钟:抗干扰性强,掉电后连续运行10年以上。支持通过本地RS一232接入GPS时钟。电源设计:AC220v、DC22OV自动适应,具有电源自动切换功能。冲击电压、电快速瞬变脉冲群、工频耐压等达到或超过相关标准。可靠的电话防雷、RS一485防雷技术措施。 1.2 软件系统 软件系统是整个系统的核心,该系统采用WindowsXP,主站采用嵌入式系统的Java语言作为开发工具,数据库采用SQLSERVER2005,这样从软件方面保证了系统的优越性能。可靠的系统软件平台:要采用Mircorsoft操作系统或其他嵌入式操作系统,系统成熟可靠,不但能方便增强终端功能,并能顺利的进行软件升级和功能扩充。采用模块化面向对象的软件设计:实时多任务操作,采用标准的网络接口。采用商用型数据库进行数据管理:数据管理安全可靠,既符合数据库的标准接口和操作,又能满足系统实时性的要求。具有多级数据库安全管理措施,提供冗余和备份手段及系统维护工具。具有本地和远程连接的身份确认和密码识别功能,有效防止非法用户操作设备或数据。 1.3 通信系统的设计 系统通信网是电力系统不可缺少的组成部分,是电网调度自动化和管理现代化的基础,是确保电网安全、稳定、经济运行的重要手段,是电力系统重要的基础设施。我们决定充分利用公网资源——移动通讯网为数据通道,通过比较GPRS、CDMA、小灵通等多种通讯模式,联通CDMA1X具有传输速率快、网络成本低、抗干扰性好,抗多径衰落,保密安全性高等特性,能够满足无线数据传输和无线监测、监控业务的实时性、保密性和可靠性要求,资费等方面也具有较大优势,同时公网由联通维护,免除了供电公司的通道维护工作。 1.4 总体结构 前端采用多种软硬件平台(用户可定制),配合相应的软件系统适应多种行业应用。使用CDMA1X无线公网传输数据,不需申请频点,避免了组建专用网的麻烦,不需要进行网络维护,又可以随时随地采集数据信息。数据传输过程稳定、安全、效率高、费用低。扩展性强,随着CDMA1X网的不断扩容和改善而变得越来越快。采用标准TCP/IP协议组网,通用性强。系统后端采用WEB技术,易操作、易扩充、易维护。可以实现生产、经营全面现代化的管理需求,使运营管理水平和效益得到显著地提高。 2 系统应用中存在的问题及处理措施 2.1 存在的问题 电能量采集管理系统在经过1年多的实际应用后,系统硬件基本没有出现较大的故障,目前系统已经实现与用电客户服务技术支持系统的数据共享,系统的WEB服务已经实用化,可以向各个部门进行数据共享和发布。但是系统在数据的完整采集、后台计算处理、报表发布等方面还存在以下问题。a.在执行定时抄表任务中,出现集中器没有返回数据或者丢包情况。b.档案中的集中器所接用户界面,不能批量删除用户。c.居民集抄接口上传数据有问题,台区总表和居民户数据上传中间表时无数据。在SG186系统里查不到已上传的数据。集抄系统数据在中间表有数据,不能把中间表的数据传到系统。d.在数据发布方面,主站系统的功能不能完全满足系统应用的需要。 2.2 处理措施 a.系统补采选取当天服务器工作任务较少时段进行,将统一补采定时任务的时间设置为每天的22:00。如果再次补采仍未成功,根据人工实时监测结果,进行人工补采。b.针对区档案下发接口上数据处理细节上的问题,对主站后台系统进行二次开发后,实现了功能上的完善,满足了日常工作的需要。c.为了使系统界面更加人性化,更加便于使用,对主站采集任务进行了如下设置:将监测的每日最大功率达到变压器额定容量的90%、80%、70%时,分别变更颜色为红色、蓝色和绿色,并排序;卡表欠费判据,增加根据不同用户、设定不同的超购电用电阀值,超阀值告警;每日早晨8:00前,自动完成档案更新,给出前一天所有变更的大用户、低压用户的一览表。 3 智能电能量采集系统的应用效果 智能电能量采集系统的应用实现了如下几点效果:(1)减少主观因素的损失。由于系统的投入,有效减少了人为因素造成的损失,降低线损电量,准确反映计量设备的工况。(2)提高工作效益。通过电能量系统的报警功能,工作人员可以在正常上班时间发现异常,减少计量故障时间也差错电量,可以实现减少供电局处理计量故障的周期。(3)线损降低。通过系统直观的线损反映情况工作人员直接的依

