文档视界 最新最全的文档下载
当前位置:文档视界 › 两电平和三电平脉冲整流器的比较

两电平和三电平脉冲整流器的比较

两电平和三电平脉冲整流器的比较
两电平和三电平脉冲整流器的比较

两电平与三电平的脉冲波形比较

电牵二班

徐刚堂

代思瑶

两电平与三电平的脉冲波形比较

我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。

1.1两电平整流器原理与数学模型

单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。

两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路 由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和

关断,驱动信号应该互补。PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:

ab U =(B A S S )dc U

则由式(2一2),系统的瞬时等值电路如图2一3所示

瞬时等值电路

由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制

输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。因此,通常采用电压外环和电流内环相结合的双闭环控制方式。此等值电路的电压矢量平衡方程为: 对应于四个开关的不同工作状态,电路共有以下三种工作模式:

工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此,

为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。另一方面,网侧电压N U 二两端电压直接加在电感N L 上,对电感N L 充、放电。此时对应的电压矢量平衡方程如下(忽略等效电阻的影响):

N U =N L t

i d d N 工作模式3: B A S S =10,等效电路如图2- 4(b)所示,则ab U =dc U 。N U >0,储存在电感中的能量向负载L R 和电容d C 释放,电感电流N i 下降,一方面给电容充电,使得直流电压上升,保证直流电压稳定,同时高次谐波电流通过电容形成低阻抗回路;另一方面给负载提供恒定的电流。此时对应的电压矢量平衡方程如下:

N L t

i d d N =N U -dc U B A S S =01时的电路 B A S S =10时的电路

在任意时刻,PWM 整流器只能工作在上述三种模式中的一种状态下,在不同的时区,通过对上述3种开关模式的切换,保持直流侧负载电压的稳定和负载电流i 。的双向流动,也即实现能量的双向流通。由图2-1所示主电路结构可知,网侧串入一电感元件形成Boost 电路的拓扑结构,使得直流侧输出电压大于网侧电压峰值。假设开关管为理想模型,在换相过程中没有功率损失和能量储存,则交流侧与直流侧瞬时功率应当相等。即:

ab U N i =dc U 0i

又由等效电路的拓扑结构可得:

N L t

i d d N =N U -N i N R -ab U d C t dc d dU =0i -L

R U dc -2i 将式(2-7)、(2-8)代入式(2-9),得式(2-10)所示两电平PWM 整流器的主电路数学模型,其中2U 为二次滤波电容上的电压。

N L t

i d d N =N U -N i N R -(B A S S -)dc U d C t dc d dU =(B A S S -)N i -L

R U dc -2i 2.2三电平整流器原理

三电平二极管箱位PWM 整流器拓扑如图2-5所示,它采用8个功率开关器件(这里采用IGBT)构成两组对称的桥臂。每一桥臂有4个开关管,其中直接连到正负直流母线上的2个开关管称之为主开关管,中间的2个开关管称之为辅助开关管。两组桥臂各带2个箱位二极管,以防止电容L C 或Z C 因开关操作而发生直通。直流侧支撑电容由2个同样的电容串联组成,这样就可以提供一个中性点,连接到中性点上的2个箱位二极管可以把PWM 整流器的电压箱位到中性点电位,因此该整流器也称为中点箱位PWM 整流器.

为了便于分析电路,首先根据开关管不同的工作状态,定义电路的三种工作状态:1态、O 态、-1态(假设两电容上的电压相等),以左半桥为例:

根据每种不同情况我们可以等效电路为:

二电平二极管箱位PWM 整流器开关等效电路图

由开关等效电路可知,每组桥臂可以等效为一个开关,该开关具有1、0、一1三种等效状态,两组桥臂有 23 9种开关关组合,主电路有9种工作模式。 工作模式0:(B A S S ,)=(1,1),开关管a 1S 与a 2S 、b 1S 与b 2S 导通,整流器交流侧

被短路,网侧输入电压a U 等于0,电容L C 、 Z C 通过直流侧负载放电,网侧电流N i 的大小随网侧电压N U 的变化而增大或减小。

工作模式1:( B A S S ,)=(1,0),开关管a 1S 与a 2S ,a 3S 和b 3S 导通,网侧输入电压

a U 等于1U 网侧漏感电压等于N U -N U 电容q 上的电压被正向(或反向),电流充电(或放电),电容CZ 通过直流侧负载放电。

在此举两个工作模式,剩下见开关表

根据A S 、B S 的不同组合,可以得到不同的五个电平:

根据以上的原理分析可知,三电平PwM 整流器与两电平PWM 整流器相比,具有很多优点:

1.每个功率开关器件所承受的电压峰值只有两电平PWM 整流器的一半,降低了功率开关管的电压应力,较好的解决了开关器件耐压不够高的问题。

2.在相同的开关频率及控制方式下,由于电平数的增加,三电平PwM 整流器的网侧电流波形比两电平中的正弦性要好,且电平数越多,电流越接近正弦,可以获得更好的频谱特性和动态性能。

