文档视界 最新最全的文档下载
当前位置:文档视界 › 浅析量子保密通信技术及应用

浅析量子保密通信技术及应用

浅析量子保密通信技术及应用
浅析量子保密通信技术及应用

龙源期刊网 https://www.docsj.com/doc/bb17531394.html,

浅析量子保密通信技术及应用

作者:詹晓丹

来源:《科技信息·下旬刊》2018年第01期

摘要:量子保密通信相比传统通信拥有诸多优势,具有绝对安全和保密属性,是安全信息传输的终极解决方案,越来越受到国家、行业、企业的重视与关注,并逐步成为具有顶层战略意义的重要领域和发展方向。目前,我国量子保密通信技术和产业化已处于世界领先水平。本文将围绕量子保密通信技术原理、量子保密通信主要产品、组网和典型应用案例等几方面展开,进行阐述与介绍。

关键词:技术概述;主要产品;应用案例

引言

伴随着我国经济的飞速发展和综合国力的不断提高,高速、安全数据传输的需求正在不断增长。量子保密通信技术克服了传统信息安全技术内在的安全隐患,是目前唯一的安全性得到严格证明的通信安全技术,也是目前唯一实现了实用化、达到产业化水平的量子技术。

1量子保密通信技术概述

1.1 技术原理

量子保密通信是基于量子密钥分发的密码通信解决方案。其技术原理如下:

(1)量子密钥分发采用单个量子(通常为单光子)作为信息载体。

(2)窃听者可以在截取单光子后测量其状态,根据测量结果发送一个新光子给接收方。但根据量子力学中的海森堡测不准原理,这个过程会引起光子状态的扰动,发送方和接收方可通过一定的方法检测到窃听者对光子的测量,从而检验他们之间所建立的密钥的安全性。

(3)量子力学的不可克隆原理,保证了未知的量子态不可能被精确复制。

(4)量子密钥分发方法自动地保证产生绝对随机的密钥,不需要第三方进行密钥的传送。

1.2 量子保密通信协议

目前最适合实用化的主流方案是基于诱骗态方案的BB84协议。诱骗态方案解决了分离光子数攻击问题,不需要单光子源,使用现有的激光源就能实现QKD,大大降低了系统的成

浅谈我国量子通信技术的发展现状及未来趋势

浅谈我国量子通信技术的发展现状及未来 趋势 量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。 【关键词】量子通信技术;发展现状;未来趋势 【Abstract】The quantum communication has the characteristics of super security,large channel capacity,super high communication speed and ultrahigh concealment. After 30 years of development,it has matured theoretically,and the technical scheme has gradually moved from the laboratory to the practical. Quantum communication technology has also achieved fruitful results. 【Key words】Quantum communication technology;Development status;Future trend 量子通信是利用量子纠缠效应改变量子态,从而实现信息传递的一种新型的通信方式,它是量子论和信息论相结合的新研究领域。量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。

量子保密通信案例介绍

量子保密通信案例介绍 1、金融领域 通过与中国人民银行和中国银监会合作,开展了金融行业量子保密通信应用,包括同城数据备份和加密传输、网上银行加密、异地灾备、监管信息采集报送、人民币跨境收付系统应用等,并在银行、证券、期货、基金等行业成功开展了应用示范。特别是银行业,已经形成了一批典型示范用户,包括工商银行、中国银行、建设银行、交通银行等国有大型商业银行,民生银行、浦发银行等全国性股份制商业银行及北京农商行等其他商业银行。 中国银监会组织的京沪干线量子保密通信应用在同城数据备份和加密传输应用方面,工商银行、交通银行、北京农商行,浦发银行、民生银行、东方证券、国泰君安期货、华安基金等金融机构已经常态化应用。

在网上银行加密方面,交通银行、工商银行已经常态化应用。2017年2月,交通银行首次把量子保密通信技术应用于企业网银用户的实时交易,通过量子保密通信的高安全性保障客户对资金安全的高要求,标志着量子保密通信从服务银行内部数据安全向为第三方客户提供高等级安全服务跃迁。 在异地灾备方面,交通银行、中国银行、工商银行已常态化应用。2017年2月工商银行率先基于“两地三中心”的数据中心体系,利用量子保密通信技术,将工商银行网上银行业务数据从北京西三旗数据中心通过量子保密通信技术实时传输到上海嘉定和外高桥数据中心。 工商银行异地灾备量子保密通信应用 在监管信息采集报送方面,中国银监会将量子保密通信技术应用于银监会与各相关银监局、各相关银行之间的监管信息数据采集报送系统。2015年7月,银监会与民生银行、银监会与北京银监局之间的监管信息采集系统建设完成并投产。该系统每日进行一次报送,每

