文档视界 最新最全的文档下载
当前位置:文档视界 › 雷达回波信号模拟器

雷达回波信号模拟器

雷达回波信号模拟器
雷达回波信号模拟器

雷达信号模拟器方案设计报告

1总体技术方案 1.1总体设计概述 雷达信号环境模拟器能够产生各种类型的雷达辐射信号,为XX电子侦察设备的鉴定试验,产生所要求的各种类型的雷达辐射信号,构建既定的复杂雷达信号的电磁环境,以便准确评估雷达侦察设备的技术战术指标和效能。 雷达信号环境模拟器在系统中的地位和作用如下图所示: 图4.1-1 设备在系统中的地位和作用 测评系统主要由被试的雷达侦察设备、雷达信号环境模拟器(5个频段构成)、评测系统软件等设备组成。 1.2总体设计方案 雷达信号环境模拟器的总体组成框图如下图所示:

辐射源数据库用于存储各种雷达和平台的参数(包括真实雷达和虚拟雷达),通过主控计算机进行读取,辐射源数据可以进行添加、修改和删除等操作。 主控计算机是人机交互的平台,主要完成试验场景描述、试验过程的管理和试验工作状态和参数记录等。试验场景描述首先进行需要模拟的雷达的数量、位置的设定,然后从雷达辐射源库中选取雷达参数,对每部雷达的类型、天线扫描方式、扫描周期、扫描速度、雷达信号的射频频率、脉冲宽度、脉冲重复周期PRI 变化类型等进行配置。主控计算机根据设置的每部雷达的参数,将需要模拟的雷达动态分配给1~5个雷达信号模拟器中的一个,再利用通信接口将相应的雷达参数发送到对应频段的雷达信号模拟器。 各频段的雷达信号模拟器内置的控制DSP ,根据主控计算机传送的雷达信号数量和雷达信号参数数据,按照每部雷达各自的脉冲时序,生成对应的时序控制信号,分配给每个雷达中频信号产生器,产生所需要的雷达中频信号波形数据和中频信号。控制DSP 根据雷达工作频段,控制信号各波段射频模块进行变频和放大,通过天线辐射出去。 各频段的雷达信号模拟器配置有位置和授时接口,用于接收载车提供的GPS/北斗位置和授时信息。在试验过程中记录各频段雷达信号模拟器的当前位置信息,并且以授时时间作为时间基准,按照场景设定的时间要求模拟产生雷达

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

一种新型雷达信号模拟器设计

一种新型雷达信号模拟器设计 刘亲社1,王国红2,王星1 (1 空军工程大学工程学院,陕西西安 710038;2 空军工程大学理学院,陕西西安 710038)摘 要:设计了一种新型雷达信号模拟器,能够提供多种特殊雷达信号,并且设置灵活方便,当用户需要时,可进行软件升级。介绍了该雷达信号模拟器的功能、特点、性能指标和研制方案,提供一种雷达信号产生的解决方法。 关 键 词:新体制雷达;信号模拟器;脉冲产生器;射频信号 中图分类号:TN955文献标识码:A文章编号:1000-274X(2006)0189-07 随着新体制雷达相继问世,现代雷达大都采用了以捷变频和相干信号处理等为代表的新技术,反干扰措施越来越完善,对这些体制的雷达实施干扰越来越困难。信号环境日益复杂,电子对抗技术的发展和新电子对抗设备的研制迫切需要一种能提供多种特殊雷达信号的设备,以适应这种发展变化。我们设计研制的新体制雷达信号模拟器就是一种半实物物理仿真设备,一部分设备使用实际设备而其他部分采用计算机模拟和处理,例如雷达信号环境和信号处理等均可使用软件模拟。这种方法具有很强的通用性,不仅适用于现有的装备,也可以模拟采用某种新技术的装备,对于现有装备的改进和新装备的研制都具有实用价值,是一种相对经济、实用的方法[1,2]。 1 新型雷达信号模拟器的功能特点和性能指标 新型雷达信号模拟器的主要功能是:提供各类信号的调制波形,控制射频频率,控制输出信号的功率。根据用户指定的信号类型、脉宽、重复周期、射频频率等参数,控制模拟器的各个相关部分,最后输出满足要求的信号。 1.1 主要特点 1.1.1多样性和灵活性 多样性是指模拟器控制系统能够提供多种类型的雷达信号调制波形。为了产生多种特殊雷达信号,要求控制系统能灵活控制雷达信号的脉冲宽度、重复周期、射频频率。能够提供的信号类型主要有:连续波、常规脉冲信号、均匀脉组串信号、重频参差信号、线性调频信号、巴克码调相信号、捷变频信号等。 灵活性主要表现在两个方面:①各种信号的参数可以灵活设置。例如:信号的脉冲宽度、重复周期、射频频率等都可以在其各自的范围内任意设置。②信号类型可以灵活选择。模拟器同时有几路的信号输出,各路之间是相互独立的,而且一个支路有多种信号类型供选择。由于信号个数、信号类型、信号参数均能灵活选择,给用户提供了极大方便。用户可以根据自己的需要,选择合适的信号个数和类型,来组合输出各种信号。 1.1.2 智能化 控制系统具有智能化的特点,采用工控机作为控制中心,由计算机完成对模拟器的各项控制,设计了良好的人机界面,采用软面板输入参数具有自动检错功能,以避免用户误操作引起的错误。用

