文档视界 最新最全的文档下载
当前位置:文档视界 › 微波技术试验

微波技术试验

微波技术试验
微波技术试验

微波的传输特性和基本测量

1、微波基本知识

微波及其特点

微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特点

图1 电磁波的分类

1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成 方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而 确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。

2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的

飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放

大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。

3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。

4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原

子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。(北京大华无线电仪器厂)

5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。

综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。

微波基本知识

一、电磁波的基本关系

描写电磁场的基本方程是:

ρ=??D , 0=??B

t B E ??-=??,t

D j H ??+=?? ⑴ 和

E D ?=, H B μ=, E j γ=。 ⑵

方程组⑴称为Maxwell 方程组,方程组⑵描述了介质的性质对场的影响。

对于空气和导体的界面,由上述关系可以得到边界条件(左侧均为空气中场量)

0=t E ,o

n E εσ=, ⑶

i H t = ,0=n H 。

方程组⑶表明,在导体附近电场必须垂直于导体表面,而磁场则应平行于导体表面。

二、矩形波导中波的传播

在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双 导线不能完全传输微波能量,而必须改用微波传输线。常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。

根据电磁场的普遍规律——Maxwell 方程组或由它导出的波动方程以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波又称为磁波,简写为TE 波或H 波,磁场可以有纵向和横向的分量,但电场只有横向分量。②横磁波又称为电波,简写为TM 波或E 波,电场可以有纵向和横向的分量,但磁场只有横向分量。在实际应用中,一般让波导中存在一种波型,而且只传输一种波型,我们实验用的TE 10波就是矩形波导中常用的一种波型。

1.TE 10型波

在一个均匀、无限长和无耗的矩形波导中,从电磁场基本方程组⑴和⑵出发,可以解得沿z 方向传播的TE 10型波的各个场分量为

)()sin(z t j x e a x a j H βωππβ-=, 0=y H , )()cos(z t j z e a

x a j H βωππβ-= 0=x E , )(0)sin(z t j y e a

x a j E βωππωμ--=, 0=z E , ⑷ 其中:ω为电磁波的角频率,f πω2=,f 是微波频率;

a 为波导截面宽边的长度;

β为微波沿传输方向的相位常数β=2π/λg ;

λg 为波导波长,2

)2(1a g λ

λ

λ-= 图2和式⑷均表明,TE 10波具有如下特点:

①存在一个临界波长λ=2α,只有波长λ<λC 的电磁波才能在波导管中传播

②波导波长λg >自由空间波长λ。

③电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始 终平行于波导的窄边。

④磁场既有横向分量,也有纵向分量,磁力线环绕电力线。

⑤电磁场在波导的纵方向(z)上形成行波。在z 方向上,Ey 和Hx 的分布规律相同,

也就是说Ey 最大处Hx 也最大,Ey 为零处Hx 也为零,场的这种结构是行波的特点。

图 2 TE 10波的电磁场结构(a ),(b ),(c) 及波导壁电流分布(d)

2.波导管的工作状态

如果波导终端负载是匹配的,传播到终端的电磁波的所有能量全部被吸收,这时波导 中呈现的是行波。当波导终端不匹配时,就有一部分波被反射,波导中的任何不均匀性也会产生反射,形成所谓混合波。为描述电磁波,引入反射系数与驻波比的概念,反射系数Γ定

义为

φj i r e E E Γ==Γ/。

驻波比ρ定义为:

min

max E E =ρ 其中:max E 和min E 分别为波腹和波节 图 3(a )行波,(b )混合波,(c)驻波点电场E 的大小。

不难看出:对于行波,ρ=1;对于驻波,ρ=∞;而当1<ρ<∞,是混合波。图3为

行波、混合波和驻波的振幅分布波示意图。

常用微波元件及设备简介

1.波导管:本实验所使用的波导管型号为BJ —100,其内腔尺寸为α=22.86mm ,b =10.16mm 。其主模频率范围为8.20~12.50GHz ,截止频率为6.557GHz 。

2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图4)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。

3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图5),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。

图 4 隔离器结构示意图图5 衰减器结构示意图4.谐振式频率计(波长表):

图6 a 谐振式频率计结构原理图一

1. 谐振腔腔体

2. 耦合孔

3. 矩形波导

4. 可调短路活塞

5. 计数器

6. 刻度

7. 刻度套筒

电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。图6a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。