广州市电子政务量子保密通信服务(一期)项目

广州市电子政务量子保密通信服务(一期)项目 需求文件 一、项目概况 (一)采购项目编号:GZIT2019-B1-634 (二)采购项目名称:广州市电子政务量子保密通信服务(一期)项目 (三)采购项目预算金额:人民币10,000,000元/年,服务期三年。 最高限价:人民币10,000,000元/年。 (四)采购数量:1项 (五)采购内容:本期项目选取一家量子保密通信网络服务供应商,依托服务商建设的广州量子保密通信网络基础设施为广州市电子政务网提供量子城域网接入、量子密钥生成分发、量子密钥加解密等量子保密通信服务。租用量子保密通信网络服务3年,实现为广州市电子政务网不少于20 个(含20个)网络节点提供量子保密通信网络试点应用。 (六)项目工期要求: (1)中标人与采购人签订合同后,中标人应在180个自然日内完成量子保密通信网络系统建设,完成采购人指定的用户节点接入,具备提供服务的能力。 (2)项目服务期为3年,服务期由完成采购人指定的量子保密通信网络用户节点接入并开通运行正式提供服务(以书面确认为准)之日起计算。 二、项目需求描述 2.1项目背景概况 广州市信息安全测评中心(加挂广州市电子签名中心),致力于推进我市网络信息安全治理体系建设,逐步完善我市信息安全基础设施和治理手段,为我市信息化发展提供可控可靠、集约化的信息安全公共服务。服务方向以电子政务公共信息安全保障为立足点,同时又面向智慧城市、工业控制、移动互联网、云计算、公众隐私保护以及其它涉及国计民生、社会稳定和国家安全等领域的网络和信息安全公共服务。 量子通信技术是量子信息科学技术的一个重要分支,经过30多年的发展,已经在量子密钥分发上形成了实用化落地。我国已将量子信息技术提升至国家战略高度,量子通信已

空间量子通信技术

空间量子通信技术 陈彦,胡渝 ( 电子科技大学 物理电子学院,成都 610054 ) 摘要:利用卫星来分发单光子(或纠缠光子对)的方法为远程量子通信网络提供了一种独特的解决方案。这将克服现有的光纤和陆上自由空间链路所带来的距离限制,实现真正意义上的全球量子通信。本文对这种设想进行了分析,证明这种设想有很高可行性。 关键词:量子通信; 空间技术; 光子分发 中图分类号:TN929.11;0431.2 文献标识码:A Quantum Communications in Space CHEN Y an ,HU Yu (Institute of Physics and Electronics, University of Electronic Science and Technology of China, Chengdu,610054 ) Abstract:Using satellites to deliver single photon or entangled photon pairs is a unique solution to realize long-distance quantum communications networks. This solution is able to overcome the disadvantage of transmission distance when using fiber and terrestrial free space optical links. And global quantum communications may be realized in this way. A scheme of using satellite to deliver single photon or entangled photon pairs is described,and the possibility of the scheme is proved. Key words:quantum communications; Space technology; photon deliver 1 引言 量子通信具有“容量大、速度快、通讯保密性极强”的优点,可完成经典信息处理方法所不能完成的任务。利用量子通信可以建立无法破译的密钥系统,因此量子通信已经成为当今研究的热点。已经在标准光纤信道中,已经实现了距离超过100KM的量子密钥分配实验。同时,还在23km的自由空间信道中,实现了基于单光子的量子密钥分配[1];在600m的自由空间中实现了基于纠缠光子对的量子密钥分配实验[2]。目前对量子通信的理论方案和实验研究,主要集中于利用光纤信道和点对点的陆地无线光信道。但光子在光纤和陆上自由空间信道中的传输距离只是局域性的,无法满足全球性的量子通信的需要。人们需要一种新的量子通信方案。 2 在空间中进行量子通信 单光子(纠缠光子对)的分发是实现量子通信的前提。当光子在光纤信道中传输时,其能量会随传输距离的增加而衰减,光子的偏振特性也会在传输过程当中发生变化;若利用陆上自由空间信道,则光子的能量会被大气信道吸收而衰减,同时链路的维持也会受到大气条件或陆上阻碍物的影响。因此,单光子在现在的硅光纤和陆上自由空间中的传输距离受到了限制,从而无法实现全球范围内的量子通信。而现在已得到广泛应用的卫星通信和空间技术却给全球性的量子通信提供了一种新的解决方案。它可以克服光纤和陆上自由空间链路的通信距离限制,极大地延伸量子通信的范围,实现真正意义上的全球性量子通信。 2.1 空间量子通信方案 按照单光子(纠缠光子对)发送者的不同,空间量子通信方案可分为地基和空基两种。下面分别介绍这两种方案。 2.1.1 地基(earth-based)方案 地基方案设想包括一个地基发射终端,该终端可以向地面站和卫星分发单光子,或者进行纠缠光子共享。这样就能在这些通信终端之间进行量子通信。其中最简单的情况,是一个地面终端与另外一个地面终端进行直接的通信,即陆上自由空间量子通信链路。如前所述,这种情况的通信距离有限。而由单个地面终端和单个卫星终端组成的上行链路,