3.输出电压为5个电平的阶梯波,相对于两电平的3个电平,输出波形阶梯增多,各级间的幅值变化降低,可更加接近正弦波;电压脉动小,降低了输出电压的跳变,减小对负载和本身的损害;输出电压谐波含量减少,对外围电路的干扰减小。 但是这种三电平结构也有它固有的不足之处:

1.因为不同管子的开关时间不同,器件所需额定电流不同。

2.电容均压问题:这是制约其应用的最大障碍之一。直流侧电容由于一个周期内电流的流入和流出可能不同,使某些电容总在放电,而另一部分总在充电,使得电容电压不均衡,对整个系统工作不利。

3.需要较多的箱位二极管. 两电平仿真模型

两电平Un、In波形

两电平Ud、Id波形

两电平Uab

两电平Udc

三电平仿真模型

三电平Un、In波形

三电平Ud、Id波形

三电平Uab

两电平和三电平脉冲整流器的比较

两电平与三电平的脉冲波形比较 电牵二班 组员:杨洋20121550 曾绍桓20121543 徐刚堂20121544 代思瑶20121565 黄异彩20121569 赵杰20121571

两电平与三电平的脉冲波形比较 我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。 1.1两电平整流器原理与数学模型 单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。 两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路 由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和 关断,驱动信号应该互补。PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:

ab U =(B A S S -)dc U 则由式(2一2),系统的瞬时等值电路如图2一3所示 瞬时等值电路 由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制 输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。因此,通常采用电压外环和电流内环相结合的双闭环控制方式。此等值电路的电压矢量平衡方程为: ab t iN i d d U R L U N N N N ++= 对应于四个开关的不同工作状态,电路共有以下三种工作模式: 工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此, 为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。另一方面,网侧电压N U 二两端电压直接加在电感N L 上,对电感N L 充、放电。此时对应的电压矢量平衡方程如下(忽略等效电阻的影响): N U =N L t i d d N 工作模式3:B A S S =10,等效电路如图2- 4(b)所示,则ab U =dc U 。N U >0,储存在电感中的能量向负载L R 和电容d C 释放,电感电流N i 下降,一方面给电容充电,使得直流电压上升,保证直流电压稳定,同时高次谐波电流通过电容形成低阻抗回路;另一方面给负载提供恒定的电流。此时对应的电压矢量平衡方程如下: N L t i d d N =N U -dc U

三电平逆变器的主电路结构及其工作原理

所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。

两电平及多电平变换器介绍

PWM变流器简介 电力电子技术的应用包括四大类基本变流电路,即AC-DC(整流)、DC-DC (升降压斩波)、AC-AC(变频变相)、DC-AC(逆变)变流电路。由此产生的整流器,逆变器,变流器(双向整流逆变)等装置在工业生活中的应用日益广泛,无论是在UPS,新能源发电(光伏、风电),电能质量治理(无功、谐波),还是电动汽车等领域,对系统效率的期望比以往更高。在市电等级应用领域中,通常采用的是两电平变流器拓扑结构,而多电平变流器拓扑的提出,就是为了实现中高压应用的目标。本文将对常见的两电平、三电平变流器拓扑原理进行分析介绍。 1.一种典型的两电平-三相电压型桥式PWM变流器电路拓扑如下图所示: 图1三相电压型桥式PWM变流器 电路直流侧通常只有一个电容器就可以,为了方便分析,画作串联的两个电容器并标出理想中点N。其基本工作方式为180度导电,即每个桥臂导电角度为180度,同一相(即同一桥)上下两个臂交替导电,各相开始导电的角度依次相差120度。在任一瞬间,将有三个桥臂同时导通,每次换流都是在同一相上下两个桥臂之间进行,因此也称为纵向换流。 下面来分析该电路的工作波形,对于U相输出来说,当V1导通时,Uun=Ud/2;V4导通时,Uun=-Ud/2.因此Uun的波形是幅值为Ud/2的矩形波。V,W两相情况类似,只是相位依次相差120度。通常我们所说的几电平指的是逆变器输出的相电压,对两电平而言,逆变器输出的相电压只有上述分析的两种电平:±Ud/2。 负载线电压可分别由公式求出: Uuv=Uun-Uvn; Uvw=Uvn-Uwn; Uwu=Uwn-Uun 可以看出负载线电压有三个值:±Ud,0.

(完整版)三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构 及其工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压 (+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压 U=+V dc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

脉冲整流器说明书

目录 关于本手册 本手册的目的 本手册的适用性 本手册的组成 前言 本系列产品的概括 高频开关电源的示图 性能与技术指标 机械参数 技术参数 安装和启动 使用工具和连接线用材料 安装要求 注意事项 启动 操作 面板控制和显示功能说明 数字电压/电流显示表 启动开关 开关 稳流稳压开关 简要操作说明

维护 工作地方 使用环境使用电压 连接线检查 使用情况反馈表常见故障排除

关于本手册 本手册的目的 本手册主要是提供给您作为使用SDD系列产品的安装、检查、操作的参考资料,同时也列出简单的故障排除方法,供使用人员依照手册所说明的步骤逐步完成设备的安装调试工作。 本手册的适用性 本手册是针对本公司生产的SDD系列双脉冲电源(整流器)的使用、操作、维护而编写。因电镀工程有多类镀种,不同镀种、不同的工件应用不同的电镀工艺;这些工艺应由用户自己调整掌握,本手册说明对电镀工艺效果不负有责任。 本手册的构成 本手册主要由以下几部份内容构成 性能指标 安装和启动 操作 维护

