文档视界 最新最全的文档下载
当前位置:文档视界 › 陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料

河南农业大学机电工程学院《非金属材料》课程论文

陶瓷基复合材料

姓名:

学号:

专业班级:

论文方向:

任课教师:

陶瓷基复合材料

摘要:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

正文:

陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

连续纤维补强陶瓷基复合材料(简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强

陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性。

随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。

复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。

近年来,人们对玻璃陶瓷增强增韧技术的研究进行了新的探讨,目前公认的有效办法是对玻璃陶瓷进行纤维补强。纤维增强陶瓷基复合材料不仅有利于提高基体材料的强度,也有利于提高材料的裂纹扩展抗力,可有效降低材料发生灾害性断裂的可能性,增强材料的抗疲劳强度,使玻璃陶瓷复合材料的力学性能可与Si3N4 等结构陶瓷媲美,甚至更优。纤维玻璃陶瓷复合材料在力学性能、耐高温能力和化学稳定性方面都具有其独特的优点,在高技术领域有广阔的应用前景。

20世纪60年代末70年代初,科学家已经制备了碳纤维增强玻璃陶瓷复合材料,该材料的抗弯强度和韧度可以与同时期的碳纤维增强树脂基复合材料媲美,而使用温度比树脂基复合材料高得多。一些科学家采用流延法制备单向预浸片和叠层热压方法制备了短纤维增强玻璃陶瓷基复合材料,研究了在不同介质中复合材料的静疲劳行为。结果表明,复合材料的疲劳指数和疲劳强度均高于陶瓷基体,分析认为纤维的加入降低了复合材料在静疲劳中的裂纹扩展阻力,静疲劳应力腐蚀促进了基体裂纹尖端扩展,同时通过对纤维基体界面的作用影响材料的裂纹扩展阻力,随着应力腐蚀作用的加强,含有硅氧键的较强纤维基体界面的弱化有利于改善复合材料的静疲劳行为。由于晶须具有高强度、高模量及高熔点等优异性能,利用晶须增强玻璃陶瓷是强韧化技术研究和应用的热点之一。

生物材料作为一种新型的功能材料具有许多特殊的性能要求,目前的各种生物材料虽然在一定程度上满足了其性能上的要求,并且有的已进入临床应用的试验阶段,但均有明显的不足。例如金属材料的生物惰性难以保持其长久有效性;

生物陶瓷材料的脆性使其难以满足强度等性能的要求;作为牙科材料更具有特殊的性能要求,不仅需要合适的强度和硬度,还应具有再现自然牙齿色调的功能。ZrO2 具有优良的力学性能和相变特性,且本身呈现淡黄色,与人体牙本质颜色基本一致,将其与其它陶瓷材料进行复合,可以获得保证强度同时韧性大幅提高的美容牙科修复材料。钙铝硅系玻璃陶瓷是指基体玻璃为钙铝硅系玻璃的一类玻璃陶瓷,其主晶相是β2硅灰石(CaSiO3 )。β2硅灰石晶体属链状结构硅酸盐,在玻璃基体内以针状形式交叉排列呈网状,使材料具有耐磨、耐腐蚀、硬度高和抗冲击等特性。

玻璃陶瓷作为牙科修复材料,其自然的美感和光泽使其在此领域独占鳌头。但是陶瓷类材料加工困难,而修复体的外形因个体的不同差异很大,阻碍了其在修复学领域中的应用。1972 年,一些科学家研制成功了可切削玻璃陶瓷,可用普通金属加工车床进行机械加工,从而使玻璃陶瓷在修复学领域得到更广泛的应用。其加工性能主要来源于主晶相为可切削的云母晶体以及与其它晶体的相互交错的结构。云母玻璃陶瓷除了具有优良的机械加工性能和外观色泽外,还具有良好的力学性能、热学性能及化学稳定性。最近,一些科研工作者以玻璃陶瓷为基础,与不同量的四方氧化锆多晶体粉体进行复合,制备出了用于牙科修复的新型材料。借助于DTA、XRD、SEM等手段研究了该材料的主晶相种类和显微结构,并测试了材料的抗折强度、体积密度、维氏硬度、热膨胀系数和耐酸、碱性等理化性能。结果表明:复合材料的主晶相为氟金云母、t2ZrO2和少量的m2ZrO2,具有优于天然牙齿和牙釉质的力学性能,化学性能稳定,审美效果良好,适用于制作前牙冠、贴面、嵌体等口腔修复体。

玻璃陶瓷金属复合材料既具有装饰材料的优势,又具有金属易加工成型、韧性好等优良性能,有很好的发展前景。它将对装饰材料的发展和提高人们生活水平有很大的意义,因此对这种材料的研究也势在必行。玻璃陶瓷与金属复合的工艺参数包括热处理温度和时间、金属表面氧化程度、保护气氛的控制等因素,这些因素决定了玻璃陶瓷与金属的结合强度、耐冲击等性能,玻璃陶瓷的组成对其晶相的种类和含量、热处理制度、热膨胀系数有很大的影响,进而影响玻璃陶瓷的性能、玻璃陶瓷与基体金属复合的效果,因此有必要对玻璃陶瓷的组成进行深入研究。一些科研工作者在玻璃陶瓷与金属基体复合过程中发现基体玻璃组分的