浅谈量子信息技术

浅谈量子信息技术 贝尔学院韩笑 (一) 引言 众所周知,信息技术经常出现在人们的视野之中,是许多人都很熟悉的词汇。它是主要用于管理和处理信息所采用的各种技术的总称。主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术。主要包括传感技术、计算机技术和通信技术。 而量子信息技术,其与信息技术最显著的区别就在于“量子”两个字。量子信息技术是量子物理与信息技术相结合发展起来的新学科,主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 (二) 量子信息技术的具体含义 那么到底量子信息技术相比信息技术,它的高端之处在哪呢? 首先,应该着重于“量子”这两个字。在量子力学中,量子信息是关于量子系统“状态”所带有的物理信息。通过量子系统的各种相干特性(如量子并行、量子纠缠和量子不可克隆等),进行计算、编码和信息传输的全新信息方式。 量子是一个态.所谓态在物理上不是一个具体的物理量,也不是一个单位,也不是一个实体,而是一个可以观测记录的一组记录(也就是确定组不变量去测量另外一组量),但是这组记录可以运算.并可以求出某时刻对是已观测的纪录对比十分吻合.这个就是波动力学的基础。要解决量子信息.首先要在逻辑有一个多值逻辑理论,才能通过对于量子态对应于一个实体,也就是现在所谓的给量子的态赋给予实体的功能,这样就可以实现某些交换,也就是可以计算,只要这组态符合一定的条件,由波动力学①,结论一定成立。这就是量子信息学的基础,如果一旦能找到符合理论的这些态,则计算能力将不是现有计算机的N信部题,而是的一0时计算的超量完成.对某个有限大的数组在量子态可以理论上是0时完成,也就是超距变换。这是量子信息学的研究动力。 根据摩尔定律,每十八个月计算机微处理器的速度就增长一倍,其中单位面积(或体积)上集成的元件数目会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。量子力学与信息科学结合,不仅充分显示了学科交叉的重要性, 而且量子信息的最终物理实现, 会导致信息科学观念和模式的重大变革。事实上,传统计算机也是量子力学的产物,它的器件也利用了诸如量子隧道现象等量子效应。但仅仅应用量子器件的信息技术,并不等于是现在所说的量子信息。目前的量子信息主要是基于量子力学的相干特征,重构密码、计算和通讯的基本原理。 量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限,于是便诞生了一门新的学科分支——量子信息科学。它是量子力学与信息科学相结合的产物,包括:量子密码、量子通信、量子计算和量子测量等,近年来,在理论和实验上已经取得了重要突破,引起各国政府、科技界和信息产业界的高度重视。人们越来越坚信,量子信息科学为信息科学的发展开创了新的原理和方法,将在21世纪发挥出巨大潜力。

经典保密通信和量子保密通信区别

经典保密通信和量子保密通信区别 摘要:文章介绍了经典保密通信和量子保密通信区别,说明了两者的根本区别。经典保密通信安全性主要是依赖于完全依赖于密钥的秘密性,很难保证真正的安全。而量子密码通信是目前科学界公认唯一能实现绝对安全的通信方式,其主要依赖于基本量子力学效应和量子密钥分配协议。最后分析量子保密通信的前景和所要解决的问题。 关键词:量子通信、经典保密通信、量子保密通信、量子通信发展、量子通信前景 经典保密通信 一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性. 它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’不同。整个通信系统得安全性寓于密钥之中。公钥加密体

系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。 另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密乱码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。 传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。 量子保密通信 量子密码学的理论基础是量子力学,而以往密码学的理

量子保密通信系统及其关键技术的研究

量子保密通信系统及其关键技术的研究 【摘要】:量子信息学的研究发现,如果能通过量子态编码来传送密码信息的话,那么依据量子力学不确定性原理,任何对量子载体的测量或复制行为都将改变原量子态。这为我们提供了一种主动发现窃听者的方法,即量子保密通信。与任何传统密码术都不同的是,它借助于自然法则的威力,从根本上杜绝了非法窃听的可能性,将为人们提供一种“无条件”的安全通信方法。本文工作致力于量子保密通信技术初步实用化的研究,目标是探索量子密钥分发的新方案与新技术,并完成长距离长期稳定的光纤型量子密钥分发系统。在量子密钥分发方案研究方面,我们主要着力于提高保密通信的稳定性和成码率。因而我们首先提出了基于Sagnac干涉仪的量子保密通信方案。该方案巧妙地使用了环形光路的结构,不借助任何主动或被动元件就可以自动补偿相位抖动;采用分时相位调制技术控制单光子干涉,密码交换方法简单可靠。是目前为数不多的利用双向自动补偿而实现稳定传输密钥的长距离保密通信方案之一。本论文还提出了法拉第反射镜与相位差分方案结合(“PhlgPlay”+DSP)的量子密钥分发方案。该方案通过相位调节伺服系统和往复光路补偿技术,能够有效地克服单光子单向传输过程中的相位抖动和偏振模式色散(PMD)等问题,具有高稳定性;并结合Yamamoto等人提出的相位差分编码方法,能够实现高达2/3的密钥成码率。该方案还具有很强的可扩展性。在不改变总体结构的情况下,仅仅通过增加部分光路元件的方法就可以使密钥成码效率提

