文档视界 最新最全的文档下载
当前位置:文档视界 › 用拉普拉斯变换方法解微分方程

用拉普拉斯变换方法解微分方程

用拉普拉斯变换方法解微分方程
用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解?

一拉普拉斯变换的概念

定义设函数f(t)的定义域为[0,+ R若广义积分jT^f(t)e-Pt dt对于p在某一范

围内的值收敛,则此积分就确定了一个参数为p的函数记作F(p),即F(p)= o F f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数), 表示为F(p)=L[f(t)].

若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函

数),记作L-1[F(p)].

例1求指数函数f(t)=e at(t > 0是常数)的拉氏变换.

解根据定义,有L[e at]= cTe at e-pt dt二(re-(p-a)t dt

这个积分在p > a时收敛所以有

L[e a1]= 0+TO e-(p-a)t dt=1/(p-a) (p> a) (1)

例2求一次函数f(t)=at(t 滾是常数)的拉氏变换.

解L[at]= 0T ate pt dt二-a/p oFtd(e-pt)

=-[at/p e-pt]o+cx+a/p o广-pt dt

根据罗必达法则,有

lim to+ ?(-at/p e-pt)=-lim to+ ?at/pe pt=-lim to+ ?a/p2 e pt

上述极限当p >0时收敛于0,所以有lim to+ ?(-at/pe-pt)=0

因此L[at]=a/p o+T e-pt dt

二-[a/p2e-pt]o+cx=a/p2(p> 0)

例3求正弦函数f(t)=sin 3 t(t的拉氏变换.

解L[sin 3 t]=o+°!Sin w-tedt

=[-1/(p2+w2) e-pt(psin 3 t+ 3 coo+°3 t]

=3 /(p+w2) (p > 0) (3)

用同样的方法可求得

L[cos 3 t]=p/(p+ 32) (p > 0) (4)

二拉普拉斯变换的基本性质

三拉普拉斯变换的逆变换

四拉普拉斯变换的应用

2-5 用拉普拉斯变换方法解微分方程

拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。

拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。

有关拉普拉斯变换(简称拉氏变换)的公式见附录一。

应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 —,s 2代替

dt

…就可得到。

dt

应用拉氏变换法解微分方程的步骤如下: (1)

对线性微分方程中每一项

进行拉氏变换,使微分方程变为复变量 s 的代数方程(称为 变换

方程)

(2) 求解变换方程,得出系统输出变量的象函数表达式。 (3)

将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)

(4) 对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】

设RC 网络如图2-24所示,在开关 K 闭合之前,电容 C 上有初始电压

U c (O)。试求将开关瞬时闭合后,电容的端电压

U c (网络输出)。

U r Ri U c

1 U c c C

idt

消去中间变量i ,得网络微分方程为

可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。

将输出的象函数U c (s)展成部分分式:

RC U c (s)

1 — U O

s

RC RCs 1U O

RC RCs 1

U c (0)

1

U c (s) -U O

s

r U o

厂 U c (°)

(2-45 )

解 开关K 瞬时闭合,相当于网络有阶跃电压 为

U c (t) U O ? 1(t)输入。故网络微分方程 RC 詈…) 对上式进行拉氏变换,得变换方程 (2-44

) RCsU c (s) RCu c (0) U c (s) U r (s)

将输入阶跃电压的拉氏变换式 U r (S )

U 0

—代入上式,并整理得电容端电压的拉氏变换式

s

U c (s)

U O

s(RCs 1)

RC (RCs 1)

U c (0)

RC

等式两边进行拉氏反变换,得

此式表示了 RC 网络在开关闭合后输出电压 u c (t)的变化过程。

比较方程(2-45)和(2-46)可见,方程右端第一项 取决于外加的输入作用U o ? 1(t),表示了网络输出响应 u c (t)的稳态分量,也称强迫解;第二项表示 U c (t)的瞬 态分量,该分量随时间变化的规律取决于系统结构参量

R 、C 所决定的特征方程式(即 RCs 1

0 )的根

1 。显然,由于其特征根为负实数,则瞬态分量将随

RC

着时间的增长而衰减至零。第三项为与初始值有关的瞬态 分量,其随时间变化的规律同样取决于特征根,当初始值

U c (0)