SAR雷达目标信号模拟器案例

SAR雷达目标信号模拟器案例 来源:北京华力创通科技股份有限公司作者:发表时间:2010-04-08 16:08:50 目前机载 SAR 雷达设备的主要测试手段是在地面采用点目标信号进行部分指标和分辨率测试。进 一步完整的成像测试需要安装在运载飞机上进行实际飞行测试,得到最后的指标。 星载 SAR 雷达设备的主要测试手段同样是在地面点目标信号进行部分指标和分辨率测试。通过 这种测试来估计实际的成像指标。 XXX 型 SAR 雷达目标信号模拟器可以实时模拟回放多点目标和场景目标回波。用于机载或星载 SAR 雷达设备在地面进行完整的功能和性能指标调试和测试。 XXX 型 SAR 雷达目标回波信号模拟器基本原理是一种数字储频体制的测试信号模拟设备。接收 来自雷达系统 TR 组件送出的脉冲发射信号,并在此基础上生成触发脉冲和回波信号;实时模拟点目 标回波信号:--能进行时间延迟、能叠加多普勒频移,能进行幅度调制;非实时模拟面目标回波信 号--可叠加地表信息、轨道特性、平台姿态特性和幅相误差、波位特性、天线性能等工程误差 XXX 型 SAR 雷达目标回波信号模拟器主要由三个功能单元组成: 射频单元 将来自雷达系统脉冲发射信号转换到中频,并将中频单元的模拟回波信号混频至射频,通过射频 电缆注入或通过天线回放给被测雷达; 数字中频单元 基于数字储频体制获取中频信号,经过数字变换成多点目标回波中频信号回放给射频单元。或根 据被测雷达的信号特征,将已经存储的大型场景目标回波回放出去 数学仿真单元 运行 SAR 雷达场景目标模拟生成算法,生成场景(即面目标)回波数据,注入给数字中频单元 技术优势 幅相控制技术 高速 AD/DA 技术( 20M - 1.5G 采样率) 实时点目标运算,非实时面目标模拟 高速板间数据传输技术(单通道最高速率可达 6Gbps ) 大容量板级数据存储技术( 20G ) 应用方案 雷达系统回波模拟 精密延迟信号实现 用于宽带雷达模拟器 实时记录 SAR 发射信号 实时回放数字信号、模拟各种条件