高到(n-1)/n(n=3,4,5,…),是一种有潜力的新方案。围绕量子保密通信系统的研究,我们发展了一系列关键性的技术。在单光子探测方面,我们提出了多种单光子探测的技术方案。解决了APD光纤耦合、低温制冷控温(-50℃--110℃)等技术难题,研制出实用化的单光子探测器,并成功应用于单光子干涉实验和量子保密通信系统中,为红外单光子信息处理等领域提供了高灵敏的探测手段。其核心指标,暗计数率与量子效率的{确要比值(Pd/几)超过商售同类产品一个数量级。为解决相位差分编码方案中时间信息检测的问题,找们提出了一种基于多重探测门(multi一gate)的单光子11寸序检测器(Timediseriminator)。一般认为,山于InGaAS雪崩光电二极管的后脉冲发生机率较大,不适于快速的时间探测。而实验中我们恰恰不lJ 用了发生在{i汀后相继的多个脉冲门中的后脉冲来帮助识别单光子时间信息,为近红外单光子时序检测提供了一种有效方法。在单光子十涉和单光子操控的研究中,我们提出并实现了华十光纤S雌11ac 干涉仪的长距离单光子干涉和单光子路山实验。在50公啾的光纤环路中获得的单光子干涉可见度达到95%;基于s雌11ac二卜涉仪的长距离单光子路山器有望应运于单光子量子信息研究。我们还发展了偏振量子随机源技术,首次将USBZ.O数据接口应用于高速光量子真随机信号发生器,实现了“即插即用”的功能。该系统使用简便,随机码的采样速率可达SMHZ,随机数的序列相关性达到10一“量级,单字节嫡值不小于7.99;将为量子保密通信的安全性提供有力保障。该随机信号发生器也适用于经典密码学和模拟计算等其它领域。最后,采

浅谈量子通信技术

题目浅谈量子通信技术课程现代通信技术基础班级 学号 姓名 指导老师 2011 年12月10日

浅谈量子通信技术 摘要:量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。 关键词语: 量子通信量子力学 1、引言 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。 2、量子通信的的提出 自1 9世纪进入通信时代以来,人们就梦想着像光速一样(甚至比光速更快)的通信方式.在这种通信方式下,信息的传递不再通过信息载体(如电磁波)的直接传输,也不再受通信双方之间空间距离的限制,而且不存在任何传输延时,它是一种真正的实时通信.科学家们试图利用量子非效应或量子效应来实现这种通信方式,这种通信方式被称为量子通信.与成熟的通信技术相比,量子通信具有巨大的优越性,已成为国内外研究的热点.近年来在理论和实践上均已取得了重要的突破,引起各国政府、科技界和信息产业界的高度重视.从人类信息交流

量子保密通信

量子保密通信实验 引言 自古以来,人们就希望各种保密的信息能安全地交流,于是便发明了各种密码术。但是随着加密方法的公开和科技的发展,各种加密方法都面临着被轻易破解的危险:如古老的凯撒密码就可以通过字频分析结合穷举法实现破解;而现在应用的最为广泛的RSA公钥密码体系理论上已被证明可以用Shor算法实现破解。迄今为止,只有一次一密的加密方案在理论上被证明是理想安全的。随着信息安全日趋重要,怎样保密通信已成为当今最为紧迫的问题之一。一次一密的加密方案安全性毋庸置疑,然而如何找到一条安全的途径,实现大量的密钥分发又成为一个关键的问题。于是基于量子不可克隆定理的量子密码学应运而生。量子密码学不仅是一门科学,而且是一门精巧的通信艺术。通过量子密码实验系统,不仅可以让我们直观的理解BB84协议和了解量子保密通信,并且可以进一步以此作为平台,进行一系列的科学研究。 实验目的 1. 学习使用BB84协议实验中常用的仪器设备 2. 理解量子保密通信实验中BB84协议理论 3. 观测量子保密通信实验中的成码率,误码率,加密解密效果 实验原理 BB84协议是Charles H. Bennett 与 Gilles Brassard 1984年提出的描述如何利用光子的偏振态来传输信息的量子密钥分发协议:发送方Alice和接收方Bob用量子信道(如果光子作为量子态载体,对应的量子信道就是传输光子的光纤)来传输量子态;同时双方通过一条公共经典信道(比如因特网)比较测量基矢和其他信息交流,进而两边同时安全地获得和共享一份相同的密钥。 BB84协议基本条件首先是拥有一个量子信号源,并可以随机地调制产生两套基矢总共四种不同的量子态信号;其次,调制后的量子信号可以通过一个量子信道如光纤或者自由空间来进行传输;再次,接受到的量子信号可以被有效地测量,其中测量所用的基矢也是随机选择的,同时需要一个辅助的经典公共信道可以传输经典的基矢对比等信息。另外该经典公共信道要求是认证过的,任何窃听者虽

