文档视界 最新最全的文档下载
当前位置:文档视界 › 离心压缩机干气密封及控制系统

离心压缩机干气密封及控制系统

离心式压缩机干气密封系统浅析

离心式压缩机干气密封系统浅析 1 干气密封简介 目前国内外石油化工行业普遍使用离心式压缩机来输送各种气体,主要是因为运转周期长、性能稳定。实际生产要求离心式压缩机在高转速、大气量、大压力,尤其是在压缩易燃、有害、有毒气体的条件下工作,为了防止这些气体沿压缩机轴端泄漏至大气中,就必须采用各种密封方式,保证压缩机的正常工作,保证人身和设备的安全,防止造成环境污染,同时也决定了密封装置向高密封效率、低能耗的方向发展。 在压缩机领域,轴端干气密封正逐步替代迷宫密封、浮环密封和油润滑机械密封[1]。对密封的基本要求是要保证结合部分的密闭性、工作可靠性、使用寿命长,密封装置的系统简单、结构紧凑、制造维修方便。衡量密封好坏的主要技术指标是泄漏量、寿命和使用条件[2]。 干气密封是一种新型的非接触轴向密封,由它来密封旋转机器中的气体或液体介质。与其它密封方式相比,干气密封具有泄漏量少,寿命长,能耗低,磨损小,维修量低,操作简单可靠,被密封的流体不受油污染等特点。 目前,干气密封主要应用在离心式压缩机上和轴流压缩机、透平膨胀机上。干气密封已经成为离心式压缩机正常运转和操作可靠的重要元件。 2 干气密封工作原理

图1 动环端面结构示意图 干气密封是由动环、静环、弹簧、密封圈、弹簧圈和轴套组成。动环和静环配合表面的平面度和光洁度很高,动环面上加工有一系列的螺旋形流体动压槽,槽深仅有几微米,外深内浅,如图1所示。干气密封在非运转状态时,动环与静环的密封面靠弹簧力贴合在一起。运转时,气体随着动环的旋转,被吸入动压槽内,被送到螺旋槽的根部,根部以外的一段无槽区称为密封坝,即动压槽末端没有通道。螺旋槽间为密封堰。密封坝和密封堰起到节流和密封的作用。

干气密封类型及介绍

干气密封 一干气密封选型: 干气密封具有很强的适应性。根据压缩机的工艺参数和介质成分,采用鼎名公司的 TMO2D型串联式干气密封。TMO2D型是串联式带中间迷宫进气的干气密封,适用于介质为易燃易爆的气体,不允许介质气体泄漏到大气中,同时也不允许其它气体进入机组内的气体工况。 二干气密封的原理: 典型的干气密封结构是由静环、动环组件、副密封O形圈、静密封、弹簧和弹簧座(腔体)等组成。静环的材质为碳,动环组件的材质为硬质合金,轴套、推环、弹簧座、锁紧套材质为不锈钢,O型圈为氟橡胶,定位环为PTFE。 密封的核心技术为与静环表面配合的动环级组件表面上加工的一系列的螺旋槽,螺旋槽可以分为以下几个区域:螺旋槽、反向螺旋槽、密封堰、和坝。如下: 干气密封运转时,动环的旋向为逆时针。气体被向内送到螺旋槽的根部,根部以外的无槽区称为密封堰。密封堰对气体的流动产生阻力,增加气体的膜压力。使动环和静环分开,产生一微小间隙,所以干气密封是非接触式密封。反向螺旋槽对气体进一步起到增压作用,增加了气体的膜厚度。 三密封设计方案 密封结构 河南开祥化工有限公司甲醇装置氨冷冻压缩机采用TMO2D型干气密封,密封方案结构简图如下: 密封工作原理简介: 1.一级密封进气(A路):采用压缩机出口介质气或新氢,大部分气体通过前置 迷宫进入机内,阻止机内的介质气扩散污染一级密封摩擦副的端面,少量气体经一级密封磨擦的端面泄漏至放火腔C。 2.二级密封气(B路):二级进气采用氮气。在部分气体通过中间迷宫进入放火 腔C,它阻止一级密封泄漏出的介质气体进入二级密封面并泄漏大气,少量气体经二级密封摩擦副的端面泄漏至放空腔C。 3.放火线(C路):火炬气的主要成分是一级密封泄漏的介质和在部分的二级氮气。 放火炬的目的是考虑工艺气排放的安全性和环保的要求。 高点放空(S路):从二级密封泄漏出的是没有任何危险氮气,随部分隔离气高点放空。