5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。

6.晶体检波器:从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率。

7.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

图7 Y行环形器图8 单螺调配器示意图

8.单螺调配器:插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态(见图8)。调匹配过程的实质,就是使调配器产生一个反射波,其幅度和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系统中引起的反射而达到匹配。

9.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。

10.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。

2、微波测试系统的调试与微波基本参量的测量

在普通无线电波段中,分布参数的影响往往可以忽略,但在微波波段中则不然,由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。此外微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。在本实验中我们将学习在处理微波波段问题时所采取的方法,以加深对微波基本知识的理解。

实验目的

1.学会使用基本微波器件。

2.了解微波信号源的基本工作特性和微波的传输特性。

3.掌握频率、功率以及驻波比等基本量的测量。

实验原理

1、微波的传输特性. 在微波波段,为了避免导线辐射损耗和趋肤效应等的影响,一般采用波导作为微波传输线.微波在波导中传输具有横电波(TE波)、横磁波(TM波)和横电波与横磁波的混合波三种形式。本实验中使用的标准矩形波导管,采用的传输波形是TE10波。

波导中存在入射波和反射波,描述波导管中匹配和反射程度的物理量是驻波比和反射系数。依据终端负载的不同,波导管具有三种工作状态:

⑴当终端接匹配负载时,反射波不存在,波导中呈行波状态;

⑵当终端接短路片、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波波状态;

⑶一般情况下,终端上部分反射,波导中传输的既不是形波,也不是纯驻波,而是呈行驻波状态。

2、微波频率的测量. 微波的频率是表征微波信号的一个重要的物理量,频率的测量采用吸收式频率计。当调节频率计,使其自身空腔的固有频率与微波信号频率相同时,则产生谐振,此时通过连接在微波通路上的微安表可观察到信号幅度明显减小的现象.注意,应以减幅最大的位置作为判断频率测量值的依据。

3、微波功率的测量. 微波功率是表征微波信号强弱的一个物理量,通常采用替代或比较的方法进行测量.实验室中采用吸收式微瓦功率计进行测量.

4、波导波长和驻波比的测量. 驻波比定义为波导中驻波极大值点驻波极小值点的电场

强度之比。即

ρ=Emax/Emin ⑴

实验中采用驻波测量线和选频放大器来测定波导波长和驻波比.

⑴ 驻波比的测量。由于终端负载不同,驻波比也有大中小之分。因此,驻波比测量的首要问题是,根据驻波极值点所对应的检波电流,粗略估计驻波比ρ的大小。在此基础上,再做进一步的精确测定。实验中微波信号比较微弱,可认为检波晶体(微波二极管)符合平方率检

波,即I ∝E 2。依据公式 求出ρ的粗略值后,再按照驻波比的三种情况进一步精确测定ρ值。

①.小驻波比(1.05<ρ<1.5)

这时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。

若驻波腹点和节点处电表读数分别为I max ,I min ,则电压驻波系数为 n

I in in axn ax ax E E E E E E n nE min 2Im 1Im Im 2Im 1Im min 2min 1min max 2max 1max ++++++=++++++= ρ ⑵ ②.中驻波比(1.5< ρ<6)

此时,只须测一个驻波波腹和一个驻波波节,即直接读出I max I min 。

min

max min max I I E E ==ρ ⑶ ③.大驻波比(ρ>6)(选做)

在大驻波比情况下,检波电流Imax 与Imin 相差太大,在波节点上检波电流极小,在波腹点上二极管检波特性远离平方率,故不能用⑶式计算驻波比,可采用二倍极小功率法,利用驻波测量线测量极小点两旁功率为其二倍的点坐标,进而求出二者间距d,则

ρ=λg ∕πd ⑷

⑵ 波导波长的测量. 波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍。由于在极大值点附近变化缓慢,峰顶位置不易确定,实际采用测定驻波极小值点的位置来求出波导波长。考虑到驻波极小值点附近变化平缓,因而测量值不够准确。为此,测量时通过平均值法间接测量。即测极小值点附近两点(此两点在指示器上的输出幅度相等)的坐标,然后取这两点坐标的平均值,即得极小点坐标。两个相邻极小点的距离为半个波导波长λg ,测量计算公式为