选择对两者结合后的性能有较大影响,借助XRD、DTA及其它性能测试手段对基础玻璃及玻璃陶瓷和复合材料试样进行了研究,结果表明:ZnO与Al2O3的质量比大于1时,组成的玻璃陶瓷与金属匹配良好,具有较好的结合强度。在玻璃陶瓷与金属基体复合过程中,金属基体的表面处理及预氧化处理对两者结合后的性能有较大影响。科研工作者借助SEM及电子探针等手段从微观角度对金属基体进行了研究,并初步探讨了金属基体的氧化机理。结果表明:一、金属表面处理及预热氧化处理对玻璃陶瓷属复合材料的复合效果有较大影响,对金属表面进行清洗、预氧化处理有利于其界面结合;二、较合适的基体表面处理及预热处理工艺为有机溶剂清洗→烘干→砂磨→预氧化处理;三、金属基体适宜的预处理温度范围为400~600℃,经500℃保温20min预氧化处理,800℃烧成保温10min,可使玻璃陶瓷与基体金属结合牢固。最新研究表明,通过传统的熔融工艺制得的玻璃,再经过加热处理,使其一部分或大部分晶化可得到一种烧结温度低的微晶化玻璃材料。

目前,国内外对此类陶瓷的研究大体上可分为三类:微晶玻璃系、复相陶瓷系和非晶玻璃系。近年来,其研究重点主要都集中于前两者,发展了很多低温烧结材料。

玻璃陶瓷是玻璃经控制晶化制得的多晶固体。由于玻璃陶瓷中的晶相全部是从一个均匀玻璃相中通过晶体生长而产生的,所以玻璃陶瓷的性质主要由析出的晶体种类、晶粒大小、结晶相的多少及参与玻璃相的种类和数量决定,而这些因素又取决于玻璃的组成和热处理工艺。

虽然目前在微晶玻璃复合材料的开发应用上还存在诸如成本过高、性能有待提高和制备工艺有待改进等问题,但随着对微晶玻璃复合材料的研究和开发的不断深入,其优良的性能将使其在光、电、生、化、磁等微电子技术、生物医学、航空航天等领域得到更进一步的普及。

结论:陶瓷材料是一种本质脆性材料,在制备、机械加工以及使用过程中,容易产生一些内在和外在缺陷,从而导致陶瓷材料灾难性破坏,严重限制了陶瓷材料应用的广度和深度,因此提高陶瓷材料的韧性成为影响陶瓷材料在高技术领域中应用的关键。

近年来,受自然界高性能生物材料的启发,材料界提出了模仿生物材料结构

制备高韧性陶瓷材料的思路。1990年Clegg等创造性材料制备的Sic薄片与石墨片层交替叠层结构复合材料与常规SiC陶瓷材料相比,其断裂韧性和断裂功提高了几倍甚至几十倍,成功地实现了仿贝壳珍珠层的宏观结构增韧。国内外科研人员在陶瓷基层状复合材料力学性能方面进行了大量的试验研究,取得了很大进展。陶瓷基层状复合材料力学性能优劣关键在于界面层材料,能够应用在高温环境下,抗氧化的界面层材料还有待进一步开发;此外,在应用C、BN等弱力学性能的材料作为界面层时,虽然能够得到综合性能优异的层状复合材料,但是基体层与界面层之间结合强度低的问题也有待进一步解决。

陶瓷基层状复合材料的制备工艺具有简便易行、易于推广、周期短而廉价的优点,可以应用于制备大的或形状复杂的陶瓷部件。这种层状结构还能够与其它增韧机制相结合,形成不同尺度多级增韧机制协同作用,实现了简单成分多重结构复合,从本质上突破了复杂成分简单复合的旧思路。这种新的工艺思路是对陶瓷基复合材料制备工艺的重大突破,将为陶瓷基复合材料的应用开辟广阔前景。参考文献:

[1]李云凯.陶瓷及其复合材料[M].北京:北京理工大学出版社,2007.8.

[2]陈维平.Al2O3陶瓷复合材料的研究进展[J].材料工程,2011,(3):91-96.

[3]梁斌.SiC/YAG复合陶瓷材料的研究进展[J].材料导报,2011,(24):511-514.

[4]李文虎.TiAl基陶瓷复合材料的研究现状[J].陶瓷学报,2009,(3):392-395.

[5]赵运才.玻璃陶瓷复合材料的研究进展[J].机械工程材料,2007,(11):10-12.

[6]张良华.我国陶瓷复合材料专利信息分析研究[J].中国陶瓷,2010,(10):1-5.

[7]梁丽萍.陶瓷复合材料[J].山西科技,2003,(3):62-63.

[8]熊华平.陶瓷及陶瓷基复合材料高温钎料的研究现状与进展[J].航空航天焊接专题,2008,(11):19-23.

[9]苏波.陶瓷纤维及其陶瓷基复合材料[J].材料导报,1994,(2):67-71.

[10]邵刚勤.纳米陶瓷复相陶瓷及纳米复相陶瓷[J].材料科学与工艺, 2003,(2):211-214.

[11]王福军.硼化物陶瓷复合材料的研究进展与前景展望[J].吉林建筑工程学院学报,2009,(5):28-30.

[12]徐利华.先进复相陶瓷的研究现状和展望[J].硅酸盐通报,1996,(6):42-46.