离心压缩机干气密封系统原理及泄漏原因分析

密封系统为串联式双端面干气密封,由连续放置的两组单端面干气密封组成。经过滤的纯净合成气作为主密封气进入一级密封腔,其压力比工艺气体压力高0.2-0.3MPa,起到阻隔作用,有少量密封气会进入缸内,但其为纯净的合成气,故不会产生污染。另一部分气体经过两级干气密封之间的梳齿密封分为两路,一部分作为一级泄漏(也称一次泄漏)直接排至火炬系统,另一部分进入二级密封腔充当二级密封气。然后再经梳齿密封由二级泄漏管道与隔离气一起排出引至火炬系统。隔离气(氮气)起着最后一道密封作用,其压力略高于二级密封气,确保二级密封气不会泄漏至大气侧。通过离心压缩机合成气泄漏事例,分析装备干气密封系统的离心压缩机发生气体泄漏情况,如干气密封的一级泄漏气和主密封气通过中分面泄漏至轴承箱。 1导言随着石油、化工行业的快速发展,低能耗、高效益、零污染、长周期的发展方向已成为石油化工行业的发展趋势。大型压缩机组是石化行业的关键设备,其密封性能的好坏决定装置能否平稳安全运行。干气密封以其低泄漏、经济实用性好、密封寿命长和运行可靠等特点脱颖而出。干气密封是一种新型的旋转轴用非接触密封,它是在气体润滑轴承的基础上,由接触型液膜机械密封改进而来。上世纪60年代末,约翰克兰公司研制出首套干气密封并应用于离心压缩机。随着密封行业以及流体动力学的快速发展,已经衍生出各种型式的干气密封。目前,干气密封已在石油、化工、冶金、航空等行业中广泛使用。因此在本文之中,主要是对离心压缩机干气密封系统原理

及泄漏原因进行了全面的分析研究,并且也是在这基础之上提出了下文中的一些内容,希望能够给予相同行业进行工作的人员提供出一定价值的参考。 2.干气密封工作原理干气密封是一种新型非接触式密封,其利用流体动力学原理,通过开设在密封端面上的动压槽来达到密封端面的非接触运行。由旋弹簧、旋转环、静环、密封圈以及弹簧座和轴套组成。旋转环密封面经过研磨、抛光处理,并在其上面加工出有特殊作用的流体动压槽。干气密封旋转环旋转时,将密封气体吸入动压槽内,沿着密封堰流动。在密封堰的节流作用下,气体被压缩,压力升高,将密封面推开,在两个密封面间形成一层很薄的气膜。气体动力学研究表明,当干气密封两端面的气膜厚度在2-3微米时,气体流动层最为稳定,因此,干气密封气膜厚度设计值选定在2-3微米。当气体静压力、弹簧力形成的闭合力与气膜反力相等时,气膜厚度保持恒定,干气密封稳定运转。当外部存在干扰,气膜厚度减小,而气膜反向力增大,此时开启力大于闭合力,在开启力的作用下,密封面间隙增加,随着密封间隙的增加,开启力相应减小,直至开启力与闭合力相等时,此时密封间隙恢复到正常值。若密封气膜受外部干扰而厚度增大,此时气膜反向力减小,闭合力大于开启力,在闭合力的作用下,密封间隙减小,随着密封间隙的减小,闭合力也相应减小,直至闭合力与开启力相等时,密封面恢复至正常值。因此,只要保证在安装时密封间隙处于设计范围内,当外部干扰消失以后,密封系统就会恢复稳定。