λg=(X 2'+ X 2'')-(X 1'+ X 1'') ⑸

其中(X 1', X 1'')(X 2', X 2'')分别为极小值点两旁输出幅度相等的两点坐标。

实验装置

整个微波测量线路由3cm 波段波导元件组成,其主要元件为隔离器、衰减器、频率计、选频放大器、单螺调配器、检流计、微瓦功率计、驻波测量线等。

实验内容

1.熟悉有关仪器的基本原理和使用。根据仪器使用说明书,掌握有关仪器的使用注意事项和正确的开关及顺序,。

2.频率测量。用检流计、频率计测量微波信号频率。

3.功率测量。直接用功率计测量微波功率。

4.波导波长和驻波比的测量。在微波传输线终端接上短路片,按照原理所述方法测量波导波长,并把测量值与理论值进行比较。换接不同的终端负载,按照原理所述的方法测量相应的驻波比。

思考与讨论

1.驻波节点的位置在实验中精确测准不容易,如何进行比较准确的测量?

2.利用驻波测量线测定的波导波长λg与自由空间波长λ的大小关系?

微波技术基础实验指导书讲解

微波技术基础实验报告 所在学院: 专业班级: 学生姓名: 学生学号: 指导教师: 2016年5月13日

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:必做 开课单位:学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2.学习使用测量线 四、基本原理: 图1。1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器

当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。 实验二驻波系数的测量

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

最新微波技术实验指导书

微波技术实验指导书

微波技术实验指导书

实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做 开课单位:信息与通信工程学院学时:2学时一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2. 学习使用测量线 四、基本原理: 图1.1 微波测试系统组成 1.信号源

信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器 当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。

微波技术基础 简答题整理

第一章传输线理论 1-1.什么叫传输线?何谓长线和短线? 一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。(界限可认为是l/λ>=0.05) 1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类? 按传输波形分类: (1)TEM(横电磁)波传输线 例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统; (2)TE(横电)波和TM(横磁)波传输线 例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统; (3)表面波传输线 例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加) 按损耗特性分类: (1)分米波或米波传输线(双导线、同轴线) (2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) (3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线) (4)光频波段传输线(介质光波导、光纤) 1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么? 传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。其数值只和传输线的结构,材料和电磁波频率有关。 阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。 1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?

(1)行波状态: 0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。 终端负载吸收全部的入射功率而不产生反射波。在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。 (2)驻波状态: 终端开路,或短路,或终端接纯抗性负载。 电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。 (3)行驻波状态: 终端负载为复数或实数阻抗(L L L X R Z ±=或L L R Z =)。 信号源传输的能量,一部分被负载吸收,一部分反射回去。反射波功率小于入射波功率。 1-5.何谓分布参数电路?何谓集总参数电路? 集总参数电路由集总参数元件组成,连接元件的导线没有分布参数效应,导线沿线电压、电流的大小与相位,与空间位置无关。分布参数电路中,沿传输线电压、电流的大小与相位随空间位置变化,传输线存在分布参数效应。 1-6.微波传输系统的阻抗匹配分为两种:共轭匹配和无反射匹配,阻抗匹配的方法中最基本的是采用λ/4阻抗匹配器和支节匹配器作为匹配网络。 1-7.传输线某参考面的输入阻抗定义为该参考面的总电压和总电流的比值;传输线的特征阻抗等于入射电压和入射电流的比值;传输线的波阻抗定义为传输线内横向电场和横向磁场的比值。 1-8.传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差λ/4,在这些位置输入阻抗共同的特点是纯电阻。 第二章 微波传输线 2-1.什么叫模式或波形?有哪几种模式?

微波技术实验报告

微波技术实验指导书目录 实验一微波测量仪器认识及功率测量________________________________ 2实验二测量线的调整与晶体检波器校准_______________________________ 5实验三微波驻波、阻抗特性测量_____________________________________ 8

实验一微波测量仪器认识及功率测量 实验目的 (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 实验内容 一、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。 图 1-1 微波测量系统 二、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件: (1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器 三、功率测量 在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

哈工大 微波技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 微波技术 实验报告 院系:电子与信息工程学院班级: 姓名: 学号: 同组成员: 指导老师: 实验时间:2014年12月18日 哈尔滨工业大学

目录 实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。 二、实验原理 S 参量 网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。微波频段 通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量, 例如[Y]、[Z] 图1-1 一个二端口微波元件用二端口网络来表示,如图1-1所示。图中,a1,a2分 别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口 “2”向外的反射波。对于线性网络,可用线性代数方程表示: b1=S11a1+S12a2 b2=S21a1+S22a2 (1-1) 写成矩阵形式: ?? ??????????????=????? ???a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为 S11=11 a b 02=a “2”端口外接匹配负载时, “1”端口的反射系数 S21=12 a b 02=a “2”端口外接匹配负载时, “1”端口至“2”端口的传输系数 S12=21 a b 01=a “1”端口外接匹配负载时, “2”端口至“1”端口的传输系数

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

微波技术基础

摘要 本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。 10 This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.