0时,则第三项为零,于是就有

RC 网络的阶跃响应U c (t)及其各组成部分的曲线如图 2-25所示。

U c (t) U o u °e RC U c (O)e RC

(2-46 )

U c (t) U o

U o e RC

(2-47 )

变换法解微分方程

题目: 变换法在求解常微分方程中的应用姓名: 学院: 数学与统计学院 专业: 数学与应用数学 年级班级: 2011级1班 指导教师: 刘伟 2015年 5 月 31 日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:变换法在求解常微分方程中的应用 作者单位:数学与统计学院 作者签名: 2015 年5 月31 日

目录 摘要 (1) 引言 (2) 1.在一阶方程中的应用 (3) 1.1变量分离方程 (3) 1.2齐次与可以经过变量代换化为齐次的常微分方程: (3) 1.3一阶线性方程 (7) 1.4几种特殊类型的一阶常微分方程 (8) 1.5伯努利方程 (9) 1.6黎卡提方程 (10) 2.在n阶微分方程中的应用 (10) 2.1 在n阶非齐次线性微分方程 (10) 2.2 非齐次线性微分方程 (12) 3.变系数齐次方程 (13) 3.1尤拉方程 (13) 3.2二阶变系数线性方程 (13) 3.3三阶变系数微分方程 (14) 结束语 (14) 参考文献 (16) 致谢 (17)

变换法在求解常微分方程中的应用 摘要:变换法是常微分方程中的一种计算方法. 它可以起到简化问题的作用,变量变换思想也是一种常微分方程中的重要思想. 应用原始变量的变换与新的变量代换, 使原始方程的类型相对简单的解决方案,从而达到解决的目的. 在常微分方程中, 变换法在许多类型的常微分方程的求解中起到及其重要的作用. 本文就应用变换法在求解几类微分方程进行探究, 通过陈述理论与联系实例结合阐述变量变换法以及变量变换思想在求解常微分方程的应用. 关键词:常微分方程;变量分离;变换法; Application of transform method in solving the differential equation Abstract: Transform method is a calculation method of ordinary differential equation. It can play a role to simplify the problem, the idea of variable transformation is an important thought in ordinary differential equation. The application of the original variable transform and the new type of variable substitution, the original equation solution is relatively simple, so as to achieve the purpose of solving. In the differential equation, variable substitution plays its important role in the ordinary solution differential equations in many types of. This paper explores the solutions for several classes of differential equations on the application of variable substitution, through the statement of theory and examples combined with variable transformation method and the application of variable transformation thought in the solution of ordinary differential equations. Key Words: Ordinary differential equation;Separable variable;Transform method

拉斯变换解微分方程

§2-3拉普拉斯变换及其应用 时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种. 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换 为 (2-45)式中,称为原函数,称为象函数,变量为复变量,表示 为 (2-46)因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)上式为复变函数积 分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为

(2-49) 且 (2-50) 所以 (2-51) 说明:单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为, 脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因 此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分 下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。

(2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53) 由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其 积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

用拉普拉斯变换方法解微分方程

2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 dt d ,2 s 代替 2 2dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下: (1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程) (2)求解变换方程,得出系统输出变量的象函数表达式。 (3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。 (4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压 )0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。 解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为 ?? ? ??=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为 )(t u u dt du RC r c c =+ (2-44) 对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s u s U r 0)(= 代入上式,并整理得电容端电压的拉氏变换式

用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]. 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]. 例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换. 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换. 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换. 解L[sinωt]=∫0+∞sinωte-pt dt =[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞ =ω/(p2+ω2) (p>0) (3) 用同样的方法可求得 L[cosωt]=p/(p2+ω2) (p>0) (4) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

4-3拉普拉斯变换解微分方程

變換解微分方程 題過程: 分方程 題 02///=--y y y …..(*) 0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換 L {=--}2///y y y L }0{ 性性質,得 L {}//y - L {}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y 始條件,得L )}({t y 之代數方程 2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a) 數方程(a),得 簡 單 L 1-L ODE L {})()(s t y 之代數方程或低階ODE )(t y L {})()(s t y