离心压缩机小知识

1. 离心式压缩机的效率比活塞式低且不适于气量太小及压力较高的场合,稳定工况较窄,经济性较差。 2. “级”就是一个叶轮和其相匹配的固定元件所构成的基本单元。 3. 首级由吸气室、叶轮、扩压器、弯道、回流器组成;末级由叶轮扩压器和蜗壳组成。 4. 段是以中间冷却器作为分段标志,气流从吸入被冷却。 5. 缸是将一个机壳称为一缸 6. 离心式压缩机的主要性能参数有排气压力、排气量、压缩比、转速、功率、效率。 7. 选择和合理使用压缩机的重要依据是主要性能参数。 8. 主轴按结构分三种:阶梯式节鞭式和光轴。 9. 开式叶轮是由轮毂和径向叶片组成。 10. 叶轮及轴上零件与主轴的配合一般采用过盈配合。 11. 轴向力最终由推力盘来承担。 12. 轴向力的危害是影响轴承的使用寿命,严重烧轴瓦,转子窜动时使转子上的零件和固定元件碰撞以致机器损坏。 13. 平衡轴向力的方式有叶轮对称排列、平衡盘装置、叶轮背面加筋。 14. 轴套的作用防止叶轮轴向窜动、还起密封作用。 15. 扩压器分三种无叶片扩压器、有叶片扩压器和直臂扩压器。 16. 无叶片扩压器的气体从叶轮中通过环形流道流出达到减速增压的目的。 17. 弯道和回流器的作用是把扩压器后的气体引导到下一级延续压缩。 18. 离心式压缩机轴承分径向轴承和止推轴承两大类。 19. 滑动轴承的按工作原理分静压轴承和动压轴承两类。 20. 动压轴承是由依靠轴颈本身的旋转把有带入轴颈和轴瓦间形成楔状油楔,油楔受到负荷挤压而产生油压,使轴和轴瓦分开形成油膜。 21. 动压轴承按结构形成分为圆瓦轴承、可倾瓦轴承和椭圆瓦轴承。 22. 可倾瓦轴承在任何情况下都有利于形成最佳油膜,不易产生油膜震荡。 23. 止推轴承分米楔尔轴承、金丝伯雷轴承。 24. 止推瓦块之间受力不均匀的轴承是米楔尔轴承。 25. 金丝伯雷轴承活动部分由扇形止推块、上摇块、下摇块三层叠加而成。 26. 止推块和上摇块为球面接触。 27. 金丝伯雷轴承承载力能力大允许推力盘有较大的线速度,磨损慢,使用寿命长,更适宜用于高速重载离心式压缩机。 28. 金丝伯雷轴承的缺点轴向尺寸较大,制造工艺复杂。 29. 金丝伯雷轴承又称浮动叠层式轴承。金丝伯雷轴承广泛应用于高速高压的离心式压缩机。 30. 米楔尔轴承由止推瓦块、基环和副推力瓦块组成。 31. 在推力盘的两侧分主推力瓦和副推力瓦,正常运动时,轴的轴向力是由主推力瓦来承受,然后,才是通过基环传动给轴承座。 32. 副推力瓦块是在启动或停机时可能出现的反向轴向力时起作用。 33. 米楔尔轴承的止推盘的轴向位置是止推轴承来保证的,即由止推盘和止推轴承的间隙位置来确定的。 34. 推力盘和瓦块间的间隙称为推力间隙和轴子的工作窜量。 35. 离心式压缩机密封分内部密封和外部密封,内部密封如轮盖、定距套、平衡盘上的密封一般为迷宫式密封;外部密封有毒有害易燃易爆气体,采用液体密封、机械密封、干气密封,对于无毒无危险的介质可采用迷宫式密封。

离心式压缩机工作原理及结构图介绍

离心式压缩机工作原理及结构图 2016-04-21 zyfznb转自老姚书馆馆 修改分享到微信 一、工作原理 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。二、基本结构 离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。

1、叶轮 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。 2、主轴 主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。 3、平衡盘 在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,

离心压缩机密封技术的探讨

由于对密封理论及实用技术掌握得不好,在密封的选型及对实际问题的处理当中,经常会出现一些问题,最终导致密封失效,介质泄漏, 装置停车停产, 企业效益严重受损。为此本文针对离心压缩机的密封技术进行了探讨。 目前国内外石化行业普遍用离心压缩机来输送各种气体。为了防止或限制这些气体沿压缩机旋转轴端部泄漏到大气中去, 就必须采用各种轴端密封装置, 以便维持主机的正常运转, 降低物料和能源的消耗, 防止环境污染和保证人身及设备安全。离心压缩机所采用的密封通常有四种形式, 即迷宫密封、浮环密封、机械密封和干气密封。 1 迷宫密封 迷宫密封是依靠节流间隙中的节流过程( 压力能转化为动能) 和密封空腔中的动能耗散过程( 动能转化为热能) 实现密封。迷宫密封结构简单、安装操作方便, 辅助设备少, 一般允许压缩机内的介质微量漏到大气中去, 而且只适用于低压介质密封。 首先, 以空气为介质的压缩机绝大多数采用通过节流来降低泄漏的迷宫式( 梳齿式)密封, 这是因为空气既无任何危险又非常廉价, 其泄漏量的大小只是影响主机的效率即能源的消耗。因此, 对迷宫密封的主要研究方向是如何加强节流功能以降低泄漏量。利用强化节流效应来降低气体泄漏量的蜂窝密封或刷式密封, 也可以看作改进型的迷宫密封。其次, 压缩氮气、二氧化碳等“中性”气体的压缩机也可以采用迷宫密封, 但由于其价值远较空气为高, 故在某些大型化肥厂采用气膜螺旋槽密封,其目的是降低物料和能源的消耗。 石化行业危险性工艺气体压缩机使用的第一代轴端密封是迷宫式密封。但是由于这类密封运行维护费用高, 污染环境等原因, 在80 年代基本都被浮环密封代替。 2 浮环密封

干气密封基本原理及投用步骤Word版

1、干气密封基本原理 干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。 2、干气密封投用步骤 注意事项:a、严禁在不投用干气密封的情况下,打开压缩机的出入口阀。 b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。 c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。 d、必须确保排放火炬和放空的背压小于进入干气密封的密封气 压力。 e、在开机后应尽量避免在干气密封在低于3000转以下长时间 运行。 f、严禁在增压泵活塞杆漏气大于50KPa的情况下启动增压泵。 步骤:干气密封系统安装后,在一级,二级,后置隔离气入口法兰端口处接上洁净的仪表风或低压氮气连续吹扫4~6小时以上,直到用细纱漂白布贴近六个出口吹扫5分钟以上,用眼仔细观察确无灰尘、油污、水分等杂质为合格。吹扫干净后关闭所有阀门,处于待命状态。 打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。 打开低压N气去干气密封系统阀门,充分脱液后进行氮气置换,时间为

