文档视界 最新最全的文档下载
当前位置:文档视界 › 【数据分析技术系列】之数据建模的几大模式

【数据分析技术系列】之数据建模的几大模式

【数据分析技术系列】之数据建模的几大模式
【数据分析技术系列】之数据建模的几大模式

【数据分析技术系列】

之数据建模的几大模式

目录

第一,目标律:业务目标是所有数据解决方案的源头。 (1)

第二,知识律:业务知识是数据挖掘过程每一步的核心。 (1)

第三,准备律:数据预处理比数据挖掘其他任何一个过程都重要。 2第四,试验律(NFL律:NO FREE LUNCH):对于数据挖掘者来说,天下没有免费的午餐,一个正确的模型只有通过试验(EXPERIMENT)才能被发现。 (3)

第五,模式律(大卫律):数据中总含有模式。 (4)

第六,洞察律:数据挖掘增大对业务的认知。 (5)

第七,预测律:预测提高了信息泛化能力。 (6)

第八,价值律:数据挖掘的结果的价值不取决于模型的稳定性或预测的准确性。 (6)

第九,变化律:所有的模式因业务变化而变化。 (7)

数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。将经过系统分析后抽象出来的概念模型转化为物理模型后,在visio或erwin等工具建立数据库实体以及各实体之间关系的过程。数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。

当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的跨行业数据挖掘标准流程,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者成功运用和遵循。

虽然‘跨行业数据挖掘标准流程’能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这样做。在本文中将阐述提出数据挖掘的九种准则或“定律”以及另外其它一些熟知的解释。开始从理论上来解释数据挖掘过程。

第一,目标律:业务目标是所有数据解决方案的源头。

定义了数据挖掘的主题:数据挖掘关注解决业务业问题和实现业务目标。数据挖掘主要不是一种技术,而是一个过程,业务目标是它的的核心。没有业务目标,没有数据挖掘(不管这种表述是否清楚)。因此这个准则也可以说成:数据挖掘是业务过程。

第二,知识律:业务知识是数据挖掘过程每一步的核心。

这里定义了数据挖掘过程的一个关键特征。CRISP-DM的一种朴素的解读是业务知识仅仅作用于数据挖掘过程开始的目标的定义与最后的结果的实施,这将错过数据挖掘过程的一个关键属性,即业务知识是每一步的核心。

商业理解必须基于业务知识,所以数据挖掘目标必须是业务目标的映射(这种映射也基于数据知识和数据挖掘知识);

数据理解使用业务知识理解与业务问题相关的数据,以及它们是如何相关的;

数据预处理就是利用业务知识来塑造数据,使得业务问题可以被提出和解答(更详尽的第三条—准备律);

建模是使用数据挖掘算法创建预测模型,同时解释模型和业务目标的特点,也就是说理解它们之间的业务相关性;

评估是模型对理解业务的影响;

实施是将数据挖掘结果作用于业务过程。

总之,没有业务知识,数据挖掘过程的每一步都是无效的,也没有“纯粹的技术”步骤。业务知识指导过程产生有益的结果,并使得那些有益的结果得到认可。数据挖掘是一个反复的过程,业务知识是它的核心,驱动着结果的持续改善。

这背后的原因可以用“鸿沟的表现”(chasm of representation)来解释(Alan Montgomery在20世纪90年代对数据挖掘提出的一个观点)。Montgomery 指出数据挖掘目标涉及到现实的业务,然而数据仅能表示现实的一部分;数据和现实世界是有差距(或“鸿沟”)的。在数据挖掘过程中,业务知识来弥补这一差距,在数据中无论发现什么,只有使用业务知识解释才能显示其重要性,数据中的任何遗漏必须通过业务知识弥补。只有业务知识才能弥补这种缺失,这是业务知识为什么是数据挖掘过程每一步骤的核心的原因。

第三,准备律:数据预处理比数据挖掘其他任何一个过程都重要。

这是数据挖掘著名的格言,数据挖掘项目中最费力的事是数据获取和预处理。非正式估计,其占用项目的时间为50%-80%。最简单的解释可以概括为“数据是困难的”,经常采用自动化减轻这个“问题”的数据获取、数据清理、数据转换等数据预处理各部分的工作量。虽然自动化技术是有益的,支持者相信这项技术可以减少数据预处理过程中的大量的工作量,但这也是误解数据预处理在数据挖掘过程中是必须的原因。

数据预处理的目的是把数据挖掘问题转化为格式化的数据,使得分析技术(如数据挖掘算法)更容易利用它。数据任何形式的变化(包括清理、最大最小值转换、增长等)意味着问题空间的变化,因此这种分析必须是探索性的。这是数据预处理重要的原因,并且在数据挖掘过程中占有如此大的工作量,这样数据挖掘者可以从容地操纵问题空间,使得容易找到适合分析他们的方法。

有两种方法“塑造”这个问题空间。第一种方法是将数据转化为可以分析的完全格式化的数据,比如,大多数数据挖掘算法需要单一表格形式的数据,一个记录就是一个样例。数据挖掘者都知道什么样的算法需要什么样的数据形式,因此可以将数据转化为一个合适的格式。第二种方法是使得数据能够含有业务问题的更多的信息,例如,某些领域的一些数据挖掘问题,数据挖掘者可以通过业务知识和数据知识知道这些。通过这些领域的知识,数据挖掘者通过操纵问题空间可能更容易找到一个合适的技术解决方案。

因此,通过业务知识、数据知识、数据挖掘知识从根本上使得数据预处理更加得心应手。数据预处理的这些方面并不能通过简单的自动化实现。

这个定律也解释了一个有疑义的现象,也就是虽然经过数据获取、清理、融合等方式创建一个数据仓库,但是数据预处理仍然是必不可少的,仍然占有数据挖掘过程一半以上的工作量。此外,就像CRISP-DM展示的那样,即使经过了主要的数据预处理阶段,在创建一个有用的模型的反复过程中,进一步的数据预处理的必要的。

第四,试验律(NFL律:No Free Lunch):对于数据挖掘者来说,天下没有免费的午餐,一个正确的模型只有通过试验(experiment)才能被发现。

机器学习有一个原则:如果我们充分了解一个问题空间(problem space),我们可以选择或设计一个找到最优方案的最有效的算法。一个卓越算法的参数依赖于数据挖掘问题空间一组特定的属性集,这些属性可以通过分析发现或者算法创建。但是,这种观点来自于一个错误的思想,在数据挖掘过程中数据挖掘者将问题公式化,然后利用算法找到解决方法。事实上,数据挖掘者将问题公式化和寻找解决方法是同时进行的—–算法仅仅是帮助数据挖掘者的一个工具。