[13]杨越飞.木质陶瓷复合材料的研究现状及发展前景[J].林业机械与木工设备,2009,(2):15-18.

[14]郭兴梅.压电陶瓷颗粒增韧陶瓷基复合材料研究进展[J].硅酸盐通报,2009,(4):736-750.

[15]康永.陶瓷复合装甲材料的研究和发展[J].佛山陶瓷,2011,(1):44-45.

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

连续陶瓷基复合材料的研究现状及发展趋势

第27卷第2期 硅 酸 盐 通 报 Vo.l 27 No .2 2008年4月 BULLETI N OF T HE C H INESE CERA M IC S OC IET Y Apr i,l 2008 连续陶瓷基复合材料的研究现状及发展趋势 陈维平,黄 丹,何曾先,王 娟,梁泽钦 (华南理工大学机械工程学院,广州 510640) 摘要:连续陶瓷基复合材料(C4材料)是近年来出现的一种具有全新复合增强方式的陶瓷/金属复合材料。在这种 复合材料中,基体陶瓷增强相具有三维连通的内部结构,因而起增韧作用的金属填充在陶瓷骨架的空隙中,其在空 间上也是三维连通的。实现这种复合结构需要不同于传统的复合材料成型与制备技术。这种复合结构使得连续 陶瓷基复合材料能够将陶瓷与金属各自的性能特点与优点更多的保留在最终的复合材料中;同时,还表现出了与 传统复合材料(颗粒增强复合材料、纤维增强复合材料等)不同的性能特性,具有广泛的应用前景。 关键词:连续陶瓷基复合材料;C4材料;三维连通 中图分类号:TQ174.758.2 文献标识码:A 文章编号:100121625(2008)022******* R esearch and Developm en t Per spective of C o 2con ti nuous C era m ic C o m posites C HE N Wei 2ping,H U A NG Dan,HE Ce ng 2xian,W A NG Juan,LIA NG Z e 2qin (School ofM echan icalE ngi neeri ng ,Sou t h Ch i na Un i versit y ofT echndogy ,Guangzhou 510640,Ch i na) Abstr act :Co 2conti n uous cera m ic co mposites (C4materials )are a ne w class of cera m ic /meta l co mposites w it h ne w ly rei n f orce men t manner ,where the reinf orc i n g cera m ic phase ,as t h e base of the co mposite ,is characterized as the t h ree 2di m ensional i n terpenetrati n g str ucture ;and the m etallic phase is filled i n t h e i n terspaces of the cera m ic net w or k,as the ductile phase of the co mposite .So me untraditi o na l f or m i n g and fabricating technol o gies f or the co mposites are required due to the spec i a l co 2conti n uous i n ter nal structure .The i n terna l structure of i n ter penetrati o n deter m i n es co 2conti n uous cera m ic co mposites can retain more f eatures and advantages of cera m ic and meta l respectively in the fi n al co mposite ,and also ,perf o r m the diff erent characteristics f ro m the traditi o na l co mposites (such as particle re i n f orced co mposites and fi b er reinf orced co mposites)so that this class of co mposites gain the extensive app li c ation perspectives . K ey w ord s :co 2continuous cera m ic co mposite ;C4m aterials ;three 2di m ensional i n terpenetrating 基金项目:国家自然科学基金资助项目(50575076);广东省自然科学基金重点资助项目(粤科基办[2003]07号);教育部博士点基金资助 项目(20040510107) 作者简介:陈维平(19502),男,教授,博士生导师.主要从事高性能金属/陶瓷复合材料的研究.E 2m a i :l m e wpchen@sc u t .edu .cn 1 连续陶瓷基复合材料 连续陶瓷基复合材料(co 2continuous cera m ic co mposites),简称为C4材料,指的是陶瓷增强体具有三维连通骨架结构的陶瓷基复合材料。这种三维网络陶瓷(骨架)/铝合金复合材料由美国俄亥俄州大学的研究人员Bresli n 等发现,他们将这种复合类型的新材料称为连续陶瓷复合材料(co 2continuous cera m ic

陶瓷基复合材料(CMC).

第四节 陶瓷基复合材料(CMC) 1.1概述 工程中陶瓷以特种陶瓷应用为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度高以及耐腐蚀件好等特点,已广泛用于制做剪刀、网球拍及工业上的切削刀具、耐磨件、 发动机部件、热交换器、轴承等。陶瓷最大的缺点是脆性大、抗热震性能差。与金属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要目的之一就是提高陶瓷的韧性。特别是纤维增强陶瓷复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺寸大小的比较。很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。无论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较大提高,而且也使临界裂纹尺寸增大。

陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物纳构远比金属与合金复杂得多。使用最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。陶瓷材料中的化学键往注是介于离子键与共价键之间的混合键。 陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。碳纤维是用来制造陶瓷基复合材料最常用的纤

