文档视界 最新最全的文档下载
当前位置:文档视界 › 伺服电机和步进电机的区别

伺服电机和步进电机的区别

伺服电机和步进电机的区别

伺服电机和步进电机是常用的两种电机类型,它们在工业自动化和

机械控制领域有广泛的应用。虽然它们都是用于转动控制,但在工作

原理、性能特点以及适用场景上存在一些重要的区别。本文将详细介

绍伺服电机和步进电机的区别。

一、工作原理的区别

1. 伺服电机的工作原理

伺服电机是通过外部的控制信号来实现位置和速度的闭环控制。它

包括了电机、编码器、驱动器和控制器等部件。当控制信号传输到电

机驱动器时,驱动器会将电流传送到电机,以产生转矩。同时,编码

器会不断地向控制器反馈电机的实际位置信息。控制器利用编码器所

反馈的信息来计算误差,并产生相应的调整信号送回驱动器,从而实

现位置和速度的精确控制。

2. 步进电机的工作原理

步进电机是一种开环控制的电机,它通过向电机控制器输入脉冲信

号来驱动电机转动。电机驱动器会将脉冲信号转换为电流,产生转矩。步进电机的转角是离散的,每个脉冲信号使电机转动一个固定的步距,因此步进电机的运动是精确可控的。

二、性能特点的区别

1. 伺服电机的性能特点

伺服电机具有高精度、高速度和高转矩输出的特点。由于采用闭环

控制,伺服电机能够实现准确的位置和速度控制。此外,伺服电机具

有较低的转矩波动和较快的动态响应性能,适用于对运动精度要求较

高的场景。

2. 步进电机的性能特点

步进电机具有较低的成本和较简单的控制系统。由于采用开环控制,步进电机的控制系统相对简化,适用于一些对成本要求较低且控制精

度要求不高的场景。此外,步进电机具有较高的静态转矩和较大的抗

负载特性,适用于一些需要大转矩输出的场合。

三、适用场景的区别

1. 伺服电机的适用场景

伺服电机广泛应用于需要高精度、高速度和高转矩输出的场景,如

数控机床、印刷设备和纺织设备等。由于其闭环控制的特点,伺服电

机能够实现较高的定位精度和过载能力,适用于对运动控制要求严格

的应用领域。

2. 步进电机的适用场景

步进电机广泛应用于需要连续旋转、较低成本和简化控制系统的场景,如3D打印机、扫描仪和机器人等。步进电机由于其开环控制的特点,能够简化控制系统,降低成本。但在高速和高负载的情况下,步

进电机由于限制了最大转速和较小的转矩波动,使得其应用受到一定

限制。

总结:

伺服电机和步进电机在工作原理、性能特点以及适用场景上存在明显的区别。伺服电机采用闭环控制,具有高精度、高速度和高转矩输出的特点,适用于对运动精度要求较高的场景;而步进电机采用开环控制,具有较低的成本和较大的抗负载特性,适用于成本要求较低且对控制精度要求不高的场景。选择合适的电机类型需要根据具体的应用需求来决定。

伺服电机与步进电机

伺服电机步进电机区别 伺服电机部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系

统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。 伺服电机和步进电机的性能比较

伺服电机与步进电机控制的区别详解

伺服电机与步进电机控制的区别详解 1,步进电机 原理 步进电机作为控制用的特种电机,是将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的步进角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的,改变绕组的通电顺序,电机就会反转。 驱动器原理 步进电机需要使用专用的步进电机驱动器驱动,驱动器由脉冲发生控制单元、功率驱动单元、保护单元等组成。功率驱动单元将脉冲发生控制单元生成的脉冲放大,与步进电机直接耦合,属于步进电机与微控制器的功率接口。 控制指令单元,接收脉冲与方向信号,对应的脉冲发生控制单元对应生成一组相应相数的脉冲,经过功率驱动单元后送到步进电机,步进电机在对应方向上转过一个步距角。驱动器的脉冲给定方式决定了步进电机运行方式,如下: (1)m相单m拍运行 (2)m相双m拍运行 (3)m相单、双m拍运行 (4)细分驱动,需要驱动器给出不同幅值的驱动信号 步进电机有一些重要的技术数据,如最大静转矩、起动频率、运行频率等。一般来说步距角越小,电机最大静转矩越大,则起动频率和运行频率越高,所以运行方式中强调了细分驱动技术,该方式提高了步进电机的转动力矩和分辨率,完全消除了电机的低频振荡。所以