有五种因素说明试验对于寻找数据挖掘解决方案是必要的:

数据挖掘项目的业务目标定义了兴趣范围(定义域),数据挖掘目标反映了这一点;

与业务目标相关的数据及其相应的数据挖掘目标是在这个定义域上的数据挖掘过程产生的;

这些过程受规则限制,而这些过程产生的数据反映了这些规则;

在这些过程中,数据挖掘的目的是通过模式发现技术(数据挖掘算法)和可以解释这个算法结果的业务知识相结合的方法来揭示这个定义域上的规则;

数据挖掘需要在这个域上生成相关数据,这些数据含有的模式不可避免地受到这些规则的限制。

在这里强调一下最后一点,在数据挖掘中改变业务目标,CRISP-DM有所暗示,但经常不易被觉察到。广为所知的CRISP-DM过程不是下一个步骤仅接着上一个步骤的“瀑布”式的过程。事实上,在项目中的任何地方都可以进行任何CRISP-DM步骤,同样商业理解也可以存在于任何一个步骤。业务目标不是简单地在开始就给定,它贯穿于整个过程。这也许可以解释一些数据挖掘者在没有清晰的业务目标的情况下开始项目,他们知道业务目标也是数据挖掘的一个结果,不是静态地给定。

Wolpert的“没有免费的午餐”理论已经应用于机器学习领域,无偏的状态好于(如一个具体的算法)任何其他可能的问题 (数据集)出现的平均状态。这是因为,如果我们考虑所有可能的问题,他们的解决方法是均匀分布的,以至于一个算法(或偏倚)对一个子集是有利的,而对另一个子集是不利的。这与数据挖掘者所知的具有惊人的相似性,没有一个算法适合每一个问题。但是经过数据挖掘处理的问题或数据集绝不是随机的,也不是所有可能问题的均匀分布,他们代表的是一个有偏差的样本,那么为什么要应用NFL的结论?答案涉及到上面提到的因素:问题空间初始是未知的,多重问题空间可能和每一个数据挖掘目标相关,问题空间可能被数据预处理所操纵,模型不能通过技术手段评估,业务问题本身可能会变化。由于这些原因,数据挖掘问题空间在数据挖掘过程中展开,并且在这个过程中是不断变化的,以至于在有条件的约束下,用算法模拟一个随机选择的数据集是有效的。对于数据挖掘者来说:没有免费的午餐。

这大体上描述了数据挖掘过程。但是,在有条件限制某些情况下,比如业务目标是稳定的,数据和其预处理是稳定的,一个可接受的算法或算法组合可以解决这个问题。在这些情况下,一般的数据挖掘过程中的步骤将会减少。但是,如果这种情况稳定是持续的,数据挖掘者的午餐是免费的,或者至少相对便宜的。像这样的稳定性是临时的,因为对数据的业务理解(第二律)和对问题的理解(第九律)都会变化的。

第五,模式律(大卫律):数据中总含有模式。

这条规律最早由David Watkins提出。我们可能预料到一些数据挖掘项目会失败,因为解决业务问题的模式并不存在于数据中,但是这与数据挖掘者的实践经验并不相关。

前文的阐述已经提到,这是因为:在一个与业务相关的数据集中总会发现一些有趣的东西,以至于即使一些期望的模式不能被发现,但其他的一些有用的东西可能会被发现(这与数据挖掘者的实践经验是相关的);除非业务专家期望的模式存在,否则数据挖掘项目不会进行,这不应感到奇怪,因为业务专家通常是对的。

然而,Watkins提出一个更简单更直接的观点:“数据中总含有模式。”这与数据挖掘者的经验比前面的阐述更一致。这个观点后来经过Watkins修正,基于客户关系的数据挖掘项目,总是存在着这样的模式即客户未来的行为总是和先前的行为相关,显然这些模式是有利可图的(Watkins的客户关系管理定律)。但是,数据挖掘者的经验不仅仅局限于客户关系管理问题,任何数据挖掘问题都会

存在模式(Watkins的通用律)。

Watkins的通用律解释如下:

数据挖掘项目的业务目标定义了兴趣范围(定义域),数据挖掘目标反映了这一点;

与业务目标相关的数据及其相应的数据挖掘目标是在这个定义域上的数据挖掘过程产生的;

这些过程受规则限制,而这些过程产生的数据反映了这些规则;

在这些过程中,数据挖掘的目的是通过模式发现技术(数据挖掘算法)和可以解释这个算法结果的业务知识相结合的方法来揭示这个定义域上的规则;

数据挖掘需要在这个域上生成相关数据,这些数据含有的模式不可避免地受到这些规则的限制。

总结这一观点:数据中总存在模式,因为在这过程中不可避免产生数据这样的副产品。为了发掘模式,过程从(你已经知道它)—–业务知识开始。

利用业务知识发现模式也是一个反复的过程;这些模式也对业务知识有贡献,同时业务知识是解释模式的主要因素。在这种反复的过程中,数据挖掘算法简单地连接了业务知识和隐藏的模式。

如果这个解释是正确的,那么大卫律是完全通用的。除非没有相关的数据的保证,否则在每个定义域的每一个数据挖掘问题总是存在模式的。

第六,洞察律:数据挖掘增大对业务的认知。

数据挖掘是如何产生洞察力的?这个定律接近了数据挖掘的核心:为什么数据挖掘必须是一个业务过程而不是一个技术过程。业务问题是由人而非算法解决的。数据挖掘者和业务专家从问题中找到解决方案,即从问题的定义域上达到业务目标需要的模式。数据挖掘完全或部分有助于这个认知过程。数据挖掘算法揭示的模式通常不是人类以正常的方式所能认识到的。综合这些算法和人类正常的感知的数据挖掘过程在本质上是敏捷的。在数据挖掘过程中,问题解决者解释数据挖掘算法产生的结果,并统一到业务理解上,因此这是一个业务过程。

这类似于“智能放大器”的概念,在早期的人工智能的领域,AI的第一个实际成果不是智能机器,而是被称为“智能放大器”的工具,它能够协助人类使用者提高获取有效信息的能力。数据挖掘提供一个类似的“智能放大器”,帮助业务专家解决他们不能单独完成的业务问题。