维之一。碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进行有效的保护以防止它在空气中或氧化性气氛中被腐蚀,只有这样才能充分发挥它的优良性能。其它常用纤维是玻璃纤维和硼纤维。陶瓷材料中另一种增强体为晶须。晶须为具有一定长径比(直径o 3。1ym,长30—lMy”)的小单晶体。从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表面损伤等一类缺陷,而这些缺陷正是大块晶体中大量存在且促使强度下降的主要原因。在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨氏模量),这已非常接近十理论上的理想拉伸强度o.2Z。而相比之下.多晶的金属纤维和块状金属的拉伸强度只有o.025和o.o01f。在陶瓷基复合材料使用得较为普遍的是SiC、Al2O3、以及Si3N4N晶须。颗粒也是陶瓷材料中常用的一种增强体,从几何尺寸上看、它在各个方向上的长度是大致相同的,—般为几个微米。通常用得较多的颗粒也是SiC、Al2O3、以及Si3N4N。颗粒的增韧效果虽不如纤维和晶须,但如恰当选择颗粒种类、粒径、含量及基体材料,仍可获得一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。 在陶瓷材料中加入第二相纤维制成的复合材料是纤维增强陶瓷基复合材料,这是改善陶瓷材料韧性酌重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大高于其横向性能。在这种材料中,当裂纹扩展遇到纤维时会受阻.这样要使裂纹进一步扩展就必须提高外加应力。图7—15为这一过程的示意图。当外加应力进一步提高时.由于基体与纤维间的界面的离解,同时又由于纤维的强度高于基体的强

地砖种类及优缺点

地砖一般可分为:抛光砖、玻化砖、釉面砖、马赛克等 一、釉面砖 1、顾名思义,釉面砖就是砖的表面经过烧釉处理的砖。它基于原材料的分别,可分为两种:1) 陶制釉面砖,即由陶土烧制而成,吸水率较高,强度相对较低。其主要特征是背面颜色为红色。 2) 瓷制釉面砖,即由瓷土烧制而成,吸水率较低,强度相对较高。其主要特征是背面颜色是灰白色。 要注意的是,上面所说的吸水率和强度的比较都是相对的,目前也有一些陶制釉面砖的吸水率和强度比瓷制釉面砖好的。 2、釉面砖的釉面根据光泽的不同,还可以分为下面两种: 1) 亮光釉面砖。适合于制造"干净"的效果。 2) 哑光釉面砖。适合于制造"时尚"的效果。 3、常见问题 釉面砖是装修中最常见的砖种,由于色彩图案丰富,而且防污能力强,被广泛使用于墙面和地面之中,常见的质量问题主要有两方面: 1) 龟裂 龟裂产生的根本原因是坯与釉层间的应力超出了坯釉间的热膨胀系数之差。当釉面比坯的热膨胀系数大,冷却时釉的收缩大于坯体,釉会受拉伸应力,当拉伸应力大于釉层所能承受的极限强度时,就会产生龟裂现象。 2) 背渗 不管那一种砖,吸水都是自然的,但当坯体密度过于疏松时,就不仅是吸水的问题了,而是渗水泥的问题。即水泥的污水会渗透到表面。 4、常用规格 正方形釉面砖有152×152mm、200×200mm、长方形釉面砖有152× 200mm、200×300mm等,常用的釉面砖厚度5mm及6mm。 二、通体砖 通体砖的表面不上釉,而且正面和反面的材质和色泽一致,因此得 名。 通体砖是一种耐磨砖,虽然现在还有渗花通体砖等品种,但相对来说, 其花色比不上釉面砖。由于目前的室内设计越来越倾向于素色设计,所以 通体砖也越来越成为一种时尚,被广泛使用于厅堂、过道和室外走道等装 修项目的地面,一般较少会使用于墙面,而多数的防滑砖都属于通体砖。 通体砖常有的规格有300x300mm、400x400mm、500x500mm、600x600mm、 800x800mm等等。 三、抛光砖 抛光砖就是通体坯体的表面经过打磨而成的一种光亮的砖种。抛光砖属于通体砖的一种。相对于通体砖的平面粗糙而言,抛光砖就要光洁多了。抛光砖性质坚硬耐磨,适合在除洗手间、厨房和室内环境以外的多数室内空间中使用。在运用渗花技术的基础上,抛光砖可以做出各种仿石、仿木效果。 也许是业内的大意,也许是业内的故意,抛光砖却留下了一个致命的缺点:易脏。这是抛光砖在抛光时留下的凹凸气孔造成的,这些气孔会藏污纳垢,以致抛光砖谈污色变,甚至一些茶水倒在抛光砖上都回天无力。

高温结构陶瓷基复合材料的研究现状与展望--...