细分驱动器驱动性能优与其他类型驱动器。 伺服电机内部的转子是永磁铁,驱动器控制的 进行比较,调整转子转动的角度。 2,伺服电机 伺服电机原理 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类。 伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了闭环,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位。 在性能上比较,交流伺服电机要优于直流伺服电机,交流伺服电机采用正弦波控制,转矩脉动小,容量可以比较大。直流伺服电机采用梯形波控制,相对差一些。直流伺服电机中无刷伺服电机比有刷伺服电机要性能要好。 伺服电机驱动器 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 有刷直流伺服电机驱动器:电动机的工作原理和普通的直流电机完全相同,驱动器为三 电流环的输入为速度环的输出,速度环的输入为位置环的PID输出,位置环的输入即是

伺服电机与步进电机

伺服电机与步进电机 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

伺服电机和步进电机的区别 一、伺服电机的资料 1、交流伺服电机的工作原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度,所以伺服电机的精度决定于编码器的精度(线数)。 2、什么是伺服电机有几种类型工作特点是什么 答:伺服电动机又称执行电动机,在自动控制系统中用作执行元件,原理是把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。3、问交流伺服电机和无刷直流伺服电机在功能上有什么区别答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。而直流伺服是梯形波,但直流伺服比较简单,便宜。 A、永磁交流伺服电动机的发展20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国着名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动,交流伺服驱动装置在传动领域的发展日新月异。 B、永磁交流伺服电动机同直流伺服电动机比较, 主要优点有: (1)电刷和换向器,因此工作可靠,对维护和保养要求低。 (2)定子绕组散热比较方便。 (3)惯量小,易于提高系统的快速性。 (4)适应于高速大力矩工作状态。 (5)同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品,整个伺服装置市场都转向了交流系统。 早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行。到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采

步进与伺服的区别

步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出 统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频 出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 交流伺服的应用领域 1、冶金、钢铁—连铸拉坯生产线、铜杆上引连铸机、喷印标记设备、冷连轧机,定长剪切、自动送料、转炉倾动。 2、电力、电缆—水轮机调速器、风力发电机变桨系统、拉丝机、对绞机、高速编织机、卷线机、喷印标记设备等。 3、石油、化工—挤压机、胶片传动带、大型空气压缩机、抽油机等。 4、化纤和纺织--纺纱机、精纺机、织机、梳棉机、横边机等。 5、汽车制造业—发动机零部件生产线、发动机组装生产线,整车装配线、车身焊接线、检测设备等。 6、机床制造业—车床、龙门刨、铣床、磨床、机械加工中心、

电动攻丝机采用的伺服电机和步进电机的区别

数控平面钻床电动攻丝机两种电机的区别 济南西马特生产的电动攻丝机步进电机和伺服电机性能比较,步进电机其实是一种做离散运动的装备,其与现代数字的控制技术有很多本质的关联。现在我国的控制系统中,应用比较广泛是步进电机。随着目前全数字式交流系统的发展,伺服电机更多地应用于数控制系统中。为了与数字控制的发展趋势相协调,运动控制系统中大多数采用的是步进电机和全数字式伺服电机作为主要执行电动机。两者在控制方式上虽然很相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式伺服电机为例,对于带标准2500线编码器的电机而言,由于

驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

伺服电机与步进电机的效率比较

伺服电机与步进电机的效率比较电机是现代工业中的重要组成部分,它们可以通过转换电能和电磁 能来产生动力。一般来说,电机被分为两类:伺服电机和步进电机。 这两种电机各自有自己的特点和应用场景,但它们在效率方面的比较 却是一个常见的话题。本文将对伺服电机和步进电机的效率进行比较 和分析。 一、伺服电机的效率 伺服电机是一种能够准确控制位置、速度和加速度的电机。其控制 电路将反馈信号与指令信号进行比较,并使用任何差异来控制电机。 伺服电机可使用各种类型的传感器来提高其控制性能,如光电编码器、霍尔传感器和电容传感器。这些传感器可以检测旋转量、角度、速度 和加速度,从而提供实时反馈。这种反馈机制使得伺服电机在各种应 用中都能够提供较高的精度和可靠性。 伺服电机的效率通常比步进电机高,其中一些原因是伺服电机的反 馈控制机制和其能够提供更高的加速度和速度。因此,伺服电机通常 用于较大载荷和高速运动的应用,例如印刷、数控机床、气动和液压 系统等。 二、步进电机的效率 步进电机是由电磁力驱动的电机,其转子在电磁场的作用下向前移动。步进电机是控制位置和速度的一种有效方式,它们可以通过逐步 地施加电压来引起旋转。步进电机可以被设计成单向旋转或可逆转,

也可以允许可编程的微步操作来提高其精度。与伺服电机不同的是, 步进电机通常不需要任何反馈机制。 步进电机的效率取决于其设计和控制方式。通常情况下,步进电机 的效率比伺服电机低,这是因为步进电机的控制方式通常使用开环控制,其控制性能不如伺服电机。另一方面,步进电机的成本相对较低,适用于一些低负载应用,如发光二极管(LED)和打印机。 三、效率比较 伺服电机和步进电机的效率虽然互不相同,但可以对其进行比较。 基本上,伺服电机比步进电机更高效,特别是在大负载和高速运动方面。而步进电机的效率较低,但成本较低,更适用于低负载和低速运 动的应用。 在实际应用中,需要根据需求、设计和成本等因素来选择适合的电机。如果您需要高精度和高速度,则伺服电机可能是更好的选择。如 果您需要节省成本,或者运动负载较小,则步进电机可能是更好的选择。 总体来说,伺服电机和步进电机在应用方面有很大的不同,但它们 在效率方面的比较可以帮助工程师在设计和选择电机时做出更明智的 决策。 结论 伺服电机和步进电机是两种常见的电机类型。伺服电机通常比步进 电机更精确、更高效,并在大负载和高速运动方面表现更出色。与之

伺服马达和步进马达的区别

伺服马达和步进马达的区别 1.步进马达,它是直流脉冲控制的,一般说来功率比较小,用于精度要求不高的开环自控系统中,它有一个缺点是容易失步! 步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。步进电机靠一种叫环形分配器的电子开关器件,通过功率放大器使励磁绕组按照顺序轮流接通直流电源。由于励磁绕组在空间中按一定的规律排列,轮流和直流电源接通后,就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高,转速就会增大。步进电机的旋转同时与相数、分配数、转子齿轮数有关。 现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。 步进电机和普通电机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。 步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。早期的步进电机输出转矩比较小,无法满足需要,在使用中和液压扭矩放大器一同组成液压脉冲马达。随着步进电动机技术的发展,步进电动机已经能够单独在系统上进行使用,成为了不可替代的执行元件。比如步进电动机用作数控铣床进给伺服机构的驱动电动机,在这个应用中,步进电动机可以同时完成两个工作,其一是传递转矩,其二是传递信息。步进电机也可以作为数控蜗杆砂轮磨边机同步系统的驱动电动机。除了在数控机床上的应用,步进电机也可以并用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。 步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。 不同点很多,伺服是多用在闭环的,而步进多用在开环系统中伺服马达可高速运行,而步进则没有伺服那样的高速:步进马达一般在1500转以下,伺服可达3000转以上;还有就是,步进马达不能高速启动 精度不一样。步进有步距角限制,也就是精度不如伺服 2.伺服马达分为交流和直流两大类,功率相对教大,精度高;两者主要的区别是看马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的.顺便提一下闭环控制又可分半闭环和全闭环两种,但是普遍使用的是半闭环装置,只有非常精密的设备才用全闭环装置,如8#楼所说的最后一个就是全闭环装置,