特别声明! ●禁止对本手册内容的全部或任何部份进行未经授权的转换或复制。 ●本手册中包含的内容若有改变恕不另行通知 ●本公司已尽可能地保证本册中包含的内容正确无误,如发现有任何错误或遗漏,请与制造商或经销商联系。 ●本公司对由于使用此手册而引起的或与本手册有关的任何直接或间接的损失将不承担任何责任。 ●电源编号为本公司记录档案代码,用户务必妥善保存,以便我们做好售后服务工作。

前 言 本系列产品概括 SDD 系列智能高频开关电源是我公司研制的新型开关电源产品,采用全方位防腐材料及工艺,多波形、多功能输出选择,满足不同镀种需要,通过面板按键操作控制,大屏幕荧光显示,具有安装、维护、操作、灵活方便、安全可靠等特点。 本设备采用STP (直流)换向功能,提供:双脉冲、直流、正弦波、单脉冲等波形输出选择,用于满足着色工艺要的需要; 示意图 输出正极铜排输入电源线 操作面板 INPUT 220VAC OUTPUT

三电平与两电平逆变器谐波特性的比较

三电平与两电平逆变器谐波特性的比较 引言 三电平逆变器自1981年nabae提出后[1],在近几年得到了广泛的应用。因为相对于传统的两电平逆变器而言,它具有如下2个突出的优点[2]: (1) 每个桥臂上开关元件的电压应力为直流侧输入电压的一半,这样无需动态均压电路就可以将低耐压的器件应用于高压大功率场合。 (2) 在相同的载波频率下,三电平逆变器线电压的谐波成份较两电平逆变器要小得多,且由于开关频率也成倍减小,有效地减小了开关损耗。 本文采用双重傅立叶级数的方法分析了这两种逆变器的谐波特性,并分别给出仿真结果进行比较,证明三电平逆变器的这两个优点。 2 三电平逆变器的谐波分析 图1为二极管箝位型三相三电平逆变器主电路拓扑结构,图2是a相的波形图。 图1 三电平逆变器主电路 图2 三电平逆变器波形图 其中,载波幅值为1,角频率为ωs;调制波幅值为ma,也即逆变器的调制系数,角频率为ω0。载波和调制波可以写成如下形式

(1) (2) uar=masinω0t (3) 调制波和载波的交点即为开关的动作时间,在交点上,有up=uar(调制波的0~π区间)和un=uar(调制波的π~2π区间),如图3所示。 图3 调制波和载波的相位关系 (4) (5) 所以 (6) 将用双重傅立叶级数表示[3] (7) 式中

(8) 线电压uab是相电压ua0和ub0的矢量差,即 (9) (10) 将线电压uab的系数aknak分解成各频率分量可得 (1) 直流分量(k=0,n=0) a00=0,所以a00a0=0,uab不含直流分量。 (2) 基波分量(k=1,n=0) ,,所以uab的基波 (11) (3) 基波频率的整数倍分量(k>1,n=0) ak0=0,所以ak0ak=0,uab不含基波频率的整数倍分量。 (4) 载波频率的整数倍分量(k=0,n≥1) 因为a0=0,所以a0na0=0,uab不含载波频率的整数倍分量。 (5) 调制波和载波频率的和频与差频分量(k≠0,n≥1) (12) (13) (14) 从(14)式可看出,当k为偶数或3的倍数时,aknak=0。所以

[三电平逆变器的主电路结构及其工作原理]三电平逆变器工作原理

[三电平逆变器的主电路结构及其工作原理]三电平逆变器 工作原理 三电平逆变器的主电路结构及其原理 所谓三电平是指逆变器侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱 位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT 开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假 设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+Vdc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1

充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+Vdc/2。通常标识为所谓的“1”状态,如图所示。 “1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从O点顺序流过箱位二极管Da1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管Da2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-Vdc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-Vdc/2。通常标识为“-1”状态,如图所示。 三电平逆变器工作状态间的转换