高温结构陶瓷基复合材料的研究现状与展望 摘要概述了国外航空发动机用高温结构陶瓷基复合材料的研究与应用现状及发展趋势,分析了目前研究中存在的问题及其解决办法,确定了今后的研究目标与方向。 关键词陶瓷基复合材料高温结构材料力学性能应用 1 前言 为了提高航空发动机的推重比和降低燃料消耗,最根本的措施是提高发动机的涡轮进口温度,而涡轮进口温度与热端部件材料的最高允许工作温度直接相关。50 至60 年代,发动机热端部件材料主要是铸造高温合金,其使用温度为800~900 ℃;70 年代中期,定向凝固超合金开始推广,其使用温度提高到 接近1000 ℃; 进入80 年代以后,相继开发出了高温单晶合金、弥散强化超合金以及金属间化合物等,并且热障涂层技术得到了广泛的应用,使热端部件的使用温度提高到1200~1300 ℃,已接近这类合金 熔点的80 % ,虽然通过各种冷却技术可进一步提高涡轮进口温度,但作为代价降低了热效率,增加了结 构复杂性和制造难度,而且对小而薄型的热端部件难以进行冷却,因而再提高的潜力极其有限[1 ] 。陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构首选材料。 近20 年来,世界各工业发达国家对于发动机用高温结构陶瓷基复合材料的研究与开发一直十分重视,相继制定了各自的国家发展计划,并投入了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA 制定的先进高温热机材料计划(HITEMP) 、DOE/ NASA 的先进涡轮技术应用计划(ATTAP) 、美国国家宇航计划(NASP) 、美国国防部关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650 ℃或更高[2 ,3 ] ,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。 2 国内外应用与研究现状 由于陶瓷材料具有高的耐磨性、耐高温和抗化学侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环、阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道的有法国将CVI 法SiC/Cf 用于狂风战斗机M88 发动机的喷嘴瓣以及将SiC/ SiCf 用于幻影2000 战斗机涡轮风扇发动机的喷管内调节片[4 ] 。 此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件,美国碳化硅公司用Si3N4/ SiCW制造导弹发动机燃气喷管,杜邦公司研制出能承受1200~1300 ℃、使用寿命达2000h 的陶瓷基复合材料发动机部件等[5 ,6 ] 。目前导弹、无人驾驶飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为[7 ] ,1204~1371 ℃发动机用陶瓷基复合材料已__经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26 %提高到46 %。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加力燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21 世纪初, 陶瓷基复合材料的使用温度可提高到1650 ℃或更高。 3 研究方向与发展趋势 陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。为了克服单组分陶瓷材料缺陷敏感性高、韧性低、可靠性差的缺点,材料科学工作者进行了大量的研究以寻找切实可行的增韧方法[8 ,9 ] 。增韧的思路经历了从“消除缺陷”或减少缺陷尺寸、减少缺陷数量,发展到制备能够“容忍缺陷”,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片) 弥散增韧、晶须(短切纤维) 复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。由于连续纤

陶瓷基复合材料

复合材料习题 第七章 一、如何改善陶瓷的强度? 减少陶瓷内部和表面的裂纹: 含有裂纹是材料微观结构的本征特性。微观夹杂、气孔、微 裂纹等都能成为裂纹源,材料对表面裂纹(划伤、擦伤)也 十分敏感。 提高断裂韧性(K IC): 采用复合化的途径,添加陶瓷粒子、纤维或晶须,引入各种 增韧机制(增加裂纹的扩散阻力及裂纹断裂过程消耗的能 量),可提高陶瓷的韧性。 二、简述氮化硅陶瓷的烧结方法及其特点。 氮化硅陶瓷中,Si-N是高强度共价键,难以烧结。氮化硅陶瓷有两种烧结方法:1、反应烧结: 硅粉、氮化硅粉混合预成型预氮化(1200℃)二次氮化(1350-1450℃)反应烧结氮化硅陶瓷。 Si3N4形成时伴随21.7%的体积膨胀,获得无收缩烧结氮化硅。 2、热压烧结: 粉末状Si3N4、烧结助剂MgO(1wt%)等,在石墨坩埚中,通过感应加热、单向加压烧结(1650-1850℃,15-30MPa,1-4h)。 MgO的作用:与SiO2膜作用生成熔融硅酸镁,使氮化硅高度致密化。 热压烧结氮化硅只能制备形状简单的(如圆柱形)实体坯件,其制品须经过机械加工才能达到要求的形状和尺寸。 三、简述陶瓷基复合材料的特点及制造步骤。 陶瓷基复合材料的特点:E f和E m的数量级相当;陶瓷基体的韧性有限;增强材 料与陶瓷基体之间的热膨胀系数不匹配、化学相容性问题突出。 陶瓷基复合材料的制造通常分为两个步骤:将增强材料掺入未固结(或粉末状) 的基体材料中排列整齐或均匀混合;运用各种加工条件在尽量不破坏增强材料和 基体性能的前提下制成复合材料制品。 四、简述连续纤维增强陶瓷基复合材料的料浆浸渍-热压烧结工艺及其优、缺点。料浆浸渍-热压烧结工艺:纤维通过含有超细陶瓷基体粉末的料浆使之浸渍,浸 挂料浆的纤维缠绕在卷筒上,烘干、切割,得到纤维无纬布;纤维无纬布裁剪、 铺层排列、热压烧结得到陶瓷基复合材料。

瓷砖的分类及各种种类的优缺点

瓷砖的分类 瓷砖按工艺分为:抛光砖、玻化砖、釉面砖、仿古砖、陶瓷锦砖、通体砖 一、抛光砖:抛光砖就是通体砖坯体的表面经过打磨/抛光处理而成的一种光亮的砖,属于通体砖的一种。相对通体砖而言,抛光砖的表面要光洁得多。抛光砖坚硬耐磨,适合在除洗手间、厨房以外的多数室内空间中使用。在运用渗花技术的基础上,抛光砖可以做出各种仿石、仿木效果。抛光砖易脏,防滑性能不很好。 ⑴、抛光砖的优点: 第一、无放射元素:天然石材属矿物质,未经高温烧结,故含有个别微量放射性元素,长期接触会对人体有害;抛光砖不会对人体造成伤害; 第二、基本可控制无色差:天然石材由于成岩时间、岩层深浅不同色差较大,抛光砖经精心调配,同批产品花色一致,基本无色差; 第三、抗弯曲强度大:天然石材由于自然形成,成材时间、风化等不尽相同,导致致密程度、强度不一;抛光砖由数千吨液压机压制,再经1200℃以上高温烧结,强度高; 第四、砖体薄、重量轻:天然石材因强度低,故加工厚度较大,笨重,增加了楼层建筑物的荷重,形成潜在威胁,成本上升,并且增加了运输、铺贴等困难。 ⑵、抛光砖的缺点: 有一个致命的缺点就是易脏,这是抛光砖在抛光时留下的凹凸气孔造成的。这些气孔会藏污纳垢,甚至一些茶水倒在抛光砖上都回天无力。也许业界意识到了这点,后来一些质量好的抛光砖在出厂时都加了一层防污层。