L )}({t y 21 2---=s s s 上式兩邊做反拉普拉斯變換,得 =) L -1 {L {)(t y }}= L -1 ??????---212s s s ??? ??++??? ??-11322131s s 及L {} at e = a s -1 , 解為 =)t 31 L -1 ??????-21s + 32 L -1 ??????+11s 31= +t e 2 32 t e - 題t y y 2sin //=+ , …..(**) 1)0(,2)0(/==y y *)式等號兩邊做拉普拉斯變換 L {} =+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at += ,得 L {}y +--)0()0(/y sy L 42 }{2+=s y 入初始條件,得L )}({t y 之代數方程 )1+L {}y 42122+=--s s --------- (b) 代數方程(b),得 {}y ??? ??+-??? ??+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s 在上式兩邊做反拉普拉斯變換,得初始值問題的解為 t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at += ,L 22}{cos a s s at += )

用拉普拉斯变换方法解微分方程

例1求指数函数f(t)=e at(t > 0,a是常数)的拉氏变换. 解根据定义,有L[e at]= j o+ e at e-pt dt= e-(p-a)t dt 这个积分在p> a时收敛,所以有 L[e at]= / T e(p-a)t dt=1/(p-a) (p > a) (1) 例2求一次函数f(t)=at(t > 0,a是常数)的拉氏变换. 解L[at]= / o+ra ate-pt dt=- a/p / o+"td(e -pt) =-[at/p e -pt ] o+ra+a/p / T e-pt dt 根据罗必达法则, 有 lim to+ °°(-at/p e )=-lim to+ °° at/pe =-lim to+ a/p e 上述极限当p> 0时收敛于0,所以有lim to+ - (-at/pe -pt )=0 因此L[at]=a/p / o+ra e-pt dt 2 -pt +m 2 =-[a/p e p ]o =a/p (p > (2) 0) 例3求正弦函数f(t)=sin 3 t(t > 0)的拉氏变换解L[sin 31]= / 0+ra sin 3 te -pt dt 2 2 -pt +m =[-1/(p +3 ) e (psin 3 t+ 3 cos3 t] 0

2 2 2 =3 /(P +3 ) (p > 0) ⑶ 用同样的方法可求得 2 2 L[cos 3t]=p/(p +3 ) (p > 0) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2-5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方 程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查 得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两 部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。 而且,如果所有初始条件都为零,那么求 取微分方程的拉氏变换式就更为方便, 只要简单地用复变量s 来代替微分方程中的 —,s 2 代替 dt dt 应用拉氏变换法解微分方程的步骤如下: d 2 …就可得到。

拉普拉斯拉斯变换可用于求解常系数线性微分方程

拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。 拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。 拉普拉斯拉斯变换的定义 一个定义在区间的函数,其拉氏变换定义为 L[f(t)]=F(s)= 式中:s=б+jω为复数,有时称变量S为复频域。 应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法 F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。通常用“L[ ]”表示对方括号内的函数作拉氏变换。 拉普拉斯变换的基本性质 本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。 一、唯一性 定义在区间的时间函数与其拉氏变换存在一 一对应关系。根据可以唯一的确定其拉氏变换;反之, 根据,可以唯一的确定时间函数。 唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。唯一性的证明从略。 二、线性性质 若和是两个任意的时间函数,其拉氏变换分别为 和,和是两个任意常数,则有

证根据拉氏变换的定义可 根据拉氏变换的定义可得 例求的拉氏变换。 解 三、时域导数性质(微分性质) 例应用时域导数性质求的象函数。

四、时域积分性质(积分规则) 例:求单位斜坡函数及的象函数。

五、时域平移性质(延迟性质) 作业:书后习题1、2、3、4。 课后记事: 注意板书层次,因为内容很多,不要太乱。 常用时间函数的象函数一览表,见教材221页。 8-2、8-3拉普拉斯反变换和运算电路图(4学时)(教材第221页) 教学目的:具有单根、复根、重根三种情况下用部分分式及分解定理求待定系数法,运算电路图的画法。 教学重点:具有单根、复根时求待定系数法,熟练掌握反变换的求法,熟练掌握运算电路图的画法。 教学难点:部分公式及分解定理求待定系数法,各种运算电路图的画法,注意电压、电流的方向。 教学方法:1、板书讲述具有单根情况下如何求反变换。2、具有复根情况下如何求反变换。3、具有重根情况下如何求反变换。4、