伺服电机和步进电机的区别

伺服电机和步进电机的区别 伺服电机和步进电机是常用的两种电机类型,它们在工业自动化和 机械控制领域有广泛的应用。虽然它们都是用于转动控制,但在工作 原理、性能特点以及适用场景上存在一些重要的区别。本文将详细介 绍伺服电机和步进电机的区别。 一、工作原理的区别 1. 伺服电机的工作原理 伺服电机是通过外部的控制信号来实现位置和速度的闭环控制。它 包括了电机、编码器、驱动器和控制器等部件。当控制信号传输到电 机驱动器时,驱动器会将电流传送到电机,以产生转矩。同时,编码 器会不断地向控制器反馈电机的实际位置信息。控制器利用编码器所 反馈的信息来计算误差,并产生相应的调整信号送回驱动器,从而实 现位置和速度的精确控制。 2. 步进电机的工作原理 步进电机是一种开环控制的电机,它通过向电机控制器输入脉冲信 号来驱动电机转动。电机驱动器会将脉冲信号转换为电流,产生转矩。步进电机的转角是离散的,每个脉冲信号使电机转动一个固定的步距,因此步进电机的运动是精确可控的。 二、性能特点的区别 1. 伺服电机的性能特点

伺服电机具有高精度、高速度和高转矩输出的特点。由于采用闭环 控制,伺服电机能够实现准确的位置和速度控制。此外,伺服电机具 有较低的转矩波动和较快的动态响应性能,适用于对运动精度要求较 高的场景。 2. 步进电机的性能特点 步进电机具有较低的成本和较简单的控制系统。由于采用开环控制,步进电机的控制系统相对简化,适用于一些对成本要求较低且控制精 度要求不高的场景。此外,步进电机具有较高的静态转矩和较大的抗 负载特性,适用于一些需要大转矩输出的场合。 三、适用场景的区别 1. 伺服电机的适用场景 伺服电机广泛应用于需要高精度、高速度和高转矩输出的场景,如 数控机床、印刷设备和纺织设备等。由于其闭环控制的特点,伺服电 机能够实现较高的定位精度和过载能力,适用于对运动控制要求严格 的应用领域。 2. 步进电机的适用场景 步进电机广泛应用于需要连续旋转、较低成本和简化控制系统的场景,如3D打印机、扫描仪和机器人等。步进电机由于其开环控制的特点,能够简化控制系统,降低成本。但在高速和高负载的情况下,步 进电机由于限制了最大转速和较小的转矩波动,使得其应用受到一定 限制。

步进马达和伺服马达的区别

步进马达和伺服马达的区别 步进马达由直流脉冲信号控制的,靠一种叫环形分配器的电子开关器件通过功率放大器使励磁绕组按照顺序轮流接通直流电源运转。由于励磁绕组在空间中按一定的规律排列,轮流与直流电源接通后就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高转速也会增大。步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移。一般说来功率比较小,用于精度要求不高的开环自控系统中,它有一个缺点是容易失步!伺服马达分为交流和直流两大类,功率相对较大,精度高;两者主要的区别是看马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的。 步进电机是一种将电子脉冲转化为角位移的执行机构。当步进驱动器收到一个脉冲信号时它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是已固定的角度一步一步运行的。可以通过控制脉冲频率来控制电机的速度和加速度。从而达到调速的目的,主要用于各种开环控制。 Servo motor的转子是永磁铁U/V/W三相电形成电磁场,转子在磁场的作用下转动,同时电机内部的encoder把角位移信号反馈给driver,driver根据反馈值与目标值进行比较,调整转子的转动角度。其主要特点是当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 步进电机的精度和性能都不如Servo motor,但价格便宜,所以在精度要求不高的场合下使用。 1.步进电机的控制原理