车载充电机与BMS电池管理方案设计详解

车载充电机与BMS电池管理方案设计详解 [导读]车载充电机作为电动汽车关键零部件之一,对于电动汽车的普及起到了至关重要的作用。而在车载充电机测试方案方面,能提供专业方案的供应商并不多。 关键词:车载充电机电源管理汽车电子 2015年第一季度,在多重利好政策的刺激下,国内新能源汽车市场增长加快,仅第一季度新能源汽车乘用车销售达到26581辆。当然电动汽车在发展的同时,离不开与之配套的基础设施的建设。车载充电机作为电动汽车关键零部件之一,对于电动汽车的普及起到了至关重要的作用。而在车载充电机测试方案方面,能提供专业方案的供应商并不多。艾德克斯作为在新能源领域的领先测试测量方案供应商,提供的测试方案不仅能够完全满足不同型号的车载充电机测试的需求,还能通过一套软件来控制测试过程与充电机本身,具有其他厂商的测试方案所不具备的独特且重要的功能。 车载充电机与BMS电池管理系统 充电机主要应用给电动汽车上的动力电池充电,按是否安装在车上,充电机可分为车载式(随车型)和固定式。固定式充电机一般为固定在充电站内的大型充电机,主要以大功率和快速充电为主。而车载充电机安装在车辆内部,其优势就是可以在车库,路边或者住宅等任何有交流电源供电的地方随时充电,功率相对较小。 目前绝大多数的车载充电机都采用智能化的工作方式给动力电池充电,这直接关系着动力电池的寿命和充放电过程中的安全性。作为电动汽车最核心的动力电池,它是一个由多个单体电池封装成的电池组,虽然通过单体电池的电流相同,但是放电的深度会有所不同,深度放电是对电池的一种损耗;并且如果深度放电后的电池还被按照常规的电流值充电,则是对电池的进一步损耗。因此,BMS电池管理系统是电动汽车的一个重要部分,实现对动力电池电压及剩余容量(SOC)等数据的监控和管理。下图中简单表示了车载充电机和BMS

纯电动汽车车用电源系统设计匹配

纯电动汽车车用电源系统设计 纯电动汽车的结构相对简单,只有一个能量来源——动力电池,所以电源系统的设计相对也比较简单,本节以一种纯电动公交车的电源系统设计来进行说明。 1.整车设计要求 整车设计参数如表9-1所示。 整车行驶工况满足表9-2中国典型城市公交车行驶工况要求。 动力电源系统分布在车辆两侧四个相同的空间内(原行李箱位置)。 2.电源系统设计 (1)确定车辆的功率需求根据汽车理论,汽车功率平衡关系应满足式(9-1)。 (9-1)P v——车辆需求功率,kW; g——重力加速度,m/S2; m——车辆满载质量,kg; i——道路坡度; δ——旋转质量换算系数; du/dt——加速度,m/s2; u a——车速,km/h; η——传动系统效率;

A——车辆迎风面积,m2; fr——滚动阻力系数; CD——风阻系数。 在启动加速、爬坡、最高车速三种情况下车辆的需求功率是最高的,分别计算这三种情况下车辆的需求功率,选择功率要求最大的作为车辆的需求功率。 最高车速μmax对应的车辆功率需求P v1为: (9-2)最大爬坡度am对应的车辆需求功率P v2为: (9-3)原地起步加速到指定加速时间T如式9-4所示,可以计算出给定全力加速时电动汽车电机对应于车速ua的需求功率P v3。 (9-4)由式(9-2)~式(9-4)以及表9-1与表9-2中的数据,可以得到车辆的最高车速、最大爬坡度和全力加速时车辆对应的功率需求,分别为98.7kW,91.8kW、65kW。 纯电动汽车的电机的功率应能同时满足汽车对最高车速、加速度及爬坡度的要求,所以电动机的额定功率为: (9-5) 国家标准推荐的电机功率等级为5.5kW、7.5kW、11kW、15kW、18.5kW、22kW、30kW、37kW、45kW、55kW、75kW、90kW、110kW、132kW、150kW、160kW、185kW、200kW及以上,并符合GB/T4772.1-1999的要求。根据式(9—5)计算结果以及车辆辅件的功率需求,电机额定功率可以选定为110kW。电源系统的功率应不低于P,即应大于110kW。 (2)确定系统电压范围根据整车所选择的电机,确定电源系统的标称电压及电压应用范围。 采用合理的高电压设计,可以减小电机逆变器的成本和体积,并且有利于控制总线的工作电流在一定范围内,从而保护电源系统。同时,总线电压越高,驱动电机能够输出的最大电磁转矩和最大功率数值也就越大,车辆动力性能好。但直流总线的最高电压也不能过高,否则会对功率逆变器中的功率开关器件造成较大的冲击,总线电压不能超过IGBT决定的电机最高允许电压限制。