三电平

目前,世界上对高压电动机变频调速技术的研究非常活跃,高压变频器的种类层出不穷,作为用户都希望能选择实用而具有良好性价比的高压变频器,如何选择便是值得研究的问题。知己知彼,百战百胜,首先按照自己的工况拟定对高压变频器的技术要求,针对性的选择高压变频器的方案、产品和售后服务,否则会出现应用不理想,投资损失大。不同高压变频器的电路拓扑方案具有不同的技术水平。技术水平决定变频器和传动系统的稳定性、可靠性、使用寿命、维护费用、性价比等重要指标。就如同笔记本电脑功能都基本相同,但不同的技术水平,质量价位从3000元到数万元之差。为此,了解不同种类的高压变频器内含技术水平,选择变频器的品质与工况相结合,达到投入少、节能回报率高的理想效果。 2 高压变频器的概念 按国际惯例和我国国家标准对电压等级的划分,对供电电压≥10kV时称高压,1kV~10kV 时称中压。我们习惯上也把额定电压为6kV或3kV的电机称为高压电机。由于相应额定电压1~10kV的变频器有着共同的特征,因此,我们把驱动1~10kV交流电动机的变频器称之为高压变频器。高压变频器又分为两种性质类型,电流型和电压型,其特点区别: (1) 变频器其主要功能特点为逆变电路。根据直流端滤波器型式,逆变电路可分为电压型和电流型两类。前者在直流供电输入端并联有大电容,一方面可以抑制直流电压的脉动,减少直流电源的内阻,使直流电源近似为恒压源;另一方面也为来自逆变器侧的无功电流提供导通路径。因此,称之为电压型逆变电路。 (2) 在逆变器直流供电侧串联大电感,使直流电源近似为恒流源,这种电路称之为电流型逆变电路。电路中串联的电感一方面可以抑制直流电流的脉动,但输出特性软。电流型变频器是在电压型变频器之前发展起来的早期拓扑。 3 电压型逆变器与电流型逆变器的特点区别 (1) 直流回路的滤波环节 电压型逆变器的直流滤波环节主要采用大电容,因此电源阻抗小,相当于电压源。电流型逆变器的直流滤波环节主要采用大电感,相当于恒流源。 (2) 输出波形 电压型逆变器输出的电压波形是SPWM高频矩形载波,输出的电流波形在感性负载时近似于正弦波,含有部份的高次谐波分量,输入采用简易滤波,便可满足国家谐波含量标准。电流型变换器输出的电流波形是一个交变矩形波,其输出的电压波形接近正弦波,含有丰富的高次谐波分量,电机易发高热,一般使用时都要选用进口的特制电动机。输入谐波含量极高,须采用巨大,笨重的滤波器,方能使用。 (3) 四象限运行 电流型逆变器由于在其直流供电侧串联大电感,在维持电流方向不变的情况下,可控硅整流桥可改变电压极性,所以很容易使逆变器运行在整流状态,从而使整流桥处于逆变状态,实

三电平理论

华中科技大学 硕士学位论文 三电平逆变器SVPWM控制策略的研究 姓名:刘亚军 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:程善美 20080604

摘要 三电平逆变器输出由于具有更高的电能质量、更低的谐波含量,更好的电磁兼容性以及更低的开关损耗等优点,在中高压大容量交流调速领域得到了广泛的应用。但是,三电平逆变器也存在不少关键问题,如三电平算法的简化问题,过调制区中点电压控制问题,以及在高压运行时系统的稳定性问题。鉴于以上存在的问题,本论文深入地研究了三电平逆变器的结构,原理,控制策略,电容中点电压的控制,死区补偿,过调制处理以及SVPWM算法的实现。 论文在论叙二极管箝位三电平逆变器的结构和工作原理的基础上,分析了三电平逆变器的SVPWM调制策略,提出了一种实用的易于数字化实现的三电平SVPWM 算法。在该算法的基础上通过修改小矢量的作用时间给出了基于滞环控制和PI控制的电容中点电压控制策略,并得到了很好的效果。同时,论文对三电平逆变器的死区补偿和过调制处理进行了深入的研究,并且提出了一些新的方法来解决在过调制情况下的中点电压平衡问题,研究了三电平逆变器的死区实现方案和补偿策略,仿真实验证实了所提出的策略达到了预定的效果。为了验证所提出的三电平SVPWM 算法,本文在MATLAB下建立了基于三电平逆变器的感应电动机V/F控制系统和矢量控制系统,仿真结果验证了所提出的三电平空间矢量PWM算法是可行有效的。 论文对三电平逆变器的SVPWM算法的实现进行了研究,基于DSP和CPLD提出了两种实现方法。一种是采用数字信号处理器TMS320LF2407A中的两个事件管理器巧妙实现了三电平SVPWM算法;另一种是利用TMS320LF2407A和EPM240T100C5组成组合逻辑来实现。实验结果进一步证实了所做的研究工作和所提出的算法是实际可行的。 关键词:三电平逆变器SVPWM算法中点电压控制死区补偿过调制