量子通信技术基于量子物理学的基本原理

关键词:量子通信安全性中国发展 摘要:用国际顶级量子专家王肇中教授的话说,量子通信就是单模光纤两端加上能代替常用光模块功能的、光量子态的发送和接收设备,实现基于物理加密的保密通信。 量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量子通信是相对最安全的,但任何事情都不是绝对的,有矛就有盾。一方面有“量子非克隆原理”,另一方面有实现近似量子克隆的“量子克隆机”。怎样可靠地评估安全性?怎样进行攻击?是值得研讨的问题。在不久的将来,量子通信与经典通信的融合发展将会带来通信世界的新纪元。 例如一个量子态可以同时表示0和1两个数字,7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。 1. 欧洲联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC量子通信网络[8][9]。并于2008年10月在维也纳现场演示了一个基于商业网络的安全量子通信系统。该系统集成了多种量子密码手段,包含6个节点。其组网方式为在每个节点使用多个不同类型量子密钥分发的收发系统并利用可信中继进行联网。 息量子通信验证网”在北京开通,在世界上首次将量子通信技术应用于金融信息安全传输。 2014年11月15日,团队研发的远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录。 2. 应用与用途 潘建伟教授指出,量子通信技术的实际应用将分三步走:一是通过光纤实现城域量子通信网络;二是通过量子中继器实现城际量子通信网络;三是通过卫星中转实现可覆盖全球的广域量子通信网络。 对市场角度来说,互联网本质上是一个不安全的网络,而量子通信在理论上的绝对保密特征,已经得到物理定理的证明,很显然在军事、国防、金融等领域有着广阔的应用前景。在大众商业市场,随着技术成熟,量子通信也将具有极大的发展潜力。 3.量子通信技术的发展趋势 4.不足 但量子通信本身,仍然处在研究阶段,还远远没有达到大规模商用化的水平,实用的量子通信网络其保密的绝对性还有待商榷。 量子通信面临四项难点:可扩展、强抗毁、广覆盖、立体化 子密钥分发在未来推广应用方面面临两大挑战:融合性和安全性。量子通信从量子力学的

量子通信技术发展现状及面临的问题研究_徐兵杰

doi:10.3969/j.issn.1002-0802.2014.05.001 量子通信技术发展现状及面临的问题研究 徐兵杰1,刘文林2,毛钧庆3,杨燕3 (1.保密通信实验室,四川成都610041;2.解放军95830部队,北京100093;3.解放军91746部队,北京102206) 摘要:量子通信具有更高的传输速率和更可靠的保密性,是世界各国正在研究和发展的通信技术热点之一。首先介绍量子通信技术的基本概念、发展历程、系统架构、特点优势,然后重点阐述国内外量子密钥分配、量子隐形传态、量子安全直接通信、量子机密共享等技术的研究进展情况,最后分析量子通信技术研究和发展过程中面临的困难及局限。 关键词:量子通信密钥分配隐形传态机密共享 中图分类号:TN91文献标志码:A文章编号:1002-0802(2014)05-0463-06 Research on Development Status and Existing Problems of Quantum Communication Technology XU Bing-jie1,LIU Wen-lin2,MAO Jun-qing3,YANG yan3 (1.Science and Technology on Communication Security Laboratory,Chengdu Sichuan610041,China; 2.Unit95830of PLA,Beijing100093,China;3.Unit91746of PLA,Beijing102206,China)Abstract:Quantum communication is a new communication technology under research and development,which possesses higher transmission rate and reliable secure communication advantages.This paper intro-duces the concepts,development,system architecture,features and advantages of quantum communication technologies firstly.Then it focuses on demonstrating the technology research progress of quantum commu-nication,such as quantum key distribution,teleportation,secure direct communication and secret sharing.Finally,the research and development difficulties of quantum communication technology and limitations are analyzed in this paper. Key words:quantum communication;key distribution;teleportation;secret sharing 0引言 量子通信基于量子力学原理,将微观世界的物质特性运用到通信技术上,在高速传输和高可靠保密通信方面具有优势,成为当今通信技术领域的研究热点之一。世界各国纷纷投入大量的人力和物力进行研究和开发,在理论研究和实验技术上均取得了重大突破。 1量子通信技术 1.1基本概念 量子通信是利用量子相干叠加、量子纠缠效应进行信息传递的一种新型通信技术,由量子论和信息论相结合而产生[1]。从物理学角度看,量子通信是在物理极限下利用量子效应现象完成的高性能通信,从物理原理上确保通信的绝对安全,解决了通信技术无法解决的问题,是一种全新的通信方式[2]。从信息学角度看,量子通信是利用量子不可克隆或者量子隐形传输等量子特性,借助量子测量的方法实现两地之间的信息数据传输。量子通信中传输的不是经典信息,而是量子态携带的量子信息,是未来通信技术的重要发展方向。 1.2发展历程 量子通信的研究发展起步于20世纪80年代[3]。1969年,美国哥伦比亚大学Wiesner提出采用量子力学理论保护信息安全的设想。1979年,美国IBM公司的Bennett和加拿大蒙特利尔大学的Brassard提出了将Wiesner的设想用于通信传输的 第47卷第5期2014年5月 通信技术 Communications Technology Vol.47No.5 May.2014