总之,数据挖掘算法提供一种超越人类以正常方式探索模式的能力,数据挖掘过程允许数据挖掘者和业务专家将这种能力融合在他们的各自的问题的中和业务过程中。

第七,预测律:预测提高了信息泛化能力。

“预测”已经成为数据挖掘模型可以做什么的可接受的描述,即我们常说的“预测模型”和“预测分析”。这是因为许多流行的数据挖掘模型经常使用“预测最可能的结果”(或者解释可能的结果如何有可能)。这种方法是分类和回归模型的典型应用。

但是,其他类型的数据挖掘模型,比如聚类和关联模型也有“预测”的特征。这是一个含义比较模糊的术语。一个聚类模型被描述为“预测”一个个体属于哪个群体,一个关联模型可能被描述为基于已知基本属性“预测”一个或更多属性。

同样我们也可以分析“预测”这个术语在不同的主题中的应用:一个分类模型可能被说成可以预测客户行为—-更加确切的说它可以预测以某种确定行为的目标客户,即使不是所有的目标个体的行为都符合“预测”的结果。一个诈骗检测模型可能被说成可以预测个别交易是否具有高风险性,即使不是所有的预测的交易都有欺诈行为。

“预测”这个术语广泛的使用导致了所谓的“预测分析”被作为数据挖掘的总称,并且在业务解决方案中得到了广泛的应用。但是我们应该意识到这不是日常所说的“预测”,我们不能期望预测一个特殊个体的行为或者一个特别的欺诈调查结果。

那么,在这个意义下的“预测”是什么?分类、回归、聚类和关联算法以及他们集成模型有什么共性呢?答案在于“评分”,这是预测模型应用到一个新样例的方式。模型产生一个预估值或评分,这是这个样例的新信息的一部分;在概括和归纳的基础上,这个样例的可利用信息得到了提高,模式被算法发现和模型具体化。值得注意的是这个新信息不是在“给定”意义上的“数据”,它仅有统计学意义。

第八,价值律:数据挖掘的结果的价值不取决于模型的稳定性或预测的准确性。

准确性和稳定性是预测模型常用的两个度量。准确性是指正确的预测结果所占的比例;稳定性是指当创建模型的数据改变时,用于同一口径的预测数据,其预测结果变化有多大(或多小)。鉴于数据挖掘中预测概念的核心角色,一个预测模型的准确性和稳定性常被认为决定了其结果的价值的大小,实际上并非如此。

体现预测模型价值的有两种方式:一种是用模型的预测结果来改善或影响行为,另一种是模型能够传递导致改变策略的见解(或新知识)。

对于后者,传递出的任何新知识的价值和准确性的联系并不那么紧密;一些模型的预测能力可能有必要使我们相信发现的模式是真实的。然而,一个难以理解的复杂的或者完全不透明的模型的预测结果具有高准确性,但传递的知识也不是那么有见地;然而,一个简单的低准确度的模型可能传递出更有用的见解。

准确性和价值之间的分离在改善行为的情况下并不明显,然而一个突出问题是“预测模型是为了正确的事,还是为了正确的原因?” 换句话说,一个模型的价值和它的预测准确度一样,都源自它的业务问题。例如,客户流失模型可能需要高的预测准确度,否则对于业务上的指导不会那么有效。相反的是一个准确度高的客户流失模型可能提供有效的指导,保留住老客户,但也仅仅是最少利润客户群体的一部分。如果不适合业务问题,高准确度并不能提高模型的价值。

模型稳定性同样如此,虽然稳定性是预测模型的有趣的度量,稳定性不能代替模型提供业务理解的能力或解决业务问题,其它技术手段也是如此。

总之,预测模型的价值不是由技术指标决定的。数据挖掘者应该在模型不损害业务理解和适应业务问题的情况下关注预测准确度、模型稳定性以及其它的技术度量。

第九,变化律:所有的模式因业务变化而变化。

数据挖掘发现的模式不是永远不变的。数据挖掘的许多应用是众所周知的,但是这个性质的普遍性没有得到广泛的重视。

数据挖掘在市场营销和CRM方面的应用很容易理解,客户行为模式随着时间的变化而变化。行为的变化、市场的变化、竞争的变化以及整个经济形势的变化,预测模型会因这些变化而过时,当他们不能准确预测时,应当定期更新。

数据挖掘在欺诈模型和风险模型的应用中同样如此,随着环境的变化欺诈行为也在变化,因为罪犯要改变行为以保持领先于反欺诈。欺诈检测的应用必须设计为就像处理旧的、熟悉的欺诈行为一样能够处理新的、未知类型的欺诈行为。

某些种类的数据挖掘可能被认为发现的模式不会随时间而变化,比如数据挖掘在科学上的应用,我们有没有发现不变的普遍的规律?也许令人惊奇的是,答案是即使是这些模式也期望得到改变。理由是这些模式并不是简单的存在于这个世界上的规则,而是数据的反应—-这些规则可能在某些领域确实是静态的。

然而,数据挖掘发现的模式是认知过程的一部分,是数据挖掘在数据描述的世界与观测者或业务专家的认知之间建立的一个动态过程。因为我们的认知在持续发展和增长,所以我们也期望模式也会变化。明天的数据表面上看起来相似,但是它可能已经集合了不同的模式、(可能巧妙地)不同的目的、不同的语义;分

析过程因受业务知识驱动,所以会随着业务知识的变化而变化。基于这些原因,模式会有所不同。

总之,所有的模式都会变化,因为他们不仅反映了一个变化的世界,也反映了我们变化的认知。

这九条定律是关于数据挖掘的简单的真知。

大数据处理常用技术简介

大数据处理常用技术简介 storm,Hbase,hive,sqoop, spark,flume,zookeeper如下 ?Apache Hadoop:是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。 ?Apache Hive:是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce 统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。 ?Apache Pig:是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。 ?Apache HBase:是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。 ?Apache Sqoop:是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。 ?Apache Zookeeper:是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务?Apache Mahout:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。 ?Apache Cassandra:是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身 ?Apache Avro:是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。Avro是新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制 ?Apache Ambari:是一种基于Web的工具,支持Hadoop集群的供应、管理和监控。 ?Apache Chukwa:是一个开源的用于监控大型分布式系统的数据收集系统,它可以将各种各样类型的数据收集成适合Hadoop 处理的文件保存在HDFS 中供Hadoop 进行各种MapReduce 操作。 ?Apache Hama:是一个基于HDFS的BSP(Bulk Synchronous Parallel)并行计算框架, Hama可用于包括图、矩阵和网络算法在内的大规模、大数据计算。