四小时,并通过一级密封气和平衡管差压控制阀 调节一级密封高低压端流量不低于117Nm3/h(柴油不低于250Nm3/h) 二级密封高低压端流量不低于2.9Nm3/h(柴油不低于6.5Nm3/h)排放火炬流量7-11Nm3/h,(柴油5-8Nm3/h),并通过自力调节阀使阀后压力不低于0.185MPa(柴油0.1 MPa) 后置隔离气高低压端,流量不低于42.81 Nm3/h,(柴油15 Nm3/h),并通过自力调节阀使阀后压力不低于0.068MPa(柴油不低于0.01 MPa)。待一级密封气高低压流量表为0时,打开压缩机底部排液阀进行置换并气密。在此换过程中

干气密封系统介绍

干气密封系统: (1)简介 干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封,主要应用于天然气管线、炼油、石油化工、化工等行业的透平压缩机、透平膨胀机等旋转机械。干气密封最早是由螺旋槽气体轴承转化而来的,和其他机械密封相比,其主要区别是在旋转环或静止环端面上(或者同时在这两个端面上)刻有浅槽,当密封运转时,在密封端面形成气膜,使之脱离接触,因而端面几乎无磨损。其可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气也不污染润滑油系统。 (2)工艺流程及说明 (a)氮气流程 氮气从氮气罐引出经粗滤器与精滤器,过滤精度达到1u后分为四路。 两路前置密封气(缓冲气):一路经孔板进入高压端密封腔,另一路经孔板进入低压端密封腔。进入前置密封腔体内氮气主要是防止机体内介质气污染密封端面,用孔板控制氮气消耗量。两路主密封气:一路经流量计进入高压端主密封腔,另一路经流量计进入低压端主密封腔。压缩机运转时,依靠刻在动环上螺旋槽的泵送作用,打开密封端面并起润滑、冷却作用。一套主密封氮气正常消耗量≤1NM3/h。 (b)仪表风流程 仪表风从装置仪表风管网引出经过滤器,过滤到3u精度后,至干气密封柜,作为隔离气。两路后置密封气(隔离气):一路经孔板进入低压端后置密封腔,另一路经孔板进入高压端后置密封腔。进入后置密封腔体内仪表风主要是防止润滑油污染密封端面,用孔板控制仪表风消耗量。 (3)报警联锁说明 主密封气与前置缓冲气压差正常值:≥0.3Mpa;低报:0.1Mpa;低低报:0.05Mpa。 (4)操作规程 干气密封投用: (a)运行前要对管路进行彻底吹扫,防止管内焊渣等杂质进入、密封腔,清洁度lu,并将所有阀门关闭,处于待命状态。 (b)在机组油运前至少十分钟,必须先通后置隔离气,且在机组运行中不可中断,在机组进气前,投用缓冲气,当机组进气后,前置密封气压力应比平衡管处压力高0.05 Mpa。 (c)开机前必须投用主密封气。 干气密封停用: (a)压缩机停车后需降低润滑油总管压力防止润滑油进入密封腔,造成密封损坏。 (b)压缩机正常停车后,缓冲气及主密封气不能立即停用,须等机体内无压力后,且介质气置换完全后,才可停用。 (c)压缩机正常停车后,后置密封隔离气必须在润滑油循环停止十分钟后,才可关闭。 精密流量计投用: 投用顺序:流量计副线阀开—流量计下游阀开一流量计上游阀开一流量计副线阀关(5)日常操作要求 过滤器差压是测量粗过滤器与精过滤器是否堵塞,差压为60Kpa报警,此时需更换过滤器芯;更换前应先打开另一路过滤器前后的阀门,再关闭己堵过滤器前后的阀门,放空后既可更换。 (6)干气密封事故处理 停氮气:则干气密封停机联锁动作,按紧急停气压机组处理。

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理 一、干气密封概述 早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。 干气密封图 二、干气密封与机械密封性能比较

机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。其缺点是泄漏率高,故障频发。 干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势: 1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。 2)采用干气密封技术,能源消耗较小。 3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。 4)采用干气密封技术,泄漏量较少,应用效果良好。 三、干气密封工作原理 一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。 这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。 闭合力Fc,即弹簧力与气体压力之间的总和。其中,开启力Fo通过端面之间分布的压力,对端面的面积形成积分。在平衡状态下,Fc=Fo;其中运行的间隙约3微米。如果由于受到干扰作用,造成密封的间隙逐渐降低,此时端面之间的压力就会有所升高,此时Fc>Fo,端面之间的间隙也会有所降低,则密封就会达到一种全新平衡状态。通过该机制的运行,可在动环组件与静环组件之间形成较