全球量子保密通信网络发展研究

Computer Science and Application 计算机科学与应用, 2018, 8(10), 1628-1641 Published Online October 2018 in Hans. https://www.docsj.com/doc/bb17531394.html,/journal/csa https://https://www.docsj.com/doc/bb17531394.html,/10.12677/csa.2018.810179 Development Analysis on Global Quantum Secure Communication Network Feifan Chen1, Xinyu Hu1, Yinghao Zhao1, Yongzhan Hu2, Zhengzheng Yan1, Hongxin Li1,3 1PLA Strategic Support Force Information Engineering University, Luoyang Henan 2Zhengzhou Audit Center, Zhengzhou Henan 3State Key Laboratory of Cryptology, Beijing Received: Oct. 7th, 2018; accepted: Oct. 22nd, 2018; published: Oct. 30th, 2018 Abstract With the popularization of international Internet technology and the rapid development of quantum information technology, the construction of quantum secure communication networks (QSCN) has received extensive attention and the strategic significance of developing quantum secure commu-nication technologies is becoming more and more important. This paper introduces and analyzes the construction of QSCN in major quantum R & D countries and regions such as the United States, the European Union, Japan and China around the world over the past decade in details. It re-searches and compares the pivotal technology used in the construction of typical QSCN. And the development trends and characteristics of future QSCN are summarized and forecasted. Keywords Quantum Cryptography, Quantum Private Communication, Quantum Communication Network, Quantum Key Distribution 全球量子保密通信网络发展研究 陈非凡1,胡鑫煜1,赵英浩1,胡勇战2,闫争争1,李宏欣1,3 1中国人民解放军战略支援部队信息工程大学,河南洛阳 2郑州审计中心,河南郑州 3密码科学技术国家重点实验室,北京 收稿日期:2018年10月7日;录用日期:2018年10月22日;发布日期:2018年10月30日 摘要 随着国际互联网技术的普及和量子信息技术的飞速发展,量子保密通信网络建设受到了广泛关注,发展