数据分析算法与模型一附答案

精品文档 数据分析算法与模型模拟题(一) 一、计算题(共4题,100分) 1、影响中国人口自然增长率的因素有很多,据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据 人口自然增长率国民总收入居民消费价格指数增长人均GDP 年份(元)率((亿元) CPI(%。))% 1366 15037 1988 15.73 18.8 1519 1989 18 17001 15.04 1644 18718 1990 14.39 3.1 1893 21826 3.4 1991 12.98 2311 26937 11.6 6.4 1992 2998 35260 14.7 11.45 1993 4044 48108 1994 24.1 11.21 5046 17.1 10.55 59811 1995 5846 70142 1996 10.42 8.3 6420 10.06 1997 2.8 78061 -0.8 1998 9.14 83024 6796 8.18 7159 1999 88479 -1.4 7858 2000 0.4 7.58 98000 精品文档. 精品文档

16种常用数据分析方法

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策 树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0 (常为理论值或标准值)有无差别; B 配对样本t 检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t 检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析用于分析离散变量或定型变量之间是否存在相关。对于二维表,可进行卡 方检验,对于三维表,可作Mentel-Hanszel 分层分析列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以

大数据处理技术的特点

1)Volume(大体量):即可从数百TB到数十数百PB、 甚至EB的规模。 2)Variety(多样性):即大数据包括各种格式和形态的数据。 3)Velocity(时效性):即很多大数据需要在一定的时间限度下得到及时处理。 4)Veracity(准确性):即处理的结果要保证一定的准确性。 5)Value(大价值):即大数据包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。 传统的数据库系统主要面向结构化数据的存储和处理,但现实世界中的大数据具有各种不同的格式和形态,据统计现实世界中80%以上的数据都是文本和媒体等非结构化数据;同时,大数据还具有很多不同的计算特征。我们可以从多个角度分类大数据的类型和计算特征。 1)从数据结构特征角度看,大数据可分为结构化与非结构化/半结构化数据。 2)从数据获取处理方式看,大数据可分为批处理与流式计算方式。 3)从数据处理类型看,大数据处理可分为传统的查询分析计算和复杂数据挖掘计算。 4)从大数据处理响应性能看,大数据处理可分为实时/准实时与非实时计算,或者是联机计算与线下计算。前述的流式计算通常属于实时计算,此外查询分析类计算通常也要求具有高响应性能,因而也可以归为实时或准实时计算。而批处理计算和复杂数据挖掘计算通常属于非实时或线下计算。 5)从数据关系角度看,大数据可分为简单关系数据(如Web日志)和复杂关系数据(如社会网络等具有复杂数据关系的图计算)。

6)从迭代计算角度看,现实世界的数据处理中有很多计算问题需要大量的迭代计算,诸如一些机器学习等复杂的计算任务会需要大量的迭代计算,为此需要提供具有高效的迭代计算能力的大数据处理和计算方法。 7)从并行计算体系结构特征角度看,由于需要支持大规模数据的存储和计算,因此目前绝大多数禧金信息大数据处理都使用基于集群的分布式存储与并行计算体系结构和硬件平台。

数据分析建模简介

数据分析建模简介 观察和实验是科学家探究自然的主要方法,但如果你有数据,那么如何让这些数据开口说话呢?数据用现代人的话说即信息,信息的挖掘与分析也是建模的一个重要方法。 1.科学史上最有名的数据分析例子 开普勒三定律 数据来源:第谷?布拉赫(1546-1601,丹麦人),观察力极强的天文学家,一辈子(20年)观察记录了750颗行星资料,位置误差不超过0.67°。 观测数据可以视为实验模型。 数据处理:开普勒(1571-1630,德国人),身体瘦弱、近视又散光,不适合观天,但有一个非常聪明的数学头脑、坚韧的性格(甚至有些固执)和坚强的信念(宇宙是一个和谐的整体),花了16年(1596-1612)研究第谷的观测数据,得到了开普勒三定律。 开普勒三定律则为唯象模型。 2.数据分析法 2.1 思想 采用数理统计方法(如回归分析、聚类分析等)或插值方法或曲线拟合方法,对已知离散数据建模。 适用范围:系统的结构性质不大清楚,无法从理论分析中得到系统的规律,也不便于类比,但有若干能表征系统规律、描述系统状态的数据可利用。 2.2 数据分析法 2.2.1 基础知识 (1)数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出; (2)数据分析(data analysis)是指分析数据的技术和理论; (3)数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律;

(4)作用:在实用中,它可帮助人们作判断,以采取适当行动。 (5)实际问题所涉及的数据分为: ①受到随机性影响(随机现象)的数据; ②不受随机性影响(确定现象)的数据; ③难以确定性质的数据(如灰色数据)。 (6)数理统计学是一门以收集和分析随机数据为内容的学科,目的是对数据所来自的总体作出判断,总体有一定的概率模型,推断的结论也往往一概率的形式表达(如产品检验合格率)。 (7)探索性数据分析是在尽量少的先验假定下处理数据,以表格、摘要、图示等直观的手段,探索数据的结构及检测对于某种指定模型是否有重大偏离。它可以作为进一步分析的基础,也可以对数据作出非正式的解释。 实验者常常据此扩充或修改其实验方案(作图法也该法的重要方法,如饼图、直方图、条形图、走势图或插值法、曲线(面)拟合法等)。 2.2.2 典型的数据分析工作步骤 第一步:探索性数据分析 目的:通过作图、造表、用各种形式的方程拟合、计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 第二步:模型选定分析 目的:在探索性分析的基础上,提出一类或几类可能的模型(如进一步确定拟合多项式(方程)的次数和各项的系数)。 第三步:推断分析 目的:通常用数理统计或其它方法对所选定的模型或估计的可靠程度或精确程度作出推断(如统计学中的假设检验、参数估计、统计推断)。3.建模中的概率统计方法 现实世界存在确定性现象和随机现象,研究随机现象主要由随机数学来承担,随机数学包括十几个分支,但主要有概率论、数理统计、试验设计、贝叶

大数据与建模

大数据与建模 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1、SQL用于访问和处理数据库的标准的计算机语言。用来访问和操作数据库系统。SQL语句用于取回和更新数据库中的数据。SQL可与数据库程序系统工作。比如MS Access,DB2,Infermix,MS SQL Server,Oracle,Sybase以及其他数据库系统。SQL可以面向数据库执行查询,从数据库取回数据,在数据库中插入新的记录,更新数据库中的数据,从数据库删除记录,创建新数据库,在数据库中创建新表,在数据库中创建存储过程,在数据库中创建视图和设置表、存储过程和视图的权限等。 2、Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可好的,因为他假设计算单元和存户会失败,因此他维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为他以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop

依赖于社区服务器,因此他的成本较低,任何人都可以使用。 3、HPCC(high performance computinggand communications)高性能计算与通信的缩写。1993年,由美国科学、工程技术联邦协调理事会向国会提交了“重大挑战项目”高性能计算与通信的报告,也就是被称为HPCC计划的报告,及美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。 4、Strom是自由的开源软件,一个分布式的、容错的实时计算系统。Strom可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量出具,Strom很简单,支持许多种编程语言,使用起来非常有趣。Strom由Twitter开元而来,其他知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。Strom有许多应用领域:实时分析、在线机器学习、不停顿的计算,分布式RPC(员过程调用协议,一种通过网络

剖析大数据分析方法论的几种理论模型

剖析大数据分析方法论的几种理论模型 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 作者:佚名来源:博易股份|2016-12-01 19:10 收藏 分享 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 利用大数据分析的应用案例更加细化的说明做大数据分析方法中经常用到的几种理论模型。 以营销、管理等理论为指导,结合实际业务情况,搭建分析框架,这是进行大数据分析的首要因素。大数据分析方法论中经常用到的理论模型分为营销方面的理论模型和管理方面的理论模型。 管理方面的理论模型: ?PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等?PEST:主要用于行业分析 ?PEST:政治(Political)、经济(Economic)、社会(Social)和技术(Technological) ?P:构成政治环境的关键指标有,政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、国防开支水平政府补贴水平、民众对政治的参与度等。?E:构成经济环境的关键指标有,GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。?S:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

?T:构成技术环境的关键指标有:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。 大数据分析的应用案例:吉利收购沃尔沃 大数据分析应用案例 5W2H分析法 何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何做(How)、何价(How much) 网游用户的购买行为: 逻辑树:可用于业务问题专题分析

大数据分析技术与应用_实验2指导

目录 1实验主题 (1) 2实验目的 (1) 3实验性质 (1) 4实验考核方法 (1) 5实验报告提交日期与方式 (1) 6实验平台 (1) 7实验内容和要求 (1) 8实验指导 (2) 8.2 开启Hadoop所有守护进程 (2) 8.2 搭建Eclipse环境编程实现Wordcount程序 (3) 1.安装Eclipse (3) 2.配置Hadoop-Eclipse-Plugin (3) 3.在Eclipse 中操作HDFS 中的文件 (7) 4.在Eclipse 中创建MapReduce 项目 (8) 5.通过Eclipse 运行MapReduce (13) 6.在Eclipse 中运行MapReduce 程序会遇到的问题 (16)

1实验主题 1、搭建Hadoop、Eclipse编程环境 2、在Eclipse中操作HDFS 3、在Eclipse中运行Wordcount程序 4、参照Wordcount程序,自己编程实现数据去重程序 2实验目的 (1)理解Hadoop、Eclipse编程流程; (2)理解MapReduce架构,以及分布式编程思想; 3实验性质 实验上机内容,必做,作为课堂平时成绩。 4实验考核方法 提交上机实验报告,纸质版。 要求实验报告内容结构清晰、图文并茂。 同学之间实验报告不得相互抄袭。 5实验报告提交日期与方式 要求提交打印版,4月19日(第10周)之前交到软件学院412。 6实验平台 操作系统:Linux Hadoop版本:2.6.0或以上版本 JDK版本:1.6或以上版本 Java IDE:Eclipse 7实验内容和要求 (1)搭建Hadoop、Eclipse编程环境; (2)运行实验指导上提供的Wordcount程序; (3)在Eclipse上面查看HDFS文件目录; (4)在Eclipse上面查看Wordcount程序运行结果; (5)熟悉Hadoop、Eclipse编程流程及思想; 程序设计题,编程实现基于Hadoop的数据去重程序,具体要求如下: 把data1文件和data2文件中相同的数据删除,并输出没有重复的数据,自己动手实现,把代码贴到实验报告的附录里。 设计思路: 数据去重实例的最终目标是让原始数据中出现次数超过一次的数据在输出文件中只出现一次。具体就是Reduce的输入应该以数据作为Key,而对value-list则没有要求。当Reduce 接收到一个时就直接将key复制到输出的key中,并将value设置成空值。在MapReduce流程中,Map的输出 经过shuffle过程聚集成后会被交给Reduce。所以从设计好的Reduce输入可以反推出Map输出的key应为数据,而

大数据建模与分析挖据课程大纲

时 间 内容提要授课详细内容实践训练 第一天业界主流的 数据仓库工 具和大数据 分析挖掘工 具 1.业界主流的基于Hadoop和Spark的大数据分析挖掘项目 解决方案 2.业界数据仓库与数据分析挖掘平台软件工具 3.Hadoop数据仓库工具Hive 4.Spark实时数据仓库工具SparkSQL 5.Hadoop数据分析挖掘工具Mahout 6.Spark机器学习与数据分析挖掘工具MLlib 7.大数据分析挖掘项目的实施步骤 配置数据仓库工具 Hadoop Hive和 SparkSQL 部署数据分析挖掘 工具Hadoop Mahout 和Spark MLlib 大数据分析 挖掘项目的 数据集成操 作训练 1.日志数据解析和导入导出到数据仓库的操作训练 2.从原始搜索数据集中抽取、集成数据,整理后形成规范 的数据仓库 3.数据分析挖掘模块从大型的集中式数据仓库中访问数 据,一个数据仓库面向一个主题,构建两个数据仓库 4.同一个数据仓库中的事实表数据,可以给多个不同类型 的分析挖掘任务调用 5.去除噪声 项目数据集加载 ETL到Hadoop Hive 数据仓库并建立多 维模型 基于Hadoop 的大型数据 仓库管理平 台—HIVE数 据仓库集群 的多维分析 建模应用实 践 6.基于Hadoop的大型分布式数据仓库在行业中的数据仓库 应用案例 7.Hive数据仓库集群的平台体系结构、核心技术剖析 8.Hive Server的工作原理、机制与应用 9.Hive数据仓库集群的安装部署与配置优化 10.Hive应用开发技巧 11.Hive SQL剖析与应用实践 12.Hive数据仓库表与表分区、表操作、数据导入导出、客 户端操作技巧 13.Hive数据仓库报表设计 14.将原始的日志数据集,经过整理后,加载至Hadoop + Hive 数据仓库集群中,用于共享访问 利用HIVE构建大型 数据仓库项目的操 作训练实践 Spark大数据 分析挖掘平 台实践操作 训练 15.Spark大数据分析挖掘平台的部署配置 16.Spark数据分析库MLlib的开发部署 17.Spark数据分析挖掘示例操作,从Hive表中读取数据并 在分布式内存中运行