电能量采集与管理系统教学文稿

电能量采集与管理系统 周达洪12杨少华12章旭东2董华2 (1南京供电公司江苏南京210008 2江苏苏源高科技有限公司江苏南京210008) 摘要:本文简述了ECU-1000电能量采集系统的基本功能,实现原理。该系统于2004年11月4日通过了省科技厅委托组织的技术鉴定,目前已在南京高淳供电公司各变电站应用投入。 关键词:电量采集,集中控制 1.概述 对电能计量关口和大用户电能数据的自动采集、传送、存贮和相应业务处理,已成为电力公司生产和运营管理的主要手段,也将为电力市场结算等提供依据,电能量采集和管理系统将成为电力行业市场化运营所必需的重要技术支持系统。在任何情况下原始计量数据(包括时标)都不会丢失或被修改;系统采集的电能量数据范围包括所有参与电力市场的电能量计量关口点和网间交换电能量计量关口点。随着电力公司各个关口电表已逐步更改为多功能电子表后,在此基础上,可以方便地开发一套关口电表集中自动采集和管理系统,从关口电能表或FAG的通讯端口直接读取数据,利用供电公司日益完善的企业内部电力信息网络和通用接口,把数据传向信息系统,在信息系统中实现实时电量分析,实时诊断分析电表运行状态、电量平衡,网损计算和各种管理功能。正是基于以上考虑,南京供电公司联合江苏苏高科技有限公司联合研发了“ECU-1000电能量采集与管理系统”,该系统目前在南京供电公司高淳县供电公司投入运行,并在溧水县公司中推广应用。 2.设计思想 ECU-1000电能量采集与管理系统在设计时运用了Rational Rose等设计工具,采用组态和对象模型以及分层、分布、开放型结构,加强软件对象和硬件组态的内聚性,减少对象和组态的偶合性,从而提高了系统的开放性、兼容性、可移植性、可维护性。系统是应用先进的计算机网络通讯和控制技术,实现对变电站电能量的远程自动采集、前端数据处理及电量统计分析应用为一体的综合系统。系统由电能量采集器、网络设备、GPS时钟接收设备、前置机、数据库服务器、Web服务器、客户工作站等组成。 3.系统体系结构 3.1硬件架构 电能量采集器是介于主站和电表之间的中间层设备。采集器采用了嵌入式工业主板和SOC作为核心采集单元,将原来由许多板卡完成的任务集成在一块嵌入式芯片中,达到高度一体化。它具有数据采集、数据暂处理、数据存储和数据转发的功能。可实现电能表数据的自动采集,并可通过多种远程通讯方式连接主站系统,定时发送所采集的数据。一个电能量采集器可以接32块不同厂家的电表(可扩展到128块)。每个采集器的采集端口可根据表类型,进行自适应匹配。采集器时钟由前置机进行统一自动校时。采集器对数据的保存周期为一个月并可扩展。 前置机负责对采集器传送来的数据进行二次处理。当厂站端与主站端的网络出现故障并恢复后,前置机可在第一时间内,主动将漏传数据补召回主站端。 数据库服务器负责对前置机处理后的数据进行存储、数据挖掘和数据统计。 Web服务器对客户工作站的浏览器上的Http请求做出应答,并于数据库服务器进行数据交换。

车载电源简要说明

车载电源简要说明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

连云港易思特电子有限公司 车载交直流一体化电源 使用说明书 公司总部:江苏灌云经济开发区纬三东路15号 生产基地:江苏灌云县杨集镇工业集中区露希欧汽车产业园 销售经理:潘东亚 2014年6月6日编制一、产品概述 车载交直流一体化电源,是一种专门为LED广告车、舞台车、宣传车、演 车等相关特殊车辆设计的特种车载电源。当客户现场可提供市政用电(交流220V)时,市电经设备内部交直流互投装置直接给负载供电,同时设备内充电器组为蓄电池组充电;当客户现场无法提供市政用电时,设备将自动投切至蓄电池供电,此时本设备提供的电源主要用于LED显示屏及电脑、功放音响及电动机、液压系统等交流负载供电。当市电恢复正常后,设备自动投切至市电工作;同时充电器组为蓄电池组充电。 二、应用领域 该产品主要应用于:LED广告车、舞台车、宣传车、演出车、冷藏车、 房 车、大型客车、公交车、旅游车等特种车领域。 三、产品特点 该产品是针对LED广告车而研发的电源产品,相比以往的LED广告车所采用的发电机供电系统,具有以下优点:

☆环保节能,无噪音,无公害; ☆全免维护,智能人性化操作系统,操作简单,维护方便; ☆运行、维护费用低; ☆采用最新DSP数字化控制,逆变器调制技术采用SPWM正弦脉宽调制技术,控制芯片采用美国Atmel微处理器,稳定、高效; ☆采用模块化设计方案,整个系统由若干个功能模块组成,便于调试和维护; ☆用户可选用RS232/485通讯接口,便于与上位机通讯; ☆逆变器采用隔离变压器输出,带载能力强; ☆逆变器模块采用进口IPM智能模块,输出稳定、可靠; ☆管理简单,自动切换可无人值守; ☆充电器采用高频软开关全桥变换技术,自动实现铅酸蓄电池的均/浮充转换; ☆逆变器正弦波输出,稳压、稳频; ☆系统可根据客户实际需要,优化配置,最大限度地为客户节省成本; ☆保护功能齐全,欠压、过压、过载、过流、短路、过温(选配)、电池过充等保护; ☆设备性能可定制; ☆可实现远程控制(选配); ☆设备自带强制启动功能,可强切市电同时可取消电池欠压、过压、过载等保护功能,特殊情况下可使用该功能,正常情况下不建议使用该功能,影响蓄电池寿命。 四、型号命名 车载电源命名方法如下: 五、车载交直流一体化电源外观图及说明 输出功率 A为交流电源,D为直流电源,

车载智能化电源管理系统的研究

车载智能化电源管理系统的研究 摘要:伴随汽车工业现代化水平的提高,车载设备的数量与信息化水平都在不 断提高,这就是车载设备消耗功率有了很大的提高,这就给车载电源的供电能力 提出了更高的要求。因此,为了保证车辆的安全稳定运行,就需要提高车载电源 的供电稳定性,这要求设计人员一方面能够继续提高车载电源的电源容量水平, 另一方面也需要通过设计安全可靠的智能化电源管理系统来协调车载电源复杂的 供电工作。接下来,本文将从车载智能化电源管理系统的设计原理以及系统组成 等方面入手,旨在为我国汽车工业的发展提供一点建议。 关键词:智能化电源管理系统信息交互应用 一、智能化电源管理系统概述 伴随汽车工业的发展,汽车的设计理念经历了不断更新与完善,当前对于汽 车的各功能设计来说,行业上已经达成共识,要以安全性为第一要点,行驶性为 第二要点的同时,需要注重设计中的人性化。因此,作为汽车系统重要组成部分 的智能化电源管理系统而言,需要达到以下功能目标。(1)电源系统的保护功能,实现对于整车电源的有效保护,当出现短路、过电流故障时,能够及时切断 车载电源回路,从而保护系统。(2)实现对于车载电池荷电状况的SOC检查, 完成电量状况的实时监控,及时通知用户进行充放电,从而保证电源稳定性。(3)完成对于汽车静态状态下电流控制,保证汽车能够在长时间停放后保证启 动的最低电量要求,从而延长汽车必要情况下的停放实践。(4)与汽车其他组 成部分实现信息交互,从而帮助用户更好的了解汽车整体状况。(5)实现对于 车载电源故障问题的智能化诊,为汽车故障维修提供信息。 二、智能化电源管理模块的功能要求 为保证车载智能化电源管理系统能够正常发挥功能,需要按照实际的功能需 要划分电源管理系统的电源管理模块,具体来说主要有以下六个划分模块。(1)电池健康度估算模块(SOC),主要是根据车载电源系统中电池的运行电压、电流、电池温度以及运行时间等基本参数来进行合理计算SOC的值;(2)通过监 控元件实现车载电池运行状况的实时监控,监控内容主要有电池的充放电过程、 电池运行的温度、电池运行的安全状态等;(3)实现对于电池常见故障的智能 诊断,并在必要情况下及时切断电流,实现有效的安全保护与失效控制;(4) 智能化电源管理系统的自检与诊断功能,对于系统自身状况的检验,记录各种故 障信息,为检修提供方便;(5)通过自动化控制功能,实现电源系统内电池的 充放电均衡功能;(6)实现与汽车内其他控制系统的信息交互。 三、智能化电源管理系统的应用 3.1过电流、短路的保护功能 车载智能化电源管理系统的过电流保护原理如下。电源管理系统针对电源系 统内各个需要进行电流检测的关键位置进行正常工作电流的估算与实际测量,从 而收集得到电流值I初,为根据过载电流主要是指长时间通电回路,过载电流设 定过电流倍数 K,那么在实际情况的电源系统工作中,电源管理系统对电源通道 的电流状况进行采集得到了实际电流I实,当I实大于I初时,那么智能化电源管 理系统就会判断电源出现过载电流,从而控制电源系统内部的继电器断开电流。 而针对电源内部的短路保护功能,在设计上则比较简单,与传统电源管理系 统相似,同样都是通过保险丝的应用就可以完成短路保护,当电源系统回路中出 现短路故障时,保险丝会第一时间熔断,从而起到保护系统的作用。但是相比之