量子保密通信在电力通信中的应用

量子保密通信在电力通信中的应用 发表时间:2020-03-16T15:25:20.777Z 来源:《电力设备》2019年第20期作者:陈冠晟 [导读] 摘要:量子保密通信作为新时代的产物,有着传统保密模式难以比拟的优势,若将量子保密通信应用在电力通信当中,电力通信将获得绝对性的信息安全保障。 (广东电网有限责任公司江门供电局广东江门 529000) 摘要:量子保密通信作为新时代的产物,有着传统保密模式难以比拟的优势,若将量子保密通信应用在电力通信当中,电力通信将获得绝对性的信息安全保障。对此,本文以量子保密通信为研究对象,简单介绍量子保密通信的相关内容,阐述国内外量子保密通信技术在电力通信中的应用现状,分析当前应用存有的不足之处,并提出相应优化策略,希望能够进一步提升量子保密通信在电力通信的应用力度,为我国电力通信领域的各类信息提供强有力的安全保障。 关键词:量子保密通信;电力通信;应用现状 一、量子保密通信的相关内容 (一)量子保密通信的简单介绍 量子保密通信是以量子密钥分发技术为基础,其最大优势在于安全性能佳、失真度较低,从上个世纪九十年代初第一个量子密钥问世以来,量子保密通信便风靡国际,在国内外都得到了迅猛发展。在量子保密通信发展的三十多年间,通过科研人员大量的实验,现在的量子保密通信技术已经逐步走向成熟,理论及实验等方面都较为完善,当下实用化最强的则是量子信息技术。 (二)量子保密通信与电网通信之间的关联 电网通信关系到国民经济的发展,是各行各业发展及人们日常生产的关键,因此,电网通信的安全性至关重要,将直接影响国家能源安全以及国民经济的发展。 随着国民经济发展进程的不断加快,我国电网通信的整体规模也随之不断扩大,过去电网通信的保密工作主要是依赖计算复杂程度,以来计算复杂程度的安全隐患也接踵而来:科技水平的不断发展促进了人们计算机水平的提高,由许多过去难以破解的计算难题都被逐一破解,当前尚未破解的计算难题在未来存在被破解的风险,一旦计算难题被破解,电网通信不再具有安全性与保密性,后果将不堪设想,例如2015年乌克兰电力部门的电网通信遭到了黑客恶意攻击导致乌克兰大面积停电,停电期间许多行业都被迫停业,造成了巨大的经济损失。 量子保密通信技术作为信息化时代的新兴产物,有“海森堡测不准原理”和“不可克隆原理”作安全保障,其安全性是传统以计算复杂程度为依托的保密工作无法比拟的;另一方面,电网通信对安全性有特殊的要求,且随着科技的发展,今后电网通信对安全性的要求只高不低,传统保密工作将很难适应电网通信的发展需要,综上所述,量子保密通信工作是当下最适合电网通信安全的保密技术。 二、量子保密通信在电网通信的应用现状 量子保密通信具有高效、安全等特点,广阔的应用领域及应用前景吸引了众多的眼光,国际上有许多国家都纷纷加入量子保密通信的实验队伍,国际上赫赫有名的上市公司也同样前仆后继,有部分国家甚至成立了相关的实验机构,从国际对待量子保密通信的态度不难看出其商业价值及应用空间。 (一)国外的应用现状 美国早在2012年便有相关团队研究出将量子保密通信系统应用在电网通信系统当中,随之展示出了加密成果及控制指令,成功的开发出了相关的保密系统,随后将该保密系统应用在某高校的可信网络基础设施的电网系统中;同年,M2M即“可实现不间断机器之间的”相关服务问世,并广泛应用在电网系统的安全通信当中;近些年来,国外许多著名公司都专注于量子保密通信的应用工作当中,投入了大量的研发成本与研发精力,还有许多知名公司如美国“OakRidge”实验室及“IDQ”公司共同联合展开相关实验项目。 (二)国内的应用现状 “十二五”以来,量子保密通信作为我国重点发展的前沿技术,已经被列入我国《中长期科学和技术发展规划纲要》当中,在电网通信方面的应用力度更是只多不少,“中国电科院”与“中科大”两大研究团队都相继开展了相关科研工作,在电网通信系统中安装相关量子保密通信系统,将最终成果与传统保密系统相比较,提出传统保密系统存在的不足之处,并制定相关的改善措施;在2015年,“中国电科院”与“中科大”共同致力于建设绝对安全、保密的电网通信,展开了“电力工业量子通信网”的研发工作,我国首次搭建电力工业量子通信网,这是极具意义的重大事件,相信在不久的将来我国一定能够突破当下的发展瓶颈,实现绝对安全、绝对保密的电网通信。 三、电网通信应用量子保密通信的相关内容 (一)量子保密通信的主要应用方向 第一,利用量子保密通信保障电力业务,建议在电网通信系统中布置相关的量子保密通信链路,保证业务数据、管理数据等信息的安全传输,为重要场合的用电安全提供极大的安全保障;第二,利用量子保密通信调度电力业务,建议在电网通信系统的相关防火墙外设置相关保密技术,对其展开加密保护,杜绝恶意代码入侵事件的风险;第三,利用量子保密通信提高配电业务的安全性与保密性,建议制定相关量子密钥管理方案及操作流程,要周期性更换量子密钥,确保量子密钥的随机性;第四,应用在容灾备份方面,利用量子保密通信加强数据与数据之间的共享力度,并进一步强化数据传输的安全性能。 (二)应用量子保密通信的优势及存有的不足之处 优势:量子保密通信的安全性能极高,在电网通信中应用量子保密通信便可以绝对性的杜绝窃听,且量子保密通信具备不可克隆原理,窃听者无法对未知量子展开克隆工作,为电网通信提供了极大的安全保障。 不足之处:虽然当下我国电网公司具有十分庞大的电网光线,同时具备十分强大的科研团队并且得到了国家的大力支持,但在量子保密通信应用方面,仍存在技术及管理方面的不足之处,这些不足之处严重束缚了量子保密通信的应用。 (三)优化建议 首先,建议电网公司务必要深入调研相关通信业务,要建立相应的信息系统安全生态表,根据不同效果划分安全等级,加强管理,明确不同程度的安全需要;其次,加大人才培养力度,可以加强与专业团队的合作力度,将有基础、有能力的人才送往学习,提高建设队伍各方面的软、硬实力;再次,建立相关的管理体系,确保量子保密通信系统应用具有一系列的标准规范。