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一就是事务处理型操作都就是细粒度操作,每次事务处理涉及数据量都很小。 二就是计算相对简单,一般只有少数几步操作组成,比如修改某行得某列; 三就是事务型处理操作涉及数据得增、删、改、查,对事务完整性与数据一致性要求非常高。 四就是事务性操作都就是实时交互式操作,至少能在几秒内执行完成; 五就是基于以上特点,索引就是支撑事务型处理一个非常重要得技术. 在数据量与并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL数据复制等)等高可用措施即可满足业务需求。 在数据量与并发交易量增加情况下,一般可以采用ORALCERAC集群方式或者就是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑. 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用得系统来解决本问题。

2数据统计分析 数据统计主要就是被各类企业通过分析自己得销售记录等企业日常得运营数据,以辅助企业管理层来进行运营决策。典型得使用场景有:周报表、月报表等固定时间提供给领导得各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应得营销策略等. 数据统计分析特点包括以下几点: 一就是数据统计一般涉及大量数据得聚合运算,每次统计涉及数据量会比较大。二就是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现. 三就是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多得用户希望能做做到交互式实时统计; 传统得数据统计分析主要采用基于MPP并行数据库得数据仓库技术.主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析得结构来实现高性能得数据统计分析,以支持可以通过下钻与上卷操作,实现各种维度组合以及各种粒度得统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算得数据库仓库系统也成为一个发展趋势,例如SAP得HANA平台。 3 数据挖掘 数据挖掘主要就是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中得规律与知识。

大数据风控建模标准流程

大数据风控建模标准流程 一、风控建模标准过程 (一)数据采集汇总 2、评估数据真实性和质量,数据质量好的变量进入后续步骤 (二)模型设计 1、时间窗和好坏客户定义 时间窗:根据获取数据的覆盖周期,将数据分为用来建模的观察期数据,和后面用来验证表现的表现期数据; 好坏客户定义:分析客户滚动和迁移率,来定义什么程度逾期的为“坏客户”,例如定义M3为坏客户就是定义逾期3个月的才是坏 客户; 2、样本集切分和不平衡样本处理 样本集切分:切分为训练集和测试集,一般7/3或8/2比例; 不平衡样本:最理想样本为好坏各50%,实际拿到的样本一般坏 客户占比过低,采取过采样或欠采样方法来调节坏样本浓度。 3、模型选择 评分卡模型以逻辑回归为主。 (三)数据预处理及变量特征分析 1、变量异常值、缺失值处理:使用均值、众数等来平滑异常值,来填补缺失,缺失率过高的变量直接丢弃; 2、变量描述性统计:看各个变量的集中或离散程度,看变量的 分布是否对样本好坏有线性单调的相关性趋势; (四)变量筛选

1、变量分箱:变量取值归入有限个分组中,一般5个左右的分 箱数量,来参加后面的算法模型计算。分箱的原则是使得各箱内部 尽量内聚,即合并为一箱的各组坏样本率接近;使得相邻分箱的坏 样本率呈现单调趋势。从方法上一版采取先机器分箱,后人工微调。 2、定量计算变量对于识别坏样本的贡献度(WOE和IV) (1)WOE是统计一个变量的各分箱区间之间的好占总好比值坏 占总坏之比,不同分箱之间差异明显且比例成单调趋势,说明分箱 的区分度好; (2)IV是在WOE基础上进一步加权计算这个变量整体上对于区 分好坏样本的识别度,也就是变量影响因子。数越大说明用这个变 量进行区分的效果越好,但IV值过大容易引起模型过拟合,即模型 过于依赖单一变量,造成使用过程中平衡性健壮性不好; 3、计算变量之间的相关性或多重共线性,相关性高于0.5甚至0.7的两个变量里,就要舍弃一个,留下iv值较高的那个。例如 “近一个月查询次数”、“近三个月查询次数”、“近六个月查询 次数”这三个变量显然明显互相相关度高,只保留其中一个变量进 入模型即可。 (五)变量入模计算 1、以最终选定的若干变量,进入回归模型算法,机器自动计算 其中每一个X就是一种变量,这个计算就是为了算出每种变量的最终权重,也就是算出所有的b。 2、客户违约概率映射为客户分数。以上公式一旦计算确定,则 给出一个确定的客户,就可以算出其违约概率,下面公式是把概率 进一步再映射计算成一个客户总评分。 3、计算确定每种变量每个分箱所应该给的得分 某一变量在一个分箱的得分该组WOE 1、模型区分好坏客户能力评价

大数据处理常用技术有哪些

大数据处理常用技术有哪些? storm,hbase,hive,sqoop.spark,flume,zookeeper如下 ?Apache Hadoop:是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。 ?Apache Hive:是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce 统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。 ?Apache Pig:是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。 ?Apache HBase:是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。 ?Apache Sqoop:是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。 ?Apache Zookeeper:是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务?Apache Mahout:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。 ?Apache Cassandra:是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身 ?Apache Avro:是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。Avro是新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制 ?Apache Ambari:是一种基于Web的工具,支持Hadoop集群的供应、管理和监控。 ?Apache Chukwa:是一个开源的用于监控大型分布式系统的数据收集系统,它可以将各种各样类型的数据收集成适合Hadoop 处理的文件保存在HDFS 中供Hadoop 进行各种MapReduce 操作。 ?Apache Hama:是一个基于HDFS的BSP(Bulk Synchronous Parallel)并行计算框架, Hama可用于包括图、矩阵和网络算法在内的大规模、大数据计算。