三电平技术

能源短缺和环境污染是人类当前面临的共同的世纪性难题。20世纪70年代以来两次世界性的能源危机以及当前环境问题的严重性,引起世界各国对节能技术的广泛关注。我国能源生产和消费已列世界前茅,但仍远远满足不了工业生产和人民生活发展的需要。由于缺电,正常的生产秩序被打乱,造成巨大的经济损失;在能源十分紧张的情况下,浪费现象仍十分严重。例如,在工业用电中,高压大功率电机拖动的风机、水泵占很大比例,这些设备每天都在消耗大量的电能。如果采用高压大容量变频调速装置拖动交流电机,对降低单产能耗具有重大意义。在轧钢、造纸、水泥、煤炭、铁路及船舶等工业和生活领域中也广泛使用大中容量高性能交流电机调速系统。此时,交流调速系统的应用可改善工艺条件,实现整个系统的性能最佳,并大大提高生产效率和产品质量。另外,解决环境污染的重要途径是发展高速公共交通工具(如电力机车、城市地铁和轻轨),其核心也是大容量交流电机调速技术。然而,随着交流调速及电力电子装置等非线性设备在工业、交通及家电中的大量应用,电网中的无功和谐波污染日益严重。电力系统中的无功和谐波降低了电能的生产、传输和利用的效率,同时降低了电器设备运行的可靠性,严重时损坏设备、危及电网的安全。以柔性交流输电系统(FACTS)技术为代表的大功率电力电子技术,在电力系统中的应用可大幅度改善电力系统可控性及可靠性,提高输电线路的传输能力及系统的安全稳定性。在柔性交流输电系统中,采用高压大容量电力电子装置构成的无功补偿和电力有源滤波器无疑是一个发展趋势。 从20世纪90年代以来,以高压IGBT、IGCT为代表的性能优异的复合器件的发展引人注目,并在此基础上产生了很多新型的高压大容量变换拓扑结构,成为国内外学者和工业界研究的重要课题,使得传统上在大功率应用领域中占主导地位的SCR、GTO 及其变换器结构受到强有力的挑战。在工业发达国家,兆瓦级的高压多电平逆变器已有产品大量投入市场,并应用于电力机车牵引、船舶电力推进、轧钢、造纸、油气田、无功补偿等高性能系统中。我国也有不少单位在研究、开发和引进高压大容量多电平变换器的技术和设备。三电平逆变器的结构较简单,其电路拓扑形式从一定意义上来说可以看成多电平逆变器结构中的一个特例,它的中点钳位及维持中点电位动态平衡技术、功率器件尖峰吸收缓冲电路、PWM算法简化及控制策略、高压功率器件的驱动及系统的工作电源等也是多电平逆变器控制需要研究解决的问题。从

T型三电平逆变器课程设计..

摘要 三相三电平逆变器具有输出电压谐波小,/ dv dt小,EMI小等优点,是高压大功率逆变器应用领域的研究热点,三相二极管中点箝位型三电平逆变器是三相三电平逆变器的一种主要拓扑,已经得到了广泛的应用。三相T型三电平逆变器,是基于三相二极管中点箝位型三电平逆变器的一种改进拓扑。这种逆变器中,每个桥臂通过反向串联的开关管实现中点箝位功能,是逆变器输出电压有三种电平。该拓扑比三相二极管中点箝位型三电平拓扑结构每相减少了两个箝位二极管,可以降低损耗并且减少逆变器体积,是一种很有发展前景的拓扑。 本设计采用正弦脉宽调制(SPWM),本文介绍了三相T型三电平逆变器的设计,介绍其结构和基本工作原理,及SPWM控制法的原理,并利用SPWM控制的方法对三电平逆变器进行设计与仿真。本设计采用SIMULINK对T型三电平逆变电路建立模型,并进行仿真。 关键词: T型三电平逆变器、正弦脉宽调制、SIMULINK仿真

目录 第一章绪论 (6) 1.1研究背景及意义 .. 1.2三电平逆变器拓扑分类 第一章 T型三电平逆变器工作原理分析 (6) 1.1逆变器的结构 1.2本章小结 第二章正弦脉波调制(SPWM) (7) 3.1 PWM与SPWM的工作原理 3.2三电平逆变电路SPWM的实现 3.3本章小结 第三章电路仿真与参数计算 (10) 4.1逆变器的基本要求 4.2电路图 4.3调制电路 4.4L-C滤波电路 4.5结果分析 第四章课程设计小结 (14) 参考文献 (15)

第一章绪论 1.1 研究背景及意义 近年来,随着经济的飞速发展,人类对能源的需求也大幅度增加,而传统能源面临着枯竭的危机。在这种情况下,我们不得不加速开发新型能源。各国的专家致力于新能源的开发与利用,光伏发电、风力发电、生物发电等各种新型发电技术已经得到了一定的应用,并且正在蓬勃的发展,尤其是光伏发电,因其成本低、稳定性较好,控制简单等优点,在各国得到了广泛的应用。受地区气象条件的影响,太阳能光伏电池板输出的直流电压极不稳定,而且电压幅值低,容量小。为了高效利用太阳能,需要将不稳定的光伏电池串、并联组合,并且经过多级电力电子变换器组合输出恒频交流电压并网运行。而把这些初始能源转化为可用电能的桥梁就是逆变器。随着开关器件的不断发展,逆变器的拓扑、调制方式和控制策略也在不断发展,控制理论在逆变器的控制上得到了很好的应用,这一切都保证了优良的供电质量。在一些高电压、大功率的应用场合,传统的两电平逆变器由于开关器件耐压限制,无法满足需求。在这种情况下,如何将低耐压开关器件应用于高电压大功率场合成为各国专家研究的热点,由此,多电平逆变器技术应运而生。多电平的概念最早是由日本专家南波江章(A.Nabae)等人在 1980 年提出的[1],通过改变主电路的拓扑结构、增加开关器件的方式,在开关器件关断的时候将直流电压分散到各个器件两端,实现了低耐压开关器件在大功率场合应用。 1.2三电平逆变器拓扑分类 常见的多电平的电路拓扑主要有三种:二极管箝位型逆变器、飞跨电容箝位型逆变器和具有独立直流电源的级联型逆变器。本文研究的 T 型三电平逆变器可以说是中点箝位型逆变器的改进拓扑,其优势主要体现在减少了电流通路中的开关器件数量,减少了传导损耗。而且与二极管箝位型三电平逆变器相比,T 型三电平逆变器的每个桥臂少用了两个箝位二极管,其控制方法和二极管箝位型三电平逆变器类似[2]。T 型三电平逆变器融合了两电平和三电平逆变器的优势,既有两电平逆变器传导损耗低,器件数目少的优点,又有三电平逆变器输出波形好,效率高的优点,是很有发展前景的一种三电平逆变器拓扑。