⑶、如何保养抛光砖: 1、定期中性清洁剂清洁表面、清除一般污渍,不可用任何强酸性的清洁剂,如洁厕净清洁洁厕净当时的清洁效果的确很好,但同时也烧坏了抛光砖的晶体层表面、使毛孔加大,从第二天开始,就变得越来越黑了,因为表层已经“烧坏”了,不抗污了。 2、中性晶面剂晶面护理。 3、特殊污渍如茶渍、果渍、咖啡渍、墨渍等.可采用高纯度的含量为27.5%以上的H2O2配合纸巾敷盖、浸泡2-3小时就能清除。 二、玻化砖:⑴、玻化砖其实就是全瓷砖。因为制造工艺的区别,其致密程度要比一般地砖更高,其表面光洁但又不需要抛光,所以不存在抛光气孔的问题。玻化砖是一种强化的抛光砖,它采用高温烧制而成。质地比抛光砖更硬更耐磨。区分玻化砖与抛光砖的主要区别就是吸水率。(吸水率越低,玻化程度越好,产品理化性能越好。)⑵、玻化砖是通体砖坯体的表面经过打磨而成的一种光亮的砖,属通体砖的一种。吸水率低于0.5%的陶瓷都称为玻化砖,抛光砖吸水率低于0.5%也属玻化砖(高于0.5%就只能是抛光砖不是玻化砖),然后将玻化砖进行镜面抛光即得玻化抛光砖,因为吸水率低的缘故其硬度也相对比较高,不容易有划痕。⑶、玻化砖是由石英砂、泥按照一定比例烧制而成,然后经打磨光亮但不需要抛光,表面如玻璃镜面一样光滑透亮,是所有瓷砖中最硬的一种,其在吸水率、边直度、弯曲强度、耐酸碱性等方面都优于普通釉面砖、抛光砖及一般的大理石。

瓷砖种类及其优缺点知识简述精编版

瓷砖种类及其优缺点知 识简述 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

按国标-吸水率分类 共分为五类: 1、瓷质砖:吸水率小于等于0.5%; 2、2、炻瓷质:吸水率大于0.5%小于等于3%; 3、3、细炻质:吸水率大于3%小于等于6%; 4、 5、4、炻质砖:吸水率大于6%小于等于10%; 6、陶质砖:吸水率大于10%。 排序: 陶质砖>10%≥炻质砖大于6%≥细炻质大于3%≥炻瓷质大于0.5≥瓷质砖 应用:客厅地面一般宜选择瓷质砖或炻瓷砖,这种砖强度和耐磨性都较高,不易吸水变形或出现裂纹; 应用:厨房和卫生间地面,选择细炻砖或炻质砖较好,这两种砖有一定的吸水率,有利于地面干燥,同时也具有较好的强度。 按铺贴位置分类 内墙砖 外墙砖 地砖 按工艺分类 陶质釉面砖 ①釉面砖 瓷质釉面砖 简析: 釉面砖 优点:色彩和图案要更丰富,防污能力也更强。 缺点:不过耐磨性却不比抛光砖,因为表面上是釉料。 应用:釉面砖一般用于厨房和卫生间 陶质釉面砖: 由陶土烧制而成, 特性:吸水率较高,一般强度相对较低,主要特征是背面为红色; 瓷质釉面砖: 由瓷土烧制而成

特性:吸水率较低,一般强度相对较高,主要特征是背面为灰白色。 区分: 光泽上又分为亚光和亮光,厨房多选择亮光 玻化砖和釉面砖的区别: 在硬度上,吸水率高于0.5%的就是釉面砖,低于0.5%的就是玻化砖。) 抛光砖 ②通体砖 (表里如一) 玻化砖 简析: 通体砖: 是不上釉的,因材质正反面都一样而得名。 通常来说,通体砖比较耐磨的,但是没有釉面砖的花色丰富。 种类上也有防滑、抛光和渗花之分。 优点: 第一.通体砖的表面不上釉,正面和反面的材质和色泽一致,因而很出名。 第二.第二.通体砖经济又实用,所以在厨房里用得比较多。 第三.通体砖是一种耐磨砖,虽然现在还有渗花通体砖等品种,因此通体砖也越来越成为一种时尚,被广泛使用于厅堂、过道和室外走道等装修。第四.通体砖很能防潮。 第五.在厨房装修地面使用通体砖时,当其沾有油渍,可以用一般的清洁剂和金属丝擦洗,不会在地面上产生任何细小划痕或者污渍。 缺点: 第一.通体砖是经打磨后,毛气孔暴露在外,油污、灰尘等容易渗入。 第二.通体砖的吸水率偏高,污物尘土渗入砖体所致,一旦渗入是擦不掉的。第三.由于砖体表面存在开放性孔隙,容易吸纳污物和划痕,使得表面发黑、发黄、失去光泽,于是“瓷砖翻新”成为清洁市场的一大难题。 第四.通体砖由于表面不上釉,因此其装饰效果较差。 应用:厅堂和过道等地面,很少有人会用在墙面上。 抛光砖: 优点:表面光洁,坚硬耐磨,在运用渗花技术的基础上,可以做出各种仿石、仿木效果,无色差,弯曲强度大,砖体薄、重量轻。 缺点:易脏,防滑性能不很好,在抛光时留下的凹凸气孔造成的。这些气孔会藏污纳垢,所以在出厂时都加了一层防污层。 应用:适合在除洗手间、厨房以外的多数室内空间中使用。