步进电机两个相邻磁极之间的夹角为60。。线圈绕过相对的两个磁极, 构成一相(A-A’,B-B’,C-C’)。磁极上有5个均匀分布的矩形小齿, 转子上没有绕组,而有40个小齿均匀分布在其圆周上,且相邻两个齿 之间的夹角为9。。 当某组绕组通电时,相应的两个磁极就分别形成N-S极,产生磁场,并 与转子形成磁路。如果这时定子的小齿与转子没有对齐,则在磁场的作 用下转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机 向前“走”一步 步进电机有如下优点: 1.不需要反馈,控制简单。 2.与微机的连接、速度控制(启动、停止和反转)及驱动电路的设计比较简单。 3.没有角累积误差。 4.停止时也可保持转距。 5.没有转向器等机械部分,不需要保养,故造价较低。 6.即使没有传感器,也能精确定位。 7.根椐给定的脉冲周期,能够以任意速度转动。 但是,这种电机也有自身的缺点。 8.难以获得较大的转矩 9、不宜用作高速转动 10.在体积重量方面没有优势,能源利用率低。

浅析伺服电机的原理、分类及与步进电机的区别

浅析伺服电机的原理、分类及与步进电机的 区别 什么是伺服电机? 伺服电动机也可以叫做执行电动机,是自动控制系统中的执行元件,其工作是把收到的电信号转换成电动机轴上的角速度输出或者角位移输出。 自从伺服电机推出以来,伺服电机已经在许多行业中证明了其相当有用。多年来,伺服电机一直参与完成大的任务。它们的尺寸可能很小,但是它们非常强大而且节能。有了这些特点,伺服电机广泛用于遥控玩具车,飞机,机器人和各种工业设备。近年来伺服电机也被用于工业应用,在线制造工厂,制药服务,机器人和食品服务行业。 伺服电机有几种分类? 有直流伺服电机和交流伺服电机两种分类,其主要特点是当信号电压为零时无自转现象;转速随着转矩的增加而匀速下降。 直流伺服电机是小型应用的理想选择,但不能处理大电流浪涌。然而,交流伺服电机能够应对更高的电流浪涌,并在工业机械中得到广泛的应用。谈到价格,直流电机比交流伺服更便宜,所以用得更多。此外,直流电机专门设计用于连续旋转,这使其成为机器人运动的理想选择。 伺服电机的工作原理 伺服电机的工作原理比较简单,但是其工作比较高效。伺服电路内置在电机单元内部,它使用一根通常配有齿轮的柔性轴。电信号控制电机,也决定轴的移动量。伺服电机内部设置简单:小型直流电机,控制电路和电位器。直流电机通过齿轮连接在控制轮上,当电机转动时,电位器的电阻发生变化,控制电路能够精确调节运动和方向。 当轴处于正确的(理想的)位置时,电机停止供电。如果轴没有停在目标的位置,电动机一直运转,直到进入正确的方向。目标的位置通过使用电脉冲的信号线传送。所以,电机的速度与实际和理想的位置成正比。当电机接近所需位置时,电机开始缓慢转动,但电机转到最远时,转速很快。换句话说,伺服电机只需要尽可能快地完成任务,这使得它们成为高效率的设备。

(word完整版)伺服电机,步进电机,同步电动机和异步电动机四者间的区别与联系

伺服电机,步进电机,同步电动机和异步电动机四者间的区别与联系 在运动控制领域,经常会接触到伺服电机,步进电机,同步电动机和异步电动机等名词,许多新手经常百思不得其解,他们之间的区别到底是怎么样的呢?研控工程部康经理就这些问题做了专门描述,下面我将其内容整理出来分享给大家。 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异.现就二者的使用性能作一比较。 一、控制精度不同两相混合式步进电机步距角一般为3.6°、 1。8°,五相混合式步进电机步距角一般为0。72 °、0。36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0。09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0。9°、0。72°、0。36°、0。18°、0.09°、0。072°、0。036°,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0。036°.对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9。89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半.这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利.当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力.以松下交流伺服系统为例,它具有速度过载和转矩过载能力.其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象. 五、运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 六、速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒.交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机.但在一些要求不高的场合也经常用步进电机来做执行电动机.所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。 为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相.