三电平分析

电力电子系统仿真报告 题目三电平H桥级联型逆变器 专业 班级 学生 指导教师 2016年3月10日

三电平H桥级联型逆变器 一、摘要 级联型多电平变频器输出电压谐波含量小,易于实现模块化,适用于高压大功率场合。本文主要针对三电平H桥级联型逆变器的拓扑结构和控制方式的相关问题进行分析与研究。级联个数不同,对控制方法也有不同的要求。提出了基于载波层叠调制和载波移相调制的混合载波调制方法,三电平桥臂内采用反相层叠载波调制,级联单元间及桥臂间均采用载波移相调制。本文根据级联个数的奇偶性,在级联单元间分别采用不同的载波移相控制方法,并通过PSIM软件仿真验证了这种采取不同控制方法的正确性,同时也对输出电压的谐波进行了分析。 二、选择PSIM仿真软件 PSIM是趋向于电力电子领域以及电机控制领域的仿真应用软件。PSIM是由SIMCAD 和SIMVIEM两个软件来组成的。它具有仿真高速、用户界面友好、波形解析等功能,为电力电子电路的解析、控制系统设计、电机驱动研究等有效提供强有力的仿真环境。PSIM还提供了一个强有力的对功率电子学、模拟及数字控制、磁以及电机驱动系统进行研究的仿真环境,需要用户确定的参数极少,仿真速度快,界面友好。与基于SPICE的仿真软件不同,PSIM并不是为一般的电子电路仿真而设计的,而是针对性很强的一种仿真软件。与SPICE相比,它具有更快的仿真速度和更强的收敛性。PSIM几乎不会出现仿真不收敛的情况。 根据其用户界面直观、易于使用,用PSIM直观、简单的操作界面可迅速搭建电路图,PSIM相比其它仿真软件的最重要的特点是仿真速度快,可仿真任意大小的电力变换电路和控制回路等这些特点。根据本文的要求以及仿真软件的特点,要想达到预期的仿真效果,我就选择用PSIM进行仿真来实现其仿真结果。 三、选择所需的仿真步长 我们知道仿真时的时间概念与真实的时间并不一样,它只是计算机在仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 在选择步长时我们主要考虑其仿真的速度和仿真的精度。若步长选择的很大则采样点数会减小,所以完成仿真的速度会很快,而仿真结果的精度就会降低。相反若选择的步长较小则采样点数增加,所以仿真速度就会降低而仿真结果的精

三电平逆变器的分析与控制

三电平逆变器的分析与控制 薄保中 苏彦民 西安交通大学 摘要:三电平逆变器在中压大功率场合应用很广泛。由于中点电位波动等问题使三电平逆变器的控制较复杂。文章分析了空间矢量对中点电位波动的影响,仿真结果说明采用空间电压矢量控制方法时,通过选择多余的小矢量来控制中点电位波动是一个有效的方法。 关键词:三电平逆变器 中点电位波动 控制方法 Analysis and Control of Three-level Inverters Bo Baozhong Su Yanmin Abstract:T hree-level inver ters have found w ide applications in mediu m-voltage h igh-pow er applications. Du e to neutral-point poten tial flu ctuation th e in verters are difficult to control.In the paper th e in fluence of s pace vectors on the neutral-point potential fluctuation is investigated.It is verified b y simulation r esu lts that selecting redu ndant sm all s pace vectors is an effective way of control n eutral-point potential fluctuation w hen usin g s pace vector PWM techniqu e. Keywords:th ree-level inverters neutral-point p otential flu ctuation control tech nique 1 前言 三电平逆变器1981年由A.Nabae等人率先提出[1],在牵引等领域采用GT O元件的中压变频器得到了广泛的应用。近年来出现了基于晶闸管机理的GCT(门极换流晶闸管Gate Commu-tated Thyrister)器件,例如IGCT(集成门极换流晶闸管)和对称SGCT(对称GCT),前者适用于多电平逆变器,后者适用于电流源逆变器,二者的性能均比相应的GT O元件性能大幅提高。目前国内中压大功率调速装置市场发展很快,大部分厂家采用IGBT器件的逆变单元串联多电平结构。而在中压大功率调速领域,三电平逆变器采用IGCT器件,电路结构简单,装置体积小,因此一般认为GT O以及IGCT器件的三电平逆变器更有发展前途。 中压电机变频驱动与低压电机相比,电机控制策略很相似,区别主要是由于PWM方法和多电平带来的逆变器的控制问题。三电平逆变器现有产品采用直接转矩控制和转子磁场定向矢量控制,不管采用哪种电动机控制方法,逆变器的可靠控制是其核心问题,本文分析了三电平逆变器的空间矢量对中点电位的影响,通过仿真结果对提出的控制方法进行了验证。 2 三电平逆变器主电路 三电平逆变器主电路如图1所示,三电平逆变器每一相桥臂4个开关元件有3种正常的开关模式,以X相为例,S x1和S x2导通时,X相输出正电平,S x3和S x4导通时,X相输出负电平,S x2和S x3导通时,X相输出零电平,故称之为三电平 逆变 图1 三电平逆变器主电路 14