装饰材料种类及其特点

装饰材料种类及其特点 装饰材料是指铺设或涂装在建筑物表面,包括内、外表面起装饰效果的材料。装饰材料是集材料、工艺、造型设计、色彩、美学于一身的材料。它涉及的范围很广,不但涉及到传统的建筑材料,如石材、木材、陶瓷等,还涉及到化工建材、塑料建材、纺织建材、冶金建材等各种新型建筑材料,品种已达几万种之多,因此对其进行分类的方法也很多。 若按装饰材料的化学性质可将其划分为有机装饰材料(如建筑塑料类的壁纸、地板、胶粘剂及有机高分子涂料等)和无机装饰材料两大类。其中无机装饰材料又分为金属装饰材料(如铝合金、不锈钢、铜等)和非金属装饰材料(如饰面石材、陶瓷、玻璃等)。但实际中为使用方便起见,常接建筑物的装饰部位,来对装饰材料分类。 外墙装饰材料: 外墙装饰是建筑装饰的重要内容之一,其目的在于提高墙体的抵抗自然界中各种因素如灰尘、雨雪、冰冻、日晒等侵袭破坏的能力,并与墙体结构一起共同满足保温、隔热、隔声、防水、美化等功能要求。所以外墙装饰材料应兼顾保护墙体和美化墙体的两重功能。常用的外墙装饰材料有: 外墙涂料类:涂料是指涂敷于物体表面能与基层牢固粘结并形成完整而坚韧保护膜的材料。建筑涂料是现代建筑装饰材料较为经济的一种材料,施工简单、工期短、工效高、装饰效果好、维修方便。外墙涂料具有装饰性良好、耐污染耐老化、施工维修容易和价格合理的特点。 陶瓷类装饰材料:陶瓷外墙面砖坚固耐用,色彩鲜艳而具有丰富的装饰效果,并具有易清洗、防火、抗水、耐磨、耐腐蚀和维修费用低的优点。 建筑装饰石材:包括天然饰面石材(大理石、花岗石)和人造石材。天然饰面石材装饰效果好,耐久,但造价高。人造石材具有重量轻、强度高、耐腐蚀、价格低、施工方便等优点。玻璃制品具有控制光线调节热量、节约能源、改善建筑物环境、增加美感等优点。包括玻璃锦砖、釉面玻璃、钢化玻璃、彩色玻璃等。金属装饰板材综合经济效益显著。 碎屑饰面:包括水刷石、干粘石。剁斧石等。碎屑饰面施工方便、经济耐用。 内墙装饰材料: 内墙装饰是室内装饰的一部分,它兼顾装饰室内空.间、满足使用要求和保护结构等多种功能。常用的内墙装饰材料有:内墙涂料类:种类很多,颜色多样,装饰效果好,可满足不同的使用环境要求。镜糊类:指壁纸、墙布类装饰材料。婊糊类装饰具有颜色丰富、花样繁多、可擦洗、耐污染、粘贴方便等优点。饰面石材:天然饰面石材中用于内墙装饰的是大理石,各种人造饰面板(人造大理石、预制水磨石板)也广泛用于内墙装饰。釉面砖:常见的釉面砖有白色、彩色、印花彩色、彩色拼图及彩色壁画等多种,釉面砖表面光滑、美观、易清洁、抗水、防水。刷浆类材料:适用于内墙刷浆工程的材料有石灰浆、大白浆、色粉浆、可赛银浆等。刷浆与涂料相比,价格低廉但不耐久。内墙饰面板:有塑料贴面板、纤维板、金属饰面板、胶合板饰面板等。 地面装饰材料: 地面装饰材料应具有安全性(即地面使用时的稳定性和安全性,如阻燃、防滑、电绝缘等)、耐久性、舒适性(指行走舒适有弹性、隔声吸音等)、装饰性。常用的地面装饰材料有如下几种。 木地板:是一种传统的地面材料。木地板古朴大方、有弹性行走舒适、美观隔声、价格较高,是一种较高级的地面装饰材料。 石材:铺地用石材主要是天然大理石和花岗石。它们高雅华丽,装饰效果好,但价格贵,