干气密封的工作原理和特点

干气密封的工作原理和特点 干气密封是一种新型的非接触式轴封。干气密封在结构上与普通的机械密封基本相同,重要的区别在于干气密封其中的一个密封环上面加工有均匀分布的流体动压槽。运转时进入槽中的气体受到压缩,在密封环之间形成局部的高压区,使密封面开启,从而能在非接触状态下实现密封。 干气密封与普通的机械密封相比主要有以下的优点: (1)省去了普通密封油系统以及用于驱动密封油系统运转的附加功率负荷。 (2)大大减小了计划外维修费用和生产停车。 (3)避免了工艺气体被油污染的可能性。 (4)密封气体泄漏量小。 (5)维护费用低,经济实用性好。 (6)密封驱动功率消耗小。 (7)密封寿命长,运行可靠。 该压缩机采用的是GCTL01/L99型带中间迷宫的串联式干气密封,是干气密封中安全性、可靠性最高的一种结构。这种结构可保证工艺介质不会泄漏至大气环境中,同时可以保证干气密封引入的外部气源氮气不会漏入工艺介质中。 串联式干气密封相当于前后串联布置的两组单端面干气密封。第一级干气密封为主密封,基本上承受全部压差;第二级干气密封为辅助安全密封,正常运行时在很低的压力下工作,当第一级密封失效时,第二级密封可以迅速承受较大的压差,起到密封作用,同时可防止一级密封失效时工艺气体大量向大气环境中泄漏,保证机组安全停车。大气端的隔离密封可避免轴承箱中的润滑油汽进入干气密封区域,保证干气密封在洁净、干燥的环境中运行。 为了保证干气密封运行的可靠性,每套密封系统都配有与之相匹配的监测、控制系统,其作用是一方面为干气密封提供干净、干燥的气源。另一方面对干气密封的运行状况进行实时监测,使密封工作在最佳状态,当密封失效时系统能及时报警。监控系统对密封是否正常运行的监测主要是通过对泄漏气体的流量及相关压力的监测来进行的。

离心式空气压缩机运行故障分析及处理(2021新版)

离心式空气压缩机运行故障分析及处理(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0832

离心式空气压缩机运行故障分析及处理 (2021新版) 国内工业生产已经步入机械自动化时代,机械控制系统是企业内部生产调度的主要平台,满足了各类机械设备传动作业的控制需求。离心式空气压缩机是现代工业常见的一种设备,利用动能转换原理提升了设备内部的气体压力,维持着内外装置的稳定性运转。受到多方面因素的干扰,离心式空气压缩机故障率持续上升,对机械控制系统运行造成了诸多不便。本文分析了离心式空气压缩机工作原理,对其常见运行故障分析及处理方法进行总结,为机械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动机运转产生的机械能变为气体压力能,帮助机械设备内部系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构

布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理 从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1.原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离心力,由于气体在叶轮里的扩压流动,从而使气体通过叶轮后的流速和压力得到提高,连续地生产出压缩空气。依据这一原理,离心式压缩机在机械传动系统中可提供足够的空气压力,促进机械部件之间的有效联动,对外部链接装置运行提供可靠的动力。 1.2.特点。对于早期使用的压缩机,离心式压缩机不仅部件结

压缩机干气密封基本原理及使用分析_图文.

2000年1月5日收到大连市116000 压缩机干气密封基本原理及使用分析 B a s ic P rinc ip le A nd Us e A na lys is Fo r D ry G a s S e a l O f C om p re s s o r L i G uiq in e t a l 李桂芹王玉华 大连博格曼有限公司沈阳鼓风机股份有限公司 【摘要】针对德国博格曼公司的干气密封产品进行了 研究,结合压缩机的工作特点,重点论述了压缩机干气密封的原理,结构特点,密封材料,使用要求和制造等方面的内容。 关键词:透平式压缩机干气密封结构应用 Abstract :R esearch is carried ou t again st the p roduct of dry gas seal of Germ an B u rgm ann Com p any ,com b in ing the op erating p erfo rm ance of com p resso r ,con ten ts of p rinci p le of com p resso r dry gas seal ,structu ral featu re ,seal m aterial ,service requ irm en t and m anufactu re etc .are m ain ly discu ssed . Key words :Turboco m pressor D ry ga s sea l Structure Appl ica tion 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。