三电平

逆变器概述: 逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。 三电平发展趋势: 近几年来,多电平逆变器成为人们研究的热点课题.三电平逆变器是多电平逆变器中最简单又最实用的一种电路.三电平逆变器与传统的两电平逆变器相比较,主要优点是:器件具有2倍的正向阻断电压能力,并能减少谐波和降低开关频率,从而使系统损耗减小,使低压开关器件可以应用更广泛。 三电平逆变器拓扑: (1) (2) (3)

三电平逆变器基本原理 日本学者南波江章(A.Kira Nabae)教授等人对Holtz提出的电路进行了改进与发展,于1980年在IEEE工业应用学会(IAS)年会上提出了二极管箝位式三电平逆变器主电路的结构,从此开创了多电平逆变器的研发新阶段。该拓扑为在两个电力电子开关器件串联的基础上,中性点加一对箝位二极管的三电平逆变器,又称为中性点箝位型(Neutral Point Clamped,简称NPC)三电平逆变器,所示即为三相三电平NPC逆变器拓扑结构,由两个直流分压电容C1=C2、三相逆变电路组成。负载为三相感应电机。电容不仅有滤波的作用,还起电压支撑的作用。每相电路的上、下桥臂均由两个开关器件串联构成,两个器件都反并联了二极管(图中为IGBT)。两个串联器件的中点通过箝位二极管和直流侧电容的中点相连接。

以A相逆变电路为例,分析二极管箝位型三电平电压型逆变器的工作原理。 A相逆变电路如图2.2所示。由两个直流母线分压电容C1、C2、四个主开关器件V11、V12、V41、V42,四个续流二极管VD11、VD12、VD41、VD42,两个箝位二极管VD1、VD4组成。直流母线电压被两个串联大电容C1和C2分割成三个等级。两个电容的中间点m被定义为中性点。以中性点m为参考点,当V11、V12同时导通,V41、V42同时关断时,uAm=+Ud/2;当V12、V41同时导通,V11、V42同时关断时,uAm=0;当V41、V42同时导通,V11、V12同时关断时,uAm=-Ud/2; 可见,A相输出电压uAm具有三种状态:+Ud/2、0、-Ud/2,分别定义为P、0、N。 对于三相电路而言,共有3^3=27种状态。对应着空间矢量控制的27个矢量状态,相比于两电平逆变器的2^3=8个状态来说,显然三电平提供的矢量状态丰富多了,选择的范围更大,更易获得好的控制性能。经过分析不难发现,由于箝位二极管的作用,每个主功率开关器件承受的电压是单个直流电容两端的电压,即直流侧电压的一半Ud/2,相对于传统两电平逆变器来说,主开关器件的耐压可降低一半。表2.1列出了A相逆变电路稳态工作模式下输出电平与开关状态的关系,可以看出,主开关器件V11、V42不能同时导通,V11和V41工作在开关互补状态,V12和V42工作在开关互补状态。也就是说,

三电平逆变器基本介绍

三电平逆变器基本介绍 一、三电平逆变器的基本工作原理 DC V 2 1DC V 21 图1 三电平逆变器主电路 图2 四个开关管的驱动信号波形

当u 时,u ,且表示Q1通Q3断,S 表示 Q1断Q3通; 0>DC V S 2/1**=1*=S 0*= 当u 时,u ,且表示Q2通Q4断,表示Q2断Q4通; 0+==时时0u 41*42/1*)1(0u 41*42/1*DC m t DC DC DC m t DC DC V v V V V S V v V V V S u 图3 三电平逆变器模型(包括调制部分)

图4 三电平逆变器的控制框图 二、三电平逆变器的缓冲电路 DC V 21DC V 21 图5 实验中所采用的NPC 缓冲电路

实验中发现在突加RCD 负载时会在Q2、Q3上产生很大的电压尖峰,经仔细分析,主要有以下两个方面的原因: 第一:在突加RCD 负载时会产生很大的电流尖峰,由于控制板在设计时考虑的状况是当出现过流信号时同时封锁Q1、Q2、Q3、Q4的驱动信号,从而导致A 点电位在封锁Q1、Q2、Q3、Q4驱动瞬间的变化最大幅值可以达到V ,很类似于两电平逆变 器工作时的状态,容易导致开关管上出现电压尖峰。 DC 解决办法:当出现电流尖峰时仅仅封锁Q1、Q4的驱动信号,而Q2、Q3的驱动不封锁,仍然保持原状态不变,如此一来在封锁Q1、Q4驱动瞬间A 点电位的变化最大幅值仅仅为1,因此大大减小了开关管上的电压尖峰。 DC V 2/第二:在突加RCD 负载时输出电压的正负半周会出现误判的状况。 以一个实际的工作状况对此加以说明,假设当前处于桥臂输出电压的正半周,但是由于此时突加RCD 负载因此误判为是在电压的负半周,因此会做以下操作:将原来处于开关状态的Q1改为常断;将原来常通的开关管Q2改为开关状态;将原来处于开关状态的开关管Q3改为常通;将原来常断的开关管Q4改为开关状态,而在此转换过程当中,负载电流很大,很容易在开关管上产生电压尖峰。