伺服电机和步进电机的区别(一)

伺服电机和步进电机的区别(一) 伺服电机和步进电机是目前工业中应用比较广泛的两种电动机,它们 在驱动精度、反应速度、能耗等方面有比较明显的差异。接下来将从 以下四个方面对它们进行比较。 1. 基本工作原理 伺服电机的基本工作原理是在控制器的作用下,将反馈的位置和速度 信号与预设的目标位置、速度进行比较后,通过调节电机的电流大小 和方向,实现精确的控制。而步进电机的工作原理是在控制器的驱动下,按照预设的步进角度以及方向进行转动,具有固定的步进角度, 能够比较稳定地输出转矩。 2. 驱动精度 伺服电机在驱动精度方面表现更为优异,可以实现更高的控制精度, 不仅可以达到较高的转速,还可以精确地控制位置、速度等参数。而 步进电机虽然在精准定位方面有一定的优势,但是在运动过程中容易 发生失步,导致驱动精度有时候不能够得到很好的保证。 3. 反应速度 伺服电机具有更快的反应速度,可以更快地响应控制信号进行控制, 应用范围更广,适用于速度要求较高的场合。而步进电机由于在控制 信号响应速度以及电磁转矩上存在一定的局限性,反应速度相对较慢,适用于速度要求较低的场合。 4. 能耗与实际应用

伺服电机在能耗上比步进电机高出不少,而且在实际应用中,伺服电机具有更广泛的适用性,更加稳定,控制也更为直观,可以应用在许多不同场所,比如机床、自动化设备、飞机、船舶等。而步进电机则主要应用于定位、打印等精细控制领域,其性价比表现更好。 总的来说,伺服电机和步进电机是应用比较广泛的两种电动机,在驱动精度、反应速度、能耗等方面有明显的差异,它们在不同的场合具有不同的应用价值。因此,在采用电动机的时候,需要根据实际应用的情况进行选择,以达到最好的驱动效果。

步进电机驱动器与伺服电机驱动器的区别【干货】

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。 步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步

步进电机和伺服电机的区别在哪

步进电机与伺服电机的区别如下: 一、控制的方式不同 步进电机是通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。伺服电机是通过控制脉冲时间的长短控制转动角度的。 二、所需的工作设备和工作流程不同 步进电机所需的供电电源(所需电压由驱动器参数给出),一个脉冲发生器(现在多半是用板块),一个步进电机,一个驱动器(驱动器设定步距角角度,如设定步距角为0.45°,这时,给一个脉冲,电机走0.45°); 其工作流程为步进电机工作一般需要两个脉冲:信号脉冲和方向脉冲。 伺服电机所需的供电电源是一个开关(继电器开关或继电器板卡),一个伺服电机;其工作流程就是一个电源连接开关,再连接伺服电机。 三、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。 当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。 交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 四、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作

转速一般在300~600r/min。 交流伺服电机为恒力矩输出,即在其额定转速(一般为2000 或3000 r/min)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 五、过载能力不同 步进电机一般不具有过载能力。 交流伺服电机具有较强的过载能力。以某交流伺服系统为例:它具有速度过载和转矩过载能力,其最大转矩为额转矩的3倍,可用于克服惯性负载在启动瞬间的惯性力矩。 (步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象) 六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400ms。交流伺服系统的加速性能较好,以某交流伺服电机为例,从静止加速到其额定转速3000 r/min。仅需几ms,可用于要求快速启停的控制场合。 极对数多,转速慢,控制角度的,动力线引脚多的都是步进电机,而且功率往往比较低。 而精度高,速度快,可应用于速度,位置,力矩多场合控制的,动力线都是UVW三线,通常都是伺服电机。而且通常极对数不超过5级,功率从几十瓦到几十千瓦都有。 步进电机与伺服电机对比总结: 1、步进电机的精度比伺服电机优越,因为它不会累积误差,而且通常只要做开回路控制即可,然而伺服电机在响应性方面却比步进电机更为优越。 2、步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,而伺服电机的运转却非常平稳,即使在低速时也不会出现振动现象。

伺服电机工作原理及和步进电机的区别

伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

相关文档
相关文档 最新文档