拉普拉斯变换在求解微分方程中的应用

目录 拉普拉斯变换在求解微分方程中的应用 物理系0801班学生岳艳林 指导老师韩新华 摘要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质; 其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边 函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程值问题、常系数与变系数常微分方程、含 特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界 与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解

引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的某一区域内收 敛,则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式为函数()f t 的Laplace 变换 式.记为()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件: 1?在0t ≥的任一有限区间上分段连续; 2?当t →+∞时,()f t 的增长速度不超过某一指数函数,亦即存在常数0M >及0c ≥,使得c ()0f t Me t ≤≤<+∞t,成立(满足此条件的函数,称它的增大是不超过指数级的,c 为它的增长指数). 则()f t 的Laplace 变换0 ()st F f t e dt +∞ -?(s )=在半平面Re()s c >上一定存在,右端的积分在1Re()s c c ≥>的半平面内,()F s 为解析函数[2]. 拉普拉斯变换的性质 ⑴线性性质 若αβ,是常数,11[()]()L f t F s =, 22[()]()L f t F s =, 则有1212[()()][(t)]+[()]L f t f t L f L f t αβαβ+=, 1111212[()()][(s)]+[()]L F s F s L F L F s αβαβ---+=. ⑵微分性质 若[()]()L f t F s =,则有'[()]()(0)L f t sF s f =-. 高阶推广 若[()]()L f t F s =,则有2'[()]()(0)(0)L f t s F s sf f ''=--.

用拉普拉斯变换方法解微分方程

拉普拉斯变换就是解常系数线性微分方程中经常采用的一种较简便的方法、其基本思想就是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解、 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]、 若F(p)就是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]、 例1 求指数函数f(t)=e at(t≥0,a就是常数)的拉氏变换、 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a就是常数)的拉氏变换、 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p 2e -pt ]0+∞=a/p 2(p >0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换、 解 L[sinωt]=∫0+∞sinωte -pt dt =[-1/(p 2+ω2) e -pt (psinωt+ωcosωt]0+∞ =ω/(p 2+ω2) (p >0) (3) 用同样的方法可求得 L[cosωt]=p/(p 2+ω2) (p >0) (4) 二 拉普拉斯变换的基本性质 三 拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法就是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点就是在求解微分方程时,可同时获得的瞬态分量与稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解就是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替

拉普拉斯变换在求解微分方程中的应用

目录 引言 (1) 1 拉普拉斯变换以及性质 (1) 1.1拉普拉斯变换的定义 (1) 1.2拉普拉斯变换的性质 (2) 2 用拉普拉斯变换求解微分方程的一般步骤 (3) 3 拉普拉斯变换在求解常微分方程中的应用 (4) 3.1初值问题与边值问题 (4) 3.2常系数与变系数常微分方程 (5) 3.3含 函数的常微分方程 (6) 3.4常微分方程组 (7) 3.5拉普拉斯变换在求解非齐次微分方程特解中的应用 (7) 3.6拉普拉斯变换在求解高阶微分方程中的推广 (11) 4 拉普拉斯变换在求解偏微分方程中的应用 (12) 4.1齐次与非齐次偏微分方程 (12) 4.2有界与无界问题 (15) 5 综合比较,归纳总结 (19) 结束语 (20) 参考文献 (20) 英文摘要 (21) 致谢 (21)

拉普拉斯变换在求解微分方程中的应用 物理系0801班 学 生 岳艳林 指导老师 韩新华 摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯 变换的定义及性质;其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含δ函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解 引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 1.1 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的 某一区域内收敛,则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式 为函数()f t 的Laplace 变换式.记为()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件:

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 是很复杂的,而引用对数后,可先把上式变换为 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义12.1 设函数()f t 当0t ≥时有定义,若广义积分0 ()pt f t e dt +∞ -? 在P 的某一区域内收敛,则 此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= )()( (12.1) 称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为()f t 的拉氏变 换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数),记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00 []()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =-=-+? ?? 二、单位脉冲函数及其拉氏变换 在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电 流为零的电路中,某一瞬时(设为0t =)进入一单位电量的脉冲,现要确定电路上的电流()i t ,以()Q t 表示上述电路中的电量,则 由于电流强度是电量对时间的变化率,即 t t Q t t Q dt t dQ t i t ???) ()(lim )()(0-+== →,

拉普拉斯变换在求解微分方程中的应用总结归纳

精心整理 目录 引言 (1) 1 拉普拉斯变换以及性质 (1) 1.1拉普拉斯变换的定义 (1) 1.2拉普拉斯变换的性质 (1) 2 用拉普拉斯变换求解微分方程的一般步骤 (3) 3 拉普拉斯变换在求解常微分方程中的应用 (3) 3.1初值问题与边值问题 (3) 3.2常系数与变系数常微分方程 (4) 3.3含 函数的常微分方程 (5) 3.4常微分方程组 (6) 3.5拉普拉斯变换在求解非齐次微分方程特解中的应用 (6) 3.6拉普拉斯变换在求解高阶微分方程中的推广 (9) 4 拉普拉斯变换在求解偏微分方程中的应用 (10) 4.1齐次与非齐次偏微分方程 (10) 4.2有界与无界问题 (11) 5 综合比较,归纳总结 (14) 结束语 (15) 参考文献 (15) 英文摘要 (21) 致谢 (16) 拉普拉斯变换在求解微分方程中的应用 物理系0801班学生岳艳林 指导老师韩新华

摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质; 其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含δ函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解 引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 1.1 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的某一区域内收敛, 则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式为函数()f t 的Laplace 变换式.记为 ()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为 1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件: 1?在0t ≥的任一有限区间上分段连续; 2?当t →+∞时,()f t 的增长速度不超过某一指数函数,亦即存在常数0M >及0c ≥,使得 c ()0f t Me t ≤≤<+∞t,成立(满足此条件的函数,称它的增大是不超过指数级的,c 为它的增长指数). 则()f t 的Laplace 变换0 ()st F f t e dt +∞ -?(s )=在半平面Re()s c >上一定存在,右端的积分在1Re()s c c ≥>的半平面内,()F s 为解析函数[2]. 1.2 拉普拉斯变换的性质 ⑴线性性质 若αβ,是常数,11[()]()L f t F s =, 22[()]()L f t F s =,

拉普拉斯变换求解微分方程典型范例

Laplace 变换在微分方程(组)求解例 引言 Laplace 变换是由复变函数积分导出的一个非常重要的积分变换,它在应用数学中占有很重要的地位,特别是在科学和工程中,有关温度、电流、热度、放射现象等方面都有广泛的应用.为了研究本文提出的各种问题,我们给出了Laplace 变换的概念以及一些性质. Laplace 变换的定义 设函数f(x)在区间[)0+∞,上有定义,如果含参变量s 的无穷积分()+0st e f t dt ∞ -?对s 的某一取值围是收敛的.则称 ()F s =()+0st e f t dt ∞-? 为函数的Laplace 变换,()f t 称为原函数,()F s 称为象函数,并记为()()L f t F s =????. 性质1 (Laplace 变换存在定理)如果函数()f t 在区间[)0,+∞上逐段连续,且存在数0M >,00s ≥,使得对于一切0t ≥有0()s t f t Me <,则当0s s >时,()F s 存在. 性质2 (线性性质)设函数和满足Laplace 变换存在定理的条件,则在它们象函数定义域的共同部分上有 ()()()()L f t g t L f t L g t αβαβ+=+???????????? 其中α和β是常数. 性质3 (原函数的微分性质)如果()f t ',()f t '',,()()n f t 均满足Laplace 变换存在定理的条件,则 ()()()0L f t sL f t f '=-????????

