文档视界 最新最全的文档下载
当前位置:文档视界 › 磁场测量

磁场测量

各向异性磁阻传感器(AMR)与地磁场测量

实验指导书

北京航空航天大学物理实验中心

2013年3月10日

各向异性磁阻传感器与磁场测量

物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。

磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。

磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。

一、实验要求

1.熟悉和了解AMR的原理

2.测量磁阻传感器的磁电转换特性和各向异性特性

3.测量赫姆霍兹线圈的磁场分布

4.测量地磁场磁场强度,磁倾角,磁偏角

二、实验原理

各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻R max最大,电流与磁化方向垂直时电阻R min最小,电流与磁化方向成θ角时,电阻可表示为:

R = R min+(R max-R min)cos2θ

在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。图1中,易磁化轴方向与电流方向的夹角为45度。理论分析与实验表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。

无外加磁场或外加磁场方向与易磁化轴方向平

行时,磁化方向即易磁化轴方向,电桥的4个桥臂

电阻阻值相同,输出为零。当在磁敏感方向施加如

图1所示方向的磁场时,合成磁化方向将在易磁化

方向的基础上逆时针旋转。结果使左上和右下桥臂

电流与磁化方向的夹角增大,电阻减小ΔR;右上

与左下桥臂电流与磁化方向的夹角减小,电阻增大

ΔR。通过对电桥的分析可知,此时输出电压可表示

为:

U=V b×ΔR/R (1)

式中V b为电桥工作电压,R为桥臂电阻,ΔR/R

为磁阻阻值的相对变化率,与外加磁场强度成正比,

故AMR磁阻传感器输出电压与磁场强度成正比,

图1 磁阻电桥

可利用磁阻传感器测量磁场。 商品磁阻传感器已制成集成电路,除图1所示的电源输入端和信号输出端外,还有复位/反向置位端、补偿端两个功能性输入端口,以确保磁阻传感器的正常工作。

复位/反向置位端的作用是:当AMR 置于超过其线性工作范围的磁场中时,磁干扰可能导致磁畴排列紊乱,改变传感器的输出特性。此时按下复位/反向置位端,通过内部电路沿易磁化轴方向产生强磁场,使磁畴重新沿易磁化轴方向整齐排列,恢复传感器的使用特性。

补偿端的作用是:当4个桥臂电阻不严格相等,或是外界磁场干扰,使得被测磁场为零而输出电压不为零时,此时可调节补偿电流,通过内部电路在磁敏感方向产生磁场,用人为的磁场偏置补偿传感器的偏离。

三、实验仪器介绍

实验仪结构如图2所示,核心部分是磁阻传感器,辅以磁阻传感器的角度、位置调节及读数机构,赫姆霍兹线圈等组成。

本仪器所用磁阻传感器的工作范围为±6高斯,灵敏度为1mV/V/Guass 。当磁阻电桥的工作电压为1V ,被测磁场磁感应强度为1高斯时,输出信号为1mV 。

磁阻传感器的输出信号通常须经放大电路放大后,再接显示电路,故由显示电压计算磁场强度时还需考虑放大器的放大倍数。本实验仪电桥工作电压5V ,放大器放大倍数50,磁感应强度为1高斯时,对应的输出电压为0.25伏。

赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在公共轴线中点附近产生较广泛的均匀磁场,根据毕奥-萨伐尔定律,可以计算出赫姆霍兹线圈公共轴线中点的磁感应强度为:

003/285NI B R

μ=? 磁阻传感器盒

传感器轴向移动锁紧螺钉 传感器绕轴旋转锁紧螺钉

传感器水平旋转锁紧螺钉 赫姆霍兹线圈 传感器横向移动锁紧螺钉 线圈水平旋转锁紧螺钉 信号接口盒

仪器水平调节螺钉

图2 磁场实验仪

相关文档