压缩机控制系统概述

第一章压缩机控制系统概述 利川压气站现设有三台GE PCL503 离心式压缩机组,1号压缩机组(UNIT A)、2号压缩机组(UNIT B)、3号压缩机组(UNIT C),每台压缩机均配有一套UCP (压缩机组控制盘),另外在站控室有两台带监视器、键盘、打印机的个人计算机系统(HMI),为三套压缩机组控制盘(UCP)公用。每套压缩机组控制盘(UCP)构成的主要部件如下: 1、带监视器、键盘、打印机的个人计算机系统(HMI); 2、Bently监视系统; 3、GE-FANUC控制PLC; 4、GE-FANUC ESD(安全)PLC; 5、Ethernet(以太网)交换机;等。 1、控制PLC系统配置图:

控制PLC的构成部件: 1# 机架主机架A 电源模块 IC697PWR724(24VDC 90w) CPU模块 IC697CGR935 母线控制器 IC697BEM731 以太网接口模块 IC697CMM742 串行接口模块 IC697CMM711 2# 机架主机架B 电源模块 IC697PWR724 CPU模块 IC697CGR935 母线控制器 IC697BEM731 以太网接口模块 IC697CMM742 串行接口模块 IC697CMM711 3# 机架 I/O机架电源模块 IC200PWR002 母线接口模块 IC200GBI001 数字量输入模块 IC200MDL650 数字量输入模块 IC200MDL650 数字量输入模块 IC200MDL650 数字量输出模块 IC200MDL742 数字量输出模块 IC200MDL742 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 4#机架 I/O机架电源模块 IC200PWR002 母线接口模块 IC200GBI001 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG240 模拟量输入模块 IC200ALG620 模拟量输入模块 IC200ALG620 5#机架 I/O机架电源模块 IC200PWR002 母线接口模块 IC200GBI001 模拟量输出模块 IC200ALG320 模拟量输出模块 IC200ALG320 模拟量输出模块 IC200ALG320 模拟量输出模块 IC200ALG320 模拟量输入模块 IC200ALG620 模拟量输入模块 IC200ALG620 模拟量输入模块 IC200ALG620

干气密封基本原理及使用分析

压缩机干气密封基本原理及使用分析 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密封的具体结构。 图1压缩机干气密封示意图 干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。端面材料可采用碳化硅、氮化硅、硬质合金或石墨。 干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气

体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。 气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。 动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。 干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。 密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的闭合。 选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。对于压缩机的某些操作点,如启动和停车时,一套串联密封在低速或无压操作的情况下,旋转的动压槽必须在密封面之间产生一个合适的压力。此力靠特殊措施——三维的、弧形的槽来获得。 压缩机干气密封设计和使用为两种槽型:双向的(U形)和单向的(V形)槽型。两种槽型的特性见表1。 表1 V形槽和U形槽的特性 *注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分离层是必要的。 三、密封材料分析 1.端面材料 干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力极限由所用的辅助密封橡胶和端面材料决定。使用的端面材料对干气密封的工作起着决定

压缩机控制系统

近十几年来,DCS 以其强大的控制功能、集中的操作显示功能及高可靠性等, 在现场应用越来越多。然而,对一些较小的控制系统,投入一套DCS ,从经济上考虑不怎么划算;但使用一些常规仪表,又具有操作显示不方便等诸多缺陷。因此,一些厂家从各方面考虑着手,生产了具有很强控制功能的智能化仪表。 APACS353 是美国Moore Products 公司近两年推出的,具有DCS 和PLC 的许多优点,可称得上是一种专用小型控制系统。本文就APACS353 在湖北一碱厂压缩机控制系统中的应用,对该智能控制器作一介绍。 1、MACS353 智能控制器 APACS353 是一种独立的、以微处理器为基础的过程自动化控制器。其应用范围特别广泛,既可用于小批量处理过程或连续过程,亦可用于离散控制过 程。 它具有如下特点: ①采用模板化结构,用户可根据自己的实际需要来灵活配置。其核心是一 块功能强大的微处理器MPU 板,该板应用了最新的微处理器技术,可以实现 单回路、串级及一些复杂的控制策略,且带有自己的I/O;若I/O 不够,可以增加一个I/O 扩展板,接收热电偶、热电阻、频率等信号。为了集成全厂控制管 理网络系统,可以配置局部仪表链接LIL 网络板、现场总线Lon Works 板; ②可以支持25 个控制回路,以解决复杂的控制问题。另外,每个回路的PID 参数可以进行自整定; ③可以组成开放式系统。MPU 板自带的MODBUS 通信提供主/从式网络,