量子通信技术发展中存在的问题分析

龙源期刊网 https://www.docsj.com/doc/bb17531394.html, 量子通信技术发展中存在的问题分析 作者:刘冬 来源:《中国新通信》2017年第01期 【摘要】量子通信是指用量子纠缠效应进行信息传递的一种新型通信方式,是量子理论 和信息论相结合的新的研究领域,是近20年发展起来的新型交叉学科,目前这门学科已逐步从理论实验走向实用化。英国《自然》杂志曾指出我国量子通信技术发展迅速是一支世界劲旅,我国在为量子通信技术研究硕果欣喜的同时也发现它在实用发展中存在诸多问题。本文从量子通信技术发展中存在的弱相干光源安全性问题、通信技术发展中存在的光子源产生单光子效率低问题两方面进行了浅析。 【关键词】量子通信发展存在问题现状分析 20世纪80年代是量子通信技术研究的开启性时代,其实从历史角度看量子通信技术的研究要早于这个时间,早在20世纪70年代威斯纳已经写出了“共轭编码”这篇著名文章。量子通信技术是在量子力学快速发展的前提下发展的新领域,它在信息传递方面存在很大优势已成为目前研究的热点。但是随着通信技术的快速发展,也存住诸多问题。 一、量子通信技术发展中存在的弱相干光源安全性问题分析 根据量子通信技术研究表明量子通信是利用了光子等粒子的量子纠缠原理,量子纠缠是指在微观世界里两个粒子间的距离不论有多远,一个粒子的变化会影响另一个粒子变化的一种现象。因此,量子通信技术离不开光源技术。由于单光子源技术难度太高,我国量子通信技术一般采用弱相干光源技术,但是这种光源在实用发展中存在诸多安全性问题。 1、量子通信技术发展中存在的单光子分离攻击问题。光子是光最小的单位,单光子是不可再分的。但是我国通信技术使用的弱相干光源技术,它的脉冲中不止一种光子,在理论上这种脉冲中所包括的光子是可以再进行分割的。量子通信系统的基本部件由量子态发生器、量子通道和量子测量装置三部分组成,主要涉及量子密码通信、量子远程传态、量子密码编码等,按量子通信所传输的信息是经典还是量子分为两大类,它的基本思想是将原物信息分成经典和量子两种信息,分别经由经典通道和量子通道传递给接受者,在传递过程中量子通信的通道损耗非常大。对于单光子源技术来讲,即使通道损耗再大也是安全的,因为单光子不可再分割。但对弱相干光源来讲就会存在安全隐患,窃听者可以通过光子分离攻击假冒量子通信技术的通道而获得全部密码,并且不会被量子通信技术发现。 2、量子通信技术发展中存在的木马攻击和侧信道攻击问题分析。量子密码编码是量子通信技术使用中主要涉及部分之一,木马攻击就是利用量子密码信号源和接收器等部件的设计漏洞进行攻击,有效窃取量子通信技术里的量子保密系统的内部信息。这种窃取信息的方法主要有侧信道攻击、光能部件高能破坏攻击和大脉冲攻击等。[1]

揭秘量子保密通信一任何测量都无法穷尽量子信息XXXX0402.doc

揭秘量子保密通信一任何测量都无法穷尽量子信息20120402 2012年04月02日 12:38来源:大众科技报 E91量子通信协议示意图 林立 拿起电话,不用担心被窃听;通过网络传送一份保密文件,不用担心途中被窃取……随着社会的发展,人们对保密提出越来越多的需求,而各种保密通信体系也在不断地满足着这些需求。 近日,国家互联网应急中心相关负责人表示,我国已成为网络攻击最大的受害国。确保信息安全,成为摆在我们面前的严峻课题。 2009年,量子政务网、量子通信网相继在我国建成。这两个可投入实际使用的量子通信网络,标志着原本停留在纸面和实验室的量子保密通信,已经开始在人们的日常生活中一展身手。 什么是量子保密通信? 保密通信分为加密、接收、解密3个过程:发送者将需要发送的内容通过某种加密规则(密钥)转化为密文;接收到密文后,接收者采用与加密密钥匹配的解密密钥对密文进行解密,得到传输内容。 在整个通信过程中,如何保证密钥的保密性和不被破解是最为关键的问题。目前广泛用于网络、金融行业的密钥的安全性由数学计算来保证。 量子保密通信的过程与此类似,只是用微观粒子携带的状态信息作为加密和解密用的密钥。可不能小看这看似“微小”的变化,它使密钥的安全性发生了翻天覆地的变化。 因为量子密钥安全性不再由数学计算,而是由微观粒子所遵循的物理规律来保证,窃听者只有逾越物理世界的法则才有可能盗取密钥。 而在当前看来,这几乎是不可能的任务。不仅如此,量子保密通信还使窃听者无处藏身。因为任何窃听行为都会扰乱传送密钥的量子状态,从而留下痕迹。

资料图:量子态隐形传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。 如何实现量子保密通信? 量子保密通信真正进入科学家的视野是在1984年。这一年,IBM华生实验室工程师本奈特(Charles Bennett)和布拉萨德(Gilles Brassard)提出了全新的BB84保密通信协议。量子的某些基本物理特性开始成为保密通信中的主角。 和其他的保密通信协议一样,本奈特和布拉萨德的方案中也有一个信息发送者爱丽丝和一个接收者鲍勃。不同的是,爱丽丝用光子的不同偏振态来传输密钥的键值。爱丽丝按照直线(上下或左右)或者对角线(与垂直呈45度夹角)偏振的方式发出携带着不同信息的光子。 鲍勃收到光子后,并不知道发送方式,只能随机选择测量方式。当他的测量方式与爱丽丝的相同时,就能得到正确的密钥值,如果测量方式错误,光子就有一半概率给出错误的密钥值。 最后,爱丽丝可以通过公开渠道告诉鲍勃正确的测量方式,从而筛选出正确的键值构成密钥。 如果有人企图窃听又会如何呢?按照海森堡测不准原理,任何测量都无法穷尽量子的所有信息。 因此,窃听者要复制一个完全相同的光子根本是不可能的事情。他只有在中途拦截光子进行测量,然后按照测量到的信息发送一个相同的粒子。

相关文档