逆变三电平I型和T型电路的比较分析

逆变三电平I型和T型电路的比较分析 随着太阳能、UPS技术的不断发展和市场的不断扩大,对逆变器效率的要求也越来越被制造商所重视,因此三电平的拓扑结构便应运而生。众所周知,与传统两电平结构相比,三电平结构除了使单个IGBT阻断电压减半之外,还具有谐波小、损耗低、效率高等优势。 目前针对三电平拓扑结构有很多种,最常见的两种拓扑结构为三电平“I”型和三电平“T”型,接下来会对这两种结构从不同方面进行分析。 三电平电路示意图 如图1,2所示的两种三电平电路图,为了区分这两种电路,根据四个开关管在线路图中的的排列方式,我们将前者成为I字型,后者称为T字型。 三电平电路与普通的半桥电路相比,因为具有了中点续流的能力,所以对改善输出纹波,降低损耗都有很好的效果。

图1. 三电平“1“字形电路示意图 图2. 三电平“T“字形电路示意图 两种电路的分析 1.芯片阻断电压不同 三电平I型电路中,4个IGBT管均承受相同的电压,而T型Q1&Q4管承受两倍的电压。比如,若直流母线为600V时,I型4个IGBT管阻断电压为600V/650V, 而T型Q1&Q4管为1200V. 1200V的IGBT芯片比600V/650V芯片有更大的开关损耗及导通损耗,这意味着芯片的发热更大,需要更多的硅芯片。而硅芯片的增加,成本也必然随之增加。 然而在实际上,对于I型电路,当两个开关管的电压串联承受2倍BUS电压时,由于元件本身的差异,两个开关管承受的的电压不可能完全相同,因此,为了保证开关管的安全工作,I型电路中开关管也应按照承受2倍BUS电压去设计。

所以,从实际角度出发,在开关耐压的选择上,I型电路并没有太大优势。 2.元件数量不同 从拓扑结构图中,很容易可以看出T型电路要比I型电路少两个Diode,这对于 减少空间有好处。 3.控制时序不同 三电平I型需先关断外管Q1/Q4,再关断内管Q2/Q3,防止母线电压加在外管上导致 损坏;而T型则无时序上的要求。另外,对于I型拓扑,在驱动设计时需要有4个独 立电源;而对于T型共发射极拓扑,只需要3个独立电源。 I型与T型损耗有所差异,在功率因数接近1时,开关频率增大(>16KHz),三电 平I型(600V)损耗更低,效率更高;而开关频率减少时(<16KHz),三电平T型(1200V)损耗更低,效率更高。所以在设计逆变器系统的时候,应根据不同的开关 频率去选择一种效率高的拓扑结构。 5.换流路径不同 在T型拓扑中,外管与内管之间的转换路径均为一致;而在I型拓扑中,换流路 径有所不同,分为短换流路径与长换流路径,所以用分立模块做三电平I型拓扑时, 必须要注意其杂散电感与电压尖峰的问题。 综上所述,三电平I型与T型互有优势, 通过本文的分析可以看出,T型和I型三 电平电路比较,耐压方面理论上I型电路优于T型电路,然而从实际应用角度分析, 二者相差不大;损耗方面,T型要优于I型;元件数量方面,T型少两个Diode。因此,按照本文的分析,在较小损耗和减小空间方面,T型电路会比较有利;赛米控针 对市场上不同的需求,同时可以给客户提供两种不同拓扑结构的三电平模块。 赛米控相关产品系列 对于三电平I型模块,赛米控推出了SEMITOP、MINISKIIP、SEMITRANS、SKIM 产品系列. 该模块将IGBT技术与较低开关和传导损耗结合,可用于功率等级为 5-80KVA的逆变器。其中SEMITOP、MINISKIIP、SKIM采用了SKIIP技术,无铜 底板的功率模块使芯片到散热器的热阻更低,同时具有结构紧凑、安装方便的优势。 对于三电平T型模块,赛米控推出了基于无铜底板、烧结技术平台的SKIM模块,该模块电流等级为300-600A,可用于大功率的逆变器。对于这款新面世的模块,必 将会在大功率三电平中占有一席之地。 针对日趋扩大的三电平应用领域,赛米控也不断投入研发,掌握最新的三电平技术;并且与多家知名企业与高校共同合作,力求紧跟市场,继续争当功率半导体行业 的引领者。 出自:世纪电源网论坛(未经允许私自转载者,将保留追究其版权责任)

相关文档
相关文档 最新文档