企业能源管理系统综合解决方案

企业能源管理系统综合解决方案 关键词:实时数据库 pSpace RTBD SCADA软件能源管理系统EMS 力控监控组态软件力控eForceCon SD 1.引言 1.1. 概述 在我国的能源消耗中,工业是我国能源消耗的大户,能源消耗量占全国能源消耗总量的70%左右,而不同类型工业企业的工艺流程,装置情况、产品类型、能源管理水平对能源消耗都会产生不同的影响。建设一个全厂级的集中统一的能源管理系统可以实现对能源数据进行在线采集、计算、分析及处理,从而对能源物料平衡、调度与优化、能源设备运行与管理等方面发挥着重要的作用。 能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,因此在企业信息化系统的架构中,把能源管理作为MES系统中的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分。 1.2 整体需求分析 企业希望能够采用先进的自动化、信息化技术建立能源管理调度中心,实现从能源数据采集——过程监控——能源介质消耗分析——能耗管理等全过程的自动化、高效化、科学化管理。从而使能源管理、能源生产以及使用的全过程有机结合起来,使之能够运用先进的数据处理与分析技术,进行离线生产分析与管理。其中包括能源生产管理统计报表、平衡分析、实绩管理、预测分析等。实现全厂能源系统的统一调度。优化能源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。 2. 设计内容与原则 2.1设计内容 ★自动化系统 能源管控中心网络系统及设备系统; 能源管控中心软硬件平台系统; 能源系统各站点的数据采集系统; 调度及操作人员所需的人机界面系统; 设备冗余,安全监测系统; 历史数据海量存储及分析系统等。 ★辅助系统 能源系统视频安全监控; 能源系统配套报警系统; 能源系统大屏幕显示系统等。 2.2设计原则

220V 车载电源系统安装说明 ( 朗逸 )

220V逆变电源系统安装说明(朗逸) Array注意:此附件只用于安装除 1.4TSI配用DSG 变 速箱以外的车型。 220V逆变电源系统概述 1-车载电源主机 2-逆变电源导线 3-信号端子 ◆(棕红色) 接在继电器10 号位 4-负极端子 ◆(黑色) 固定在左A 柱接地点处 5-线束卡扣 ◆共 2 个 6-固定垫片 ◆共2 个 7-404 继电器 ◆共 1 个 8-快速接线卡子 9-保险丝 ◆ 25A,共2个 10-扎带 ◆20cm,共8支 小扎带12cm,共1支 11-固定螺丝 ◆共8 个 12-电源插座支架 13-钣金支架 ◆用于固定车载电源主机 14-负极接线端子 ◆ (黑色) 接在继电器8 号位 15-BCM 信号端子 ◆(棕红色) 接在BCM T73b\49 针 16-信号端子 ◆ (红色) 接在继电器7 号位 17-电源端子 ◆(红色) 接在继电器6号位 18-负极端子 ◆(黑色) 固定在左 A 柱接地点处 19-正极端子 ◆(红色) 接在保险丝盒30 号电源线 20-电源插座总程 21-卡扣

1 安装前的准备工作 注意: 在执行电气系统的维修之前,先断开蓄电池的接地线。 说明: ◆ 断开蓄电池的接地线之前,必须先查询收 音机的防盗密码。 ◆ 重新连接蓄电池后,应当按照维修手册和 使用说明书的规定检查车辆电气设备 (收音机、时钟、电动车窗) 的功能。 - 拆卸驾驶员侧座椅。 - 拆卸仪表板左侧饰板 -f-。 - 拆卸前部装饰板 -g-。 - 拆卸转向柱下部饰板 -h-。 - 拆卸发动机舱盖拉手及左 A 柱饰板 -i-。 - 拆卸驾驶员侧门槛饰条 -k-。 - 拆卸中央扶手箱 -l-。 - 去除后部储物箱 -j-。 - 拆卸手刹盖板 -a-。 - 拆卸 BCM 。 - 拆卸保险丝盒。

相关文档