陶瓷基复合材料的制备原理与工艺

材料制备原理课程论文 题目陶瓷基复合材料的制备原理与工艺 学院材料科学与工程学院 专业班级 学生姓名 2012 年3 月28日

陶瓷基复合材料的制备原理与工艺 前言:科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景。 陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。 连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点。 1陶瓷基复合材料的基本介绍和种类 虽然用于纤维增强陶瓷基复合材料的纤维种类较多.但迄今为止,能够真正实用的纤维种类并不多一现简要介绍如下: 第一类为氧化铝系列(包括莫来石)纤维一这类纤维的高温抗氧化性能优良,有可能用于14000C以上的高温环境.但目前作为FRCMCS的增强材料主要存在以下两个问题:一是高温下晶体相变、晶粒粗化以及玻璃相的蠕变导致纤维的高温强度下降;二是在高温成型和使用过程中,氧化物纤维易与陶瓷基体(尤其足氧化物陶瓷)形成强结合的界面,导致FRCMCS 的脆性破坏,丧失了纤维的补强增韧作用。 第二类为碳化硅系列纤维目前制备碳化硅纤维的方法主要有两种:一足化学气相沉积法(CVD):用这种方法制备的碳化硅纤维,其高温性能好,但由于直径太大(大于100um),不利于制备形状复杂的FRCMCS构件,且价格昂贵,因而其应用受到很大限制。二足有机聚合物先驱体转化法。在这种方法制备的纤维中,最典型的例子是日本碳公司生产的Nicalon 和Tyranno等纤维。这种纤维的共同特点是,纤维中不同程度地含有氧和游离碳杂质,从而影响纤维的高温性能。最近,H本碳公司生产的低含氧量碳化硅纤维(Hi.Nicalon)具有较好的高温稳定性,其强度在1500~1600℃温度下变化不大。 第三类为氮化硅系列纤维。它们实际卜是由Si、N、C和0等组成的复相陶瓷纤维,现已有商品出售。这类纤维也是通过有机聚合物先驱体转化法制备的,日前也存存着与先驱体碳化硅纤维同样的问题,因而其性能与先驱体碳化硅纤维相近。 第四类为碳纤维。碳纤维已有三十余年的发展历史,它是目前开发得最成熟,性能最好的纤维之一,已被广泛用作复合材料的增强材料。其高温性能非常好,在惰性气氛中,2000~C

陶瓷基复合材料

河南农业大学机电工程学院《非金属材料》课程论文 陶瓷基复合材料 姓名: 学号: 专业班级: 论文方向: 任课教师:

陶瓷基复合材料 摘要:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。 正文: 陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。 连续纤维补强陶瓷基复合材料(简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091 项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

瓷砖的种类和各自特点

釉是什么? 釉是覆盖在陶瓷制品表面的无色或有色的玻璃质薄层。是用矿物原料 原料可先制成熔块)经过研磨制成釉浆,施于坯体表面,经一定温度煅烧而成。能增加制品的机械强度、热稳定性和电介强度,还有美化器物、便于拭洗、不被尘土腥秽侵蚀等特点。 渗花通体砖、玻化砖、防滑地砖之类名称,却又不明白其中的涵义。为此,我们特地请教有关专家,请他们将这些名词一一破解: 釉面砖:指砖表面烧有釉层的瓷砖。这种砖分为两大类:一是用陶土烧制的,因吸水率较高而必须烧釉,所以确切地说应该叫“磁砖”,这种砖的强度较低,现在很少使用;另一种是用瓷土烧制的,为了追求装饰效果也烧了釉,这种瓷砖结构致密、强度很高、吸水率较低、抗污性强,价格比陶土烧制的瓷砖稍高。瓷土烧制的釉面砖,目前广泛使用于家庭装修,有80%的购买者都用这种瓷砖作为地面装饰材料。 分辨这两种砖的诀窍很简单:陶土烧制的瓷砖背后是红色的,瓷土烧制的砖背后是白色的。在用陶土烧制的瓷砖中,西班牙生产的墙地砖因其独特的装饰效果,目前在北京很盛行,但这种砖的价格较高,一般用于中高档家庭装修。

通体砖:这是一种不上釉的瓷质砖,有很好的防滑性和耐磨性。一般我们所说的“防滑地砖”,大部分是通体砖。由于这种砖价位适中,所以深受消费者喜爱。其中“渗花通体砖”的美丽花纹,更是令人爱不释手。 抛光砖:通体砖经抛光后就成为抛光砖,这种砖的硬度很高,所以非常耐磨。 玻化砖:这是一种高温烧制的瓷质砖,是所有瓷砖中最硬的一种。有时抛光砖被刮出划痕时,玻化砖仍然安然无恙。但这种砖的价格较高。玻化砖是优于花岗岩材的又一新型建筑材料,具有如下优点: 1、色彩艳丽柔和,没有明显色差。而天然花岗岩由于成岩时间、岩层的深浅不同色差较大。 2、高温烧结、完全瓷化生成了莫来石等多种晶体,理化性能稳定,耐腐蚀、抗污性强,历久如新。花岗岩由于自然形成,成材时间、风化程度等不尽相同,导致致密度、强度不一,使用两年后逐渐失去光泽,表面磨损粗糙,难以清洁,影响美观。 3、厚度相对较薄,抗折强度高,砖体轻巧,建筑物荷重减少。而天然花岗岩强度较低,笨重,增加了建筑物的荷重,且会给运输、铺贴

相关文档