微波技术基础 第一章微波简介 1.1 什么是微波 微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz 300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~ MHz3000 括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。 下图为电磁波谱分布图: 1.2微波的基本特点 1.似光性和似声性 微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。这样利用微波就能获得方向性极好、体积小的天线设

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

微波技术实验指导_报告2017

Harbin Institute of Technology 微波技术 实验报告 院系: 班级: 姓名: 学号: 同组成员: 指导老师: 实验时间: 哈尔滨工业大学

实验一短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。S11 二、实验原理 (一)基本传输线理论 在一传输线上传输波的电压、电流信号会是时间及传递距离的函数。一条单位长度传输线之等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1(a )所示。假设波传输播的方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式。 其中假设电压及电流是时间变量t 的正弦函数,此时的电压和电流可用角频率ω的变数表示。亦即是 而两个方程式的解可写成 z z e V e V z V γγ--++=)( (1-1) z z e I e I z I γγ--+-=)((1-2) 其中V + ,V -,I +,I - 分别是波信号的电压及电流振幅常数,而+、-则分别表示+Z,-Z 的传输方向。 γ则是[传输系数](propagation coefficient ),其定义如下。 ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示。 I L j R dz dV ?+-=)(ωV C j G dz dI ?+-=)(ω (1-4) 将式(1-1)及(1-2)代入式(1-3)可得 C j G I V ωγ +=++ t j e z V t z v ω)(),(=t j e z I t z i ω)(),(=

微波技术基础实验指导书

微 波 技 术 基 础 实 验 指 导 书 电子信息工程学院微波技术基础实验课程组编 2013.02

实验一 微波测量系统的认识与调试 一、实验目的与要求 应用所学微波技术的有关理论知识,理解微波测量系统的工作原理,掌握调整和使用微波信号源的方法,学会使用微波测量系统测量微波信号电场的振幅。了解有关微波仪器仪表,微波元器件的结构、原理和使用方法。 二、实验内容 1.掌握下列仪器仪表的工作原理和使用方法 三厘米标准信号发生器(YM1123)、三厘米波导测量线(TC26)、选频放大器(YM3892)。 2.了解下列微波元器件的原理、结构和使用方法 波导同轴转换器(BD20-9)、E-H 面阻抗双路调配器(BD20-8)、测量线(TC26)和可变短路器(BD20-6)等。 三、实验原理 本实验的微波测试系统的组成框图如图一所示 图 1 它主要由微波信号源、波导同轴转换器、E-H 面阻抗双路调配器、测量线和选频放大器主要部分组成。下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。 1.微波信号源(YM1123) 1.1基本功能 1.1.1提供频率在7.5~1 2.5GHz 范围连续可调的微波信号。 1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。 信号源 波导同轴转换器 单螺钉调配器 功率探头 数字功率计 微波频率计 E-H 面调配器 魔T 定向耦合器 H 面弯波导 晶体检波器 测量线 选频放大器 可变衰减器