使353 容易地与其它系统集成在一起;LIL 通信可用来代替MODBUS ,提供对等的高速网络; ④支持最新的现场总线技术。Lon Works 现场总线可以在其中得到应用; ⑤该控制器既可用前端面板来组态和监控操作,也可先在上位机组态好后 下载到353 中。其组态语言既可用功能块语言,也可用梯形逻辑图语言,灵活 方便,易于组成各种控制方案以满足控制对象的实际要求。此外,在该控制器中,还保存有一些通用的工厂组态方案库,用户可根据自己的需要调出相应的库,稍作修改后变为己用,这样可以简化组态。 2、压缩机控制系统 压缩机是一种将气体压缩从而提高气体压力或输送气体的机器,按能量转 换方式可分为动力型和容积型两类。离心压缩机属动力型,其工作原理是根据 动能转换为势能的原理,将流体加速到高速,然后降低速度,通过改变它的流向,把它所具有的动能转换为势能,从而提高压力。 压缩机的调节或控制有两个目的,一个是改变压缩机的性能以适应管网系 统特性的变化,保证压缩机的操作符合工艺要求;另一个是保证压缩机的安全 运行,防止压缩机发生喘振和在严重情况下毁坏机器。 2.1 1 适应管网特性变化 压缩机是与管网系统联合工作的,管网系统指与压缩机联合在一起运行的各种 装置、设备、容器、阀和管道,压缩机和管网的特性曲线如图 1 所示。

串联式干气密封使用说明书

串联式干气密封使用说明 1.干气密封结构说明 该干气密封为串联式结构,第一级为平衡型机械密封,第二级为干气密封,密封介质为干净氮气,氮气压力为0.5MPa左右。由于干气密封端面上加工有螺旋型动压槽,只允许单向旋转,因此,该密封的旋转方向必须与干气密封装配图上标注的旋向一致。 正常情况下,机械密封作为主密封起作用,干气密封为辅助密封。干气密封主要有以下作用: a)提高主密封的背压,防止端面汽化、减小密封面的磨损,极大地延长了主密封的使用寿命; b)当主密封失效时,干气密封可以起到备用密封的作用,防止意外事故的发生; c)主密封泄漏出的气体随氮气排入火炬,防止危险气体直接进入大气,消除了安全隐患同时 起到环保的作用。 2.干气密封泄漏标准 转速(r/min)氮气压力(MPa)干气密封泄漏量(m3/h) 00.5≤0.05 95000.5≤0.15 3.干气密封的运输、存放及安装 3.1包装及运输 密封到货后检查注意事项: a)检查外包装是否有明显损坏痕迹。 b)打开包装,不要损坏或丢失单独提供的部件。 c)按照装箱单进行清点,如果发现部件损坏或丢失,请与公司联系。 3.2干气密封存放 3.2.1应避免直接暴露在强烈的阳光下以及加热的环境中。 3.2.2应避免置放于臭氧或紫外线下。 3.2.3应避免置放于容易使弹性橡胶圈老化的场合。 3.2.4应避免置于潮湿或者灰尘严重的环境下。 以下几种情况,必须对干气密封进行检查: a)密封存放时间超过3年。 b)密封包装发生破损。 c)干气密封受到外力的碰撞。 3.3密封安装前的准备工作:检查泵体安装密封相关部位: 3.3.1轴肩倒角(倒角30°x2mm) 3.3.2轴的轴向串量及径向跳动。 3.3.3相配合的密封腔表面情况。 3.3.4安装干气密封处轴的表面情况。