《大数据分析方法与应用》教学大纲

《大数据分析方法与应用》课程教学大纲 课程代码:090542008 课程英文名称:Big Data Analysis: Methods and Applications 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 本课程是应用统计学专业的一门专业课,通过本课程的学习,可以使学生学会选用适当的方法和技术分析数据,领会大数据分析方法和应用,掌握复杂数据的分析与建模,使学生能够按照实证研究的规范和数据挖掘的步骤进行大数据研发,为就业与继续深造打下必要而有用的基础。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握数据挖掘流程、随机森林树的回归算法、基于预测强度的聚类方法、朴素贝叶斯分类、高维回归及变量选择、图模型等。 2.基本能力:要求能在真实案例中应用相应的方法。 3.基本技能:掌握复杂数据的分析与建模。 (三)实施说明 1. 本大纲主要依据应用统计学专业2017版教学计划、应用统计学专业专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定并根据我校实际情况进行编写的。 2. 课程学时总体分配表中的章节序号在授课过程中可酌情调整顺序,课时分配仅供参考。打“*”号的章节可删去或选学。 3. 建议本课程采用课堂讲授、讨论相结合的方法开展教学,通过讨论等方式强化重点,通过分散难点,使学生循序渐进的掌握难点。 4.教学手段:建议采用多媒体等现代化手段开展教学。 (四)对先修课的要求 本课程的先修课程:应用多元统计分析。 (五)对习题课、实践环节的要求 通过案例讲解算法,鼓励学生演示分析思路和分析收获,使学生有机会诊断问题,并学会选用适当的方法和技术分析数据。 (六)课程考核方式 1.考核方式:考查 2.考核目标:在考核学生基础知识、基本技能,基本能力的基础上,重点考核学生的分析能力、解决实际问题能力。 3.成绩构成:本课程由平时成绩和结课报告的质量评定优、良、中、及格和不及格。 (七)参考书目: 《大数据分析:方法与应用》,王星编,清华大学出版社,2013. 二、中文摘要 《大数据分析方法与应用》是高等学校应用统计学专业的一门选修的专业课。本课程着重介绍了统计学习、数据挖掘和模式识别等领域的各种大数据分析方法。课程主要内容包括大数据分析概述、数据挖掘流程、随机森林树、基于预测强度的聚类方法、贝叶斯分类和因果学习、高

大数据分析平台技术要求

大数据平台技术要求 1. 技术构架需求 采用平台化策略,全面建立先进、安全、可靠、灵活、方便扩展、便于部署、操作简单、易于维护、互联互通、信息共享的软件。 技术构架的基本要求: 采用多层体系结构,应用软件系统具有相对的独立性,不依赖任何特定的操作系统、特定的数据库系统、特定的中间件应用服务器和特定的硬 件环境,便于系统今后的在不同的系统平台、不同的硬件环境下安装、 部署、升级移植,保证系统具有一定的可伸缩性和可扩展性。 实现B(浏览器)/A(应用服务器)/D(数据库服务器)应用模式。 采用平台化和构件化技术,实现系统能够根据需要方便地进行扩展。2. 功能指标需求 2.1基础平台 本项目的基础平台包括:元数据管理平台、数据交换平台、应用支撑平台。按照SOA的体系架构,实现对我校数据资源中心的服务化、构件化、定制化管理。 2.1.1元数据管理平台 根据我校的业务需求,制定统一的技术元数据和业务元数据标准,覆盖多种来源统计数据采集、加工、清洗、加载、多维生成、分析利用、发布、归档等各个环节,建立相应的管理维护机制,梳理并加载各种元数据。 具体实施内容包括: ●根据业务特点,制定元数据标准,要满足元数据在口径、分类等方面的 历史变化。 ●支持对元数据的管理,包括:定义、添加、删除、查询和修改等操作,

支持对派生元数据的管理,如派生指标、代码重新组合等,对元数据管 理实行权限控制。 ●通过元数据,实现对各类业务数据的统一管理和利用,包括: ?基础数据管理:建立各类业务数据与元数据的映射关系,实现统一 的数据查询、处理、报表管理。 ?ETL:通过元数据获取ETL规则的描述信息,包括字段映射、数据转 换、数据转换、数据清洗、数据加载规则以及错误处理等。 ?数据仓库:利用元数据实现对数据仓库结构的描述,包括仓库模式、 视图、维、层次结构维度描述、多维查询的描述、立方体(CUBE) 的结构等。 ●元数据版本控制及追溯、操作日志管理。 2.1.2数据交换平台 结合元数据管理模块并完成二次开发,构建统一的数据交换平台。实现统计数据从一套表采集平台,通过数据抽取、清洗和转换等操作,最终加载到数据仓库中,完成整个数据交换过程的配置、管理和监控功能。 具体要求包括: ●支持多种数据格式的数据交换,如关系型数据库:MS-SQLServer、MYSQL、 Oracle、DB2等;文件格式:DBF、Excel、Txt、Cvs等。 ●支持数据交换规则的描述,包括字段映射、数据转换、数据转换、数据 清洗、数据加载规则以及错误处理等。 ●支持数据交换任务的发布与执行监控,如任务的执行计划制定、定期执 行、人工执行、结果反馈、异常监控。 ●支持增量抽取的处理方式,增量加载的处理方式; ●支持元数据的管理,能提供动态的影响分析,能与前端报表系统结合, 分析报表到业务系统的血缘分析关系; ●具有灵活的可编程性、模块化的设计能力,数据处理流程,客户自定义 脚本和函数等具备可重用性; ●支持断点续传及异常数据审核、回滚等交换机制。

业绩数据分析模型(终审稿)

业绩数据分析模型 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

营销总经理的业绩数据分析模型--营销总经理的工作模型(一) 前言 营销总经理这个职位压力大而且没有安全 感——天气变化、竞品动态、本品产品质量、 公司的战略方向、费用投入、经销商的突然变 化、行业动荡、上游采购成本等等诸多因素影 响业绩。营销行业没有常胜将军,但是这个行业以成败论英雄。 营销总经理这个职位事情多而且杂乱琐碎:营销总经理要遥控管理庞大的营销团队,服务于全国几千万家经销商和终端。工作千头万绪,哪怕每天干25个小时,工作还是俄罗斯方块一样堆积。 压力和杂务干扰之下,就容易迷失,做营销总经理需要热情、能力、经验、更需要固化的可复制的工作模型,帮助自己脱身庶务,联系市场实际,提升管理绩效。 营销总经理工作模型一:数据分析模型 一、营销总经理数据分析流程概述 数据分析好像“业绩体检报告”,告诉营销总经理哪里有问题。营销总经理要每天按照固定的数据分析模型对当日发货量、累计业绩进度、发货客户数、

发货品项数、产品结构、区域结构等关键指标进行全方位多维次的实时监控。随时关注整体业绩达成的数量和质量。 如果公司整体业绩分析没问题就下延看区域业绩有没问题,没问题就结束分析。如果公司整体业绩有问题;就要思考有没有特殊原因——比如:天气下雨造成三天发货量下滑,天晴后业绩会恢复。公司上半月集中力量乡镇市场压货,所以低价产品业绩上升高价产品业绩下滑是计划内正常现象。如果没有特殊原因,确实属于业绩异常,就要立刻从这个指标着手深度分析:通常是从产品、区域、客户三条主线来研究。发现问题产品(哪个产品需要重点管理)、发现问题区域(哪个区域需要重点巡查)、发现问题客户(哪个重点零售ka系统重点经销商的业绩不正常)。除非问题非常严重,一般营销总经理的数据分析下延到直接下级(大区或者省区层面)即可,然后要求问题区域的大区经理做出解释,拿出整改方案。大区省区经理再做区域内数据分析,寻找问题产品、问题片区和问题经销商。 数据分析得出结论就找到了管理重点,接下来营销总经理要采取针对性有的放失的管理动作——比如立刻去巡检重点问题区域、要求问题区域限期改善、更改当月的促销投入或者产品价格、设立新的工作任务(比如乡镇铺货)等等,整个分析流程图示如下:

大数据建模与挖掘应用

关于举办“大数据建模与分析挖掘应用”实战培训班的通知地点北京上海 时间12月 23-26 1月 12-15 一、课程简介 大数据建模与分析挖掘技术已经逐步地应用到新兴互联网企业(如电子商务网站、搜索引擎、社交网站、互联网广告服务提供商等)、银行金融证券企业、电信运营等行业,给这些行业带来了一定的数据价值增值作用。 本次课程面向有一定的数据分析挖掘算法基础的工程师,带大家实践大数据分析挖掘平台的项目训练,系统地讲解数据准备、数据建模、挖掘模型建立、大数据分析与挖掘算法应用在业务模型中,结合主流的Hadoop与Spark大数据分析平台架构,实现项目训练。 结合业界使用最广泛的主流大数据平台技术,重点剖析基于大数据分析算法与BI技术应用,包括分类算法、聚类算法、预测分析算法、推荐分析模型等在业务中的实践应用,并根据讲师给定的数据集,实现两个基本的日志数据分析挖掘系统,以及电商(或内容)推荐系统引擎。 本课程基本的实践环境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。 学员需要准备的电脑最好是i5及以上CPU,4GB及以上内存,硬盘空间预留50GB(可用移动硬盘),基本的大数据分析平台所依赖的软件包和依赖库等,讲师已经提前部署在虚拟机镜像(VMware镜像),学员根据讲师的操作任务进行实践。 本课程采用技术原理与项目实战相结合的方式进行教学,在讲授原理的过程中,穿插实际的系统操作,本课程讲师也精心准备的实际的应用案例供学员动手训练。 二、培训目标 1.本课程让学员充分掌握大数据平台技术架构、大数据分析的基本理论、机器学习的常用算法、国内外主流的大数据分析与BI商业智能分析解决方案、以及大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用案例。 2.本课程强调主流的大数据分析挖掘算法技术的应用和分析平台的实施,让学员掌握主流的基于大数据Hadoop和Spark、R的大数据分析平台架构和实际应用,并用结合实际的生产系统案例进

数据分析和数据建模

数据分析和数据建模 大数据应用有几个方面,一个是效率提升,帮助企业提升数据处理效率,降低数据存储成本。另外一个是对业务作出指导,例如精准营销,反欺诈,风险管理以及业务提升。过去企业都是通过线下渠道接触客户,客户数据不全,只能利用财务数据进行业务运营分析,缺少围绕客户的个人数据,数据分析应用的领域集中在企业内部经营和财务分析。 大数据应用有几个方面,一个是效率提升,帮助企业提升数据处理效率,降低数据存储成本。另外一个是对业务作出指导,例如精准营销,反欺诈,风险管理以及业务提升。过去企业都是通过线下渠道接触客户,客户数据不全,只能利用财务数据进行业务运营分析,缺少围绕客户的个人数据,数据分析应用的领域集中在企业内部经营和财务分析。 数字时代到来之后,企业经营的各个阶段都可以被记录下来,产品销售的各个环节也被记录下来,客户的消费行为和网上行为都被采集下来。企业拥有了多维度的数据,包括产品销售数据、客户消费数据、客户行为数据、企业运营数据等。拥有数据之后,数据分析成为可能,企业成立了数据分析团队整理数据和建立模型,找到商品和客户之间的关联关系,商品之间关联关系,另外也找到了收入和客户之间的关联关系。典型的数据分析案例如沃尔玛啤酒和尿布、蛋挞和手电筒,Target的判断16岁少女怀孕都是这种关联关系的体现。

关联分析是统计学应用最早的领域,早在1846年伦敦第二次霍乱期间,约翰医生利用霍乱地图找到了霍乱的传播途径,平息了伦敦霍乱,打败了霍乱源于空气污染说的精英,拯救了几万人的生命。伦敦霍乱平息过程中,约翰医生利用了频数分布分析,建立了霍乱地图,从死亡案例分布的密集程度上归纳出病人分布同水井的关系,从而推断出污染的水源是霍乱的主要传播途径,建议移除水井手柄,降低了霍乱发生的概率。 另外一个典型案例是第二次世界大战期间,统计分析学家改造轰炸机。英美联盟从1943年开始对德国的工业城市进行轰炸,但在1943年年底,轰炸机的损失率达到了英美联盟不能承受的程度。轰炸军司令部请来了统计学家,希望利用数据分析来改造轰炸机的结构,降低阵亡率,提高士兵生还率。统计学家利用大尺寸的飞机模型,详细记录了返航轰炸机的损伤情况。统计学家在飞机模型上将轰炸机受到攻击的部位用黑笔标注出来,两个月后,这些标注布满了机身,有的地方标注明显多于其他地方,例如机身和侧翼。有的地方的标注明显少于其他地方,例如驾驶室和发动机。统计学家让军火商来看这个模型,军火商认为应该加固受到更多攻击的地方,但是统计学家建议对标注少的地方进行加固,标注少的原因不是这些地方不容易被击中,而是被击中的这些地方的飞机,很多都没有返航。这些标注少的地方被击中是飞机坠毁的一个主要原因。军火商按照统计学家的建议进行了飞机加固,大大提高了轰炸机返航的比率。以二战著名的B-17轰炸机为例,其阵亡率由26%降到了7%,帮助美军节约了几亿美金,大大提高了士兵的生还率。 一数据分析中的角色和职责 数据分析团队应该在科技部门内部还在业务部门内部一直存在争议。在业务部门内部,对数据场景比较了解,容易找到数据变现的场景,数据分析对业务提升帮助较大,容易出成绩。但是弊端是仅仅对自己部门的业务数据了解,分析只是局限独立的业务单元之内,在数据获取的效率上,数据维度和数据视角方面缺乏全局观,数据的商业视野不大,对公司整体业务的推动发展有限。业务部门的数据分析团队缺少数据技术能力,无法利用最新的大数据计算和分析技术,来实现数

相关文档
相关文档 最新文档