1.2工作原理 1.2.1本信号源采用体效应振荡器作为微波振荡源。体效应振荡器采用砷化镓体效应二极管作为微波振荡管。振荡系统是一个同轴型的单回路谐振腔。微波振荡频率的范围变化是通过调谐S型非接触抗流式活塞的位置来实现的,是由电容耦合引出的功率输出。 1.2.2本信号源采用截止式衰减器调节信号源输出功率的强弱。截止式衰减器用截止波导组成,其电场源沿轴线方向的幅度是按指数规律衰减。衰减量(用dB 表示)与轴线距离L成线性关系,具有量程大的特点。 1.2.3本信号源用微波铁氧体构成隔离器。 在微波测量系统中,一方面信号源需要向负载提供一个稳定的输出功率;另一方面负载的不匹配状态引起的反射破坏信号源工作的稳定性,使幅、频发生改变、跳模等。为了解决这个问题,往往在信号源的输出端接一“单向传输”的微波器件。它允许信号源的功率传向负载,而负载引起的反射却不能传向信号源。这种微波器件称之“隔离器”。 这类隔离器在3cm波段可以做到正向衰减小于0.5dB,反向衰减25dB。驻波比可达1.1左右。隔离器上箭头指示方向即为微波功率的正向传输方向。 1.2.4本信号源采用PIN管作控制元件,对微波信号进行方波、脉冲波的调制。 1.2.5本信号源功率输出端接有带通滤波器。它滤去7.5~12.5GHz频率范围的谐波,使信号源输出信号频谱更纯净。 注1:打开信号源的上盖板,即可看到信号源的同轴谐振腔、截止式衰减器、PIN调制器和带通滤波器等结构。 注2:有些单位采用本公司生产的YM1124信号发生器。它是9.37GHz点频信号源,采用介质振荡技术。频率稳定度高、输出功率大、有“等幅”和“1KHz”方波两种工作状态。输出为BJ100波导口。 2.波导同轴转换器(BD20-9) 2.1基本功能 提供从同轴输入到波导输出的转换。 2.2工作原理 波导同轴转换器是将信号由同轴转换成波导传输。耦合元件是一插入波导内的探针,等效于一电偶极子。由于它的辐射在波导中建立起微波能量。探针是由波导宽边中线伸入,激励是对称的。选择探针与短路面的位置,使短路面的反射与探针的反射相互抵消,达到较佳的匹配。 3.E-H面阻抗双路调配器(BD20-8) 3.1基本功能 微波传输(测量)系统中,经常引入不同形式的不连续性,来构成元件或达到匹配的目的。 E-H面阻抗调配器是双支节调配器。在主传输波导固定的位置上的E面(宽边)和H面(窄边)并接两个支节。通过调节二个支节的长度以达到系统调配。 3.2结构和工作原理 E-H面阻抗调配器是由一个双T波导和两只调节活塞组成。调节活塞是簧片式的接触活塞。调节E面活塞,等于串联电抗变化,调节H面活塞等于并联电纳的变化(两者配合使用)。

微波技术试验分解

微波技术试验 姓名:洪小沯

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S 11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S 11及S 21的测量,了解微带线的特性。 二、实验原理 S 参量 一个二端口微波元件用二端口网络来表示。a 1,a 2分别为网络端口“1”和端口“2”的 向内的入射波;b1,b2分别为端口“1”和端口“2”向外的反射波。对于线性网络,可 用线性代数方程表示。 b 1=S 11a 1+S 12a 2 (1-1) b 2=S 21a 1+S 22a 2 写成矩阵形式: ??? ?????????????=????????a a S S S S b b 212212211121 (1-2) 式中S 11,S 12,S 21,S 22组成[S]参量,它们的物理意义分别为 S 11=11a b 0 2=a “2”端口外接匹配负载时“1”端口的反射系数 S 21=12a b 0 2=a “2”端口外接匹配负载时,“1”端口至“2”端口的传输系数 S 12=21a b 0 1=a “1”端口外接匹配负载时,“2”端口至“1”端口的传输系数 S 22= 22a b 01=a “2”端口外接匹配负载时,“1”端口的反射系数 对于多端口网络,[S]参量可按上述方法同样定义,对于互易二端口网络,S12=S21,则 仅有三个独立参量。 三、实验仪器及装置图 1模组编号:RF2KM1-1A (OPTN/SHORT/THRU CAL KIT) 3 RF2000测量主机:一台 4 PC 机一台,BNC 连接线若干 四、实验内容及步骤

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

微波技术基础实验一

华中科技大学 《微波技术基础》实验报告 实验名称:矢量网络分析仪的使用及传 输线的测量 院(系):电子信息与通信学院 专业班级: 姓名: 学号:

一、实验目的 1、学习矢量网络分析仪的基本工作原理; 2、初步掌握AV36580矢量网络分析仪的操作使用方法; 3、掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数; 4、通过测量认知1/4波长传输线阻抗变换特性 二、实验内容 1. 矢量网络分析仪操作实验 ?初步运用矢量网络分析仪AV36580,熟悉各按键功能和使用方法 以RF带通滤波器模块为例,学会使用矢量网络分析仪AV36580测量微波电路的S 参数。 2. 微带传输线测量实验 ?使用网络分析仪观察和测量微带传输线的特性参数。 ?测量1/4波长传输线在不同负载情况下的频率、输入阻抗、驻波比、反射系数。