离心压缩机干气密封故障原因分析与处理潘冬明

离心压缩机干气密封故障原因分析与处理潘冬明 发表时间:2019-07-18T09:06:26.730Z 来源:《科技尚品》2019年第3期作者:潘冬明郭景涛[导读] 大型机压缩机停车过程出现倒转,造成动环密封槽为螺旋槽形式的干气密封出现损坏,将干气密封动环密封槽改型后,彻底解决了因停车时压缩机倒转造成干气密封损坏的问题,保证机组长周期稳定运行,减少机组干气密封故障检修次数,为装置带来巨大经济效益。 易高清洁能源管理服务(西安)有限公司引言 随着石油、化工行业的快速发展,低能耗、高效益、零污染、长周期的发展方向已成为石油化工行业的发展趋势。大型压缩机组是石化行业的关键设备,其密封性能的好坏决定装置能否平稳安全运行。干气密封以其低泄漏、经济实用性好、密封寿命长和运行可靠等特点脱颖而出。干气密封是一种新型的旋转轴用非接触密封,它是在气体润滑轴承的基础上,由接触型液膜机械密封改进而来。上世纪60年代末,约翰克兰公司研制出首套干气密封并应用于离心压缩机。随着密封行业以及流体动力学的快速发展,已经衍生出各种型式的干气密封。目前,干气密封已在石油、化工、冶金、航空等行业中广泛使用。 1概述 1.1离心式压缩机工作原理 离心式压缩机的主要作用是压缩气体,以此达到人们在工作中的某种需求的目的。工作中,离心压缩机通过其叶轮进行高速旋转,而且叶轮在旋转中会带动通管中的空气进行高速旋转,这样能够不断加速通道内部的空气旋转,通过气理性作用形成一种扩压器。通常,离心式压缩机的工作原理是通过其叶轮转动,再产生空气的推动力。在空气的作用下,将叶轮及扩压器产生的空气在流通通道内进行压缩,并且合理运用离心原则及降速原理等等,把离心机产生的机械性能转换为空气的压力功能。此外,空气在扩压器的作用下日益压缩的过程中,会使得空气的流通速度迅速上升,从而造成通道底部空气加速度减少,而空气也会降低速度,后方的空气仍旧是不断前进和挤压的,这样就会让空气的动量势能转化为静态压能,最终达到压缩空气的目标。本文通过研究离心压缩机的轴系整体结构,如图1所示,维修检测人员在日后的实践工作中应该增强对压缩机组整体结构的检测与维修,保证压缩机设备的正常运行。 图1压缩机组的轴系整体结构图 1.2干气密封工作原理 典型的干气密封结果主要是由五个部分组成,分别是密封圈、旋转环、弹簧、弹簧座以及静环。旋转环密封面受到研磨抛光处理后,在其上面加工出具有特殊功能的流体动压槽。干气密封摩擦面的槽型中具有代表性的T型槽、单向螺旋等等,在实际使用中单向旋转槽型可以保证流体通畅运行。气膜具有较强的刚度,在强压下可以保持其最初的形态。处于这种情况下。其载荷轴承能力就可以在以往的基础上把瞬态工况,或者变动工况期间的长动态表明基础的风险减少到最校一般来说,完善该性能的重点是螺旋槽的内泵动效应。在整个干气密封过程中,瞬态工况对离心式压缩机而言具有重要的意义,并且这项技术也是干气密封的关键。 2故障分析 2.1低压侧主密封气流量表故障 主密封气流量监测表一个为就地表,一个为远程控制表。发生故障时,两块表的流量趋势基本相同,两块表同时发生故障的概率很校当时流量达到满量程5Nm3/h后,我们将流量计更换为大量程的流量计,监测泄漏量为11Nm3/h,所以基本排除流量表故障的原因。 2.2密封气源压力波动 密封气源采用氮气,经过滤器过滤后,由自力式调节阀调节压力分为两路,一路作为前置密封气,一路作为主密封气。前置密封气经迷宫密封随介质气一起进入压缩机内部。主密封气进入主密封腔内,一级密封腔内的大部分密封气随前置密封器一起经迷宫密封进入压缩机内部,二级密封腔内的密封气经室外放空排放至大气。若密封气源压力发生波动,则前置密封气与主密封气的压力与流量都会相应波动,实际情况是前置密封气流量保持正常值20Nm3/h,压力保持正常值200kPa。所以排除密封气源压力波动引起的主密封气压力波动。 2.3密封气源带液 如果密封气源带液,干气密封动静环之间的气膜厚度会发生变化,进而引起主密封气压力与流量变化。故障发生后,打开密封气源排液导淋,并未发现有液体排出,过滤器处排液也并无液体,所以排除密封气源引起的故障。 2.4压缩机轴振动及位移增大 低压端干气密封动环安装在转子轴上,静环固定在压缩机壳体上,当转子轴振动及位移发生变化时,干气密封动环跟着转子轴同步变化,而静环在补偿弹簧作用下调整动环与静环之间间隙,当转子轴位移及振动变化过大,静环补偿弹簧调整不及时或无法补偿时,此时动静环间隙变大,进而引起主密封气泄漏量增大,从压缩机控制系统可以看出,正常运行时,压缩机轴低压端轴振动在7.8um左右,报警值为63.5um,轴位移在-0.297mm左右,报警值为±0.5。干气密封发生故障时,轴振动与位移基本无变化,所以排除压缩机轴振动与位移的变化引起干气密封泄漏。 2.5干气密封材质与安装质量问题 大修期间更换压缩机高低压端干气密封。回装前,去制作厂家仔细核对干气密封材质,确保所用材质无质量问题。干气密封安装时周向位置对准键槽,轴向位置、锁紧螺母位置以及剪切环位置,每一步都经认真检查,确认安装数据,防止干气密封安装不到位,动环与静环之间相对位置发生变化,影响静环轴向补偿能力而引起干气密封主密封气流量与压力变化。 3故障处理 故障发生后,判断为一级密封端面被污染,动静环间隙变大,造成主密封气泄漏量变大。通过逐步排除后发现,故障前期富气杂质含量较多,初步判断为富气通过前置密封气迷宫密封泄漏至一级密封腔内,富气杂质污染一级密封端面,造成间隙变大,泄漏量变大。处理措施如下:增大前置密封气压力,确保前置密封气压力大于介质气经迷宫密封减压后的压力,使前置密封气进入介质侧,冲洗迷宫密封处的杂质,防止其进入一级密封端面。同时相应地增大主密封气的压力,并注意主密封气与前置密封气的差压大于150kPa,防止差压联锁。通过主密封气将一级密封端面杂质冲洗干净,利用动环轴向自动补偿,进而将一级密封端面间隙恢复至正常值。通过处理措施5个小时后,主密封气流量恢复至正常值。

相关文档