或更一般地,有 ()()()()()()()112000n n n n n L f t s L f t s f s f f ---??'=----??????. 性质4 (象函数的微分性质)如果()()L f t F s =????,则 ()()()+0st F s te f t dt L tf t ∞ -'=-=-????? 或一般地有 ()()()()()()011n n n n st n F s t e f t dt L t f t +∞ -??=-=-???. 主要结论及推导 对于Laplace 变换式,在积分号下对s 求导,得到 ()()()0st F s t f t e dt +∞ -'=-? (*) 即 ()()()L t f t F s '-=???? 再对(*)式求导,可得 ()()2L t f t F s ''??=?? 在一般情况下,对于任一正整数n ,有 ()()()1n n n n d L f t F s ds ??-=?? 即 ()()()1n n n n d L t f t L f t ds ??=-?????? 从而 ()()()1n n n m m n d L t f t L f t ds ????=-???? (1) 对性质3及(1)式,可得 ()()L x t X s =????

用拉氏变换法解线性微分方程

用拉氏变换法解线性微分方程 一 基本定义 若函数f(t),t 为实变量,线积分 ∫ f(t)e -st dt (s 为复变量)存在, 则称其为f(t)的拉氏变换,记为F(s)或£[f(t)],即F(s)=£[f(t)]=∫ f(t)e -st dt 常称:F(s)→f(t)的象函数; f(t) →F(s)的原函数。 二 基本思路 用拉氏变换解线性微分方程,可将经典数学中的微积分运算转化成代数运算 三 典型函数的拉氏变换 1、单位阶跃函数 f(t)=1(t)= 1 t ≧0 t <0 F(s)=£[f(t)]= ∫ f(t)e -st dt =∫ 1 e -st dt =1/s 2、单位斜坡函数 f(t)= t 1(t) = t t ≥0 0 t <0 F(s)=£[f(t)]= ∫ t e -st dt =1/s 2 3、等加速度函数 ∞ 0 ∞ ∞ ∞ 0 ∞

f(t) = 1/2 t 2 t ≥0 0 t <0 F(s) = ∫ 1/2 t 2 e -st dt = 1/s 3 4、指数函数 t ≥0 t <0 F(s)= ∫ 1/2 t 2 e -st dt =1 / (s-α) 5、正弦函数 f(t)= sinwt t ≥0 0 t <0 F(s) =∫sinwt e -st dt = w/(s 2+w 2) 四 拉氏变换的几个法则 对于一些简单原函数,可根据拉氏变换定义求象,但对于较复杂的原函数,必须用到下面几个定理求取其象函数: 1、线性定理 若:£[f 1(t)]=F 1(s) , £[f 2(t)]=F 2(s) (a 、b 为常数) 则 £[a f 1(t) + b f 2(t)] = aF 1(s) + bF 2(s) 2、微分定理 若:£[f(t)]=F(s) 则 £[d ? f(t)/dt ? ]=s ?F(s) - ∑s n-i-1 f (i) (0) 式中f (i) (0)为f(t)及其各阶导数在t=0时的值 ∞ ∞ ∞ n-1 i=0

拉普拉斯变换在求解微分方程中的应用

目录 引言 ............................................... 错误!未定义书签。 1 拉普拉斯变换以及性质 (1) 拉普拉斯变换的定义 ...................................................................................... 错误!未定义书签。拉普拉斯变换的性质 ...................................................................................... 错误!未定义书签。 2 用拉普拉斯变换求解微分方程的一般步骤 ........................... 错误!未定义书签。 3 拉普拉斯变换在求解常微分方程中的应用 ........................... 错误!未定义书签。初值问题与边值问题 ...................................................................................... 错误!未定义书签。常系数与变系数常微分方程........................................................................ 错误!未定义书签。含 函数的常微分方程.................................................................................. 错误!未定义书签。常微分方程组 .................................................................................................... 错误!未定义书签。拉普拉斯变换在求解非齐次微分方程特解中的应用 ........................ 错误!未定义书签。拉普拉斯变换在求解高阶微分方程中的推广 ...................................... 错误!未定义书签。 4 拉普拉斯变换在求解偏微分方程中的应用 ........................... 错误!未定义书签。齐次与非齐次偏微分方程............................................................................. 错误!未定义书签。有界与无界问题................................................................................................ 错误!未定义书签。 5 综合比较,归纳总结 ............................................................... 错误!未定义书签。结束语 ........................................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。英文摘要 (21) 致谢 ............................................................................................... 错误!未定义书签。

相关文档
相关文档 最新文档