观察1/4波长传输线的阻抗变换特性。 三、系统简图 四、步骤简述 实验一:矢量网络分析仪操作实验 步骤一按【复位】调用误差校准后的系统状态 步骤二选择测量参数 设置频率范围: 按【起始】【600】【M/μ】:设置起始频率600 MHz。 按【终止】【1800】【M/μ】:设置终止频率1800 MHz。 设置源功率: 按鼠标点击菜单栏的激励,在下拉菜单功率,设置矢网合成源的功率大小,单位是dBm。 将功率电平设置为-10dBm。

步骤三连接待测件测量S参数 ①按照装置图连接待测器件; ②测量待测器件的S参数: 按【测量】选择正向传输测量S21。 按【光标】调出可移动光标,光标位置的读数位于屏幕右上角。 按【格式】[相位]:测量待测器件插入相位响应,即S21的相位。 按【格式】[对数幅度]:选择对数dB形式测量S21的幅值。 按【搜索】[最小值]:测量待测器件的正向插入损耗,读出此时光标的读数,为待测器件的最小正向插入损耗。 按【搜索】[最大值]:测量待测器件的正向插入损耗,读出此时光标的读数,为待测器件的最大正向插入损耗。 按【测量】选择反向传输测量。观察此时的曲线与S21曲线的关系。 按【搜索】[最小值]:测量待测器件的反向插入损耗,读出此时的读数,为待测器件的最小反向插入损耗。观察与最小正向插入损耗的关系 按【搜索】[最大值]:测量待测器件的反向插入损耗,读出此时读数,为待测器件的最大反向插入损耗。观察与最大正向插入损耗的关系 按【测量】选择正向反射测量S11。 按【格式】[对数幅度]:选择对数dB形式测量S11的幅值。 按【格式】[驻波比]:选择以驻波比形式测量S11的幅值。

电磁场与微波技术专业(080904)研究生培养方案

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究;

微波技术基础实验报告

微波技术基础实验报告实验一矢量网络分析仪的使用及传输线的测量 班级: 学号: 姓名: 华中科技大学电子信息与通信工程学院

一实验目的 学习矢量网络分析仪的基本工作原理; 初步掌握AV365380矢量网络分析仪的操作使用方法; 掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数; 通过测量认知1/4波长传输线阻抗变换特性。 二实验内容 矢量网络分析仪操作实验 A.初步运用矢量网络分析仪AV36580,熟悉各按键功能和使用方法 B.以RF带通滤波器模块为例,学会使用矢量网络分析仪AV36580测量微波电路的S参数。 微带传输线测量实验 A.使用网络分析仪观察和测量微带传输线的特性参数。 B.测量1/4波长传输线在开路、短路、匹配负载情况下的频率、输入阻抗、驻波比、反射系数。 C.观察1/4波长传输线的阻抗变换特性。

三系统简图 矢量网络分析仪操作实验 通过使用矢量网络分析仪AV36580测试RF带通滤波器的散射参数(S11、S12、S21、S22)来熟悉矢量网络分析仪的基本操作。 微带传输线测量实验 通过使用矢量网络分析仪AV36580测量微带传输线的端接不同负载时的S 参数来了解微波传输线的工作特性。连接图如图1-10所示,将网络分析仪的1端口接到微带传输线模块的输入端口,另一端口在实验时将接不同的负载。

四实验步骤 矢量网络分析仪操作实验 步骤一调用误差校准后的系统状态 步骤二选择测量频率与功率参数(起始频率600 MHz、终止频率1800 MHz、功率电平设置为-10dBm) 步骤三连接待测件并测量其S参数 步骤四设置显示方式 步骤五设置光标的使用 微带传输线测量实验 步骤一调用误差校准后的系统状态 步骤二选择测量频率与功率参数(起始频率100 MHz、终止频率400 MHz、功率电平设置为-25dBm) 步骤三连接待测件并测量其S参数 1.按照装置图将微带传输线模块连接到网络分析仪上; 2.将传输线模块接开路负载(找老师要或另一端空载),此时,传输线终端呈开路。选择测量S11,将显示格式设置为史密斯原图,调出光标,调节光标位置,使光标落在在圆图的短路点。

相关文档