基于CPCI总线的通用雷达回波信号模拟器

第5卷 第6期信息与电子工程Vo1.5,No.6 2007年12月INFORMATION AND ELECTRONIC ENGINEERING Dec.,2007 文章编号:1672-2892(2007)06-0418-06 基于CPCI总线的通用雷达回波信号模拟器 张 辉,刘 峥 (西安电子科技大学雷达信号处理国家重点实验室,陕西西安 710071) 摘要:为了在实验室环境下对雷达信号处理系统进行调试和工作效能测试,设计了一种基于紧凑型外部设备互联总线(CPCI)和现场可编程门阵列技术的通用雷达回波信号模拟器,利用 MATLAB的强大仿真功能,模拟产生各种体制雷达的回波信号数据,通过CPCI总线把它们写入该 信号模拟器的同步动态随机存储器中,雷达信号处理模块再从该模拟器中反复读出数据进行处理, 从而调试和检测雷达信号处理模块在各种杂波及无源干扰条件下对目标的处理。结果证明,该模 拟器具有良好的通用性和精确度,并且运行可靠。 关键词:紧凑型外部设备互联总线;雷达回波信号模拟器;现场可编程门阵列;同步动态随机存储器;WDM驱动程序 中图分类号:TN957.51 文献标识码:A A Universal Radar Echo Simulator Based on CPCI Bus ZHANG Hui,LIU Zheng (National Key Lab. of Radar Signal Processing,Xidian University,Xi’an Shaanxi 710071,China) Abstract:A universal radar echo simulator based on compact peripheral component interconnect (CPCI) bus and FPGA technology is introduced. The simulator is used to debug and test the performance of the system of radar signal processing in laboratory. In the design,the strong simulation function of MATLAB is performed to simulate all kinds of radar echo,and then these radar echo data are translated to the SDRAM in the signal simulator. From this time on, the radar signal processor fetches the signal data from the simulator time after time to process them,thus to debug and test the performance of target detection under all kinds of radar clutter and passive jamming for the radar signal processor. The results show that the simulator has good universality and accuracy,and can be operated reliably. Key words:CPCI;universal radar echo signal simulator;FPGA;SDRAM controller;WDM driver 1 引言 随着标准化和通用化产品设计理念的发展,近年来基于标准CPCI总线的通用雷达信号处理系统越来越受到人们的推崇,然而要对其作战效能进行调试和测试,就必须具备逼真的配试目标,需要有与各种实际战场环境接近的工作环境,并且外场试验的组织协调难度很大,需要消耗大量的财力和物力,因此需要在实验室环境下采用基于标准CPCI总线的雷达回波信号模拟器。为了增强模拟器的灵活性和普遍性,利用MATLAB的强大仿真功能,通过参数的改变,模拟各种可能出现的情况,例如设定不同的气象条件,改变目标的个数或参数,调整噪声功率等。结合FPGA技术,选用SDRAM作为MATLAB仿真的雷达回波信号存储体,设计并实现了一种基于CPCI总线的雷达回波信号模拟器。 2 模拟器的设计思想 为了满足不同雷达回波信号的模拟要求,该模拟器采用CPCI总线+FPGA+SDRAM结构,同时结合MATLAB 仿真技术,以CPCI总线的工控机为基础,将MATLAB模拟产生的回波数据经CPCI总线传输至SDRAM中。然 收稿日期:2007-06-06;修回日期:2007-07-06

一个雷达中频信号数字复解调系统的实现

第23卷 第4期核电子学与探测技术 V ol .23 N o .4 2003年 7月 N uclear Electronics &Detection T echnolo gy July 2003 一个雷达中频信号数字复解调系统的实现 刘树彬,吴义宝,安 琪,王砚方 (中国科学技术大学近代物理系快电子学实验室,安徽合肥 230027) 摘要:在阐述数字复解调原理的基础上实现了一个基于专用芯片的数字复解调测试系统。对比模 拟复解调,说明数字复解调的优越性以及它们的应用和发展前景。 关键词:数字复解调;数控振荡器;数字滤波;抽取 中图分类号:T P 957.52;T P 274.2 文献标识码:A 文章编号:0258-0934(2003)04-0364-03 收稿日期:2002-04-03 作者简介:刘树彬(1975-),男,山东昌乐人,中国科学技术大学近代物理系博士生,从事快电子学研究。 随着通信、雷达、医学成像等技术的不断发展,人们对信号处理的稳定性和灵活性要求越来越高。这些技术中信号处理的一个共同点就是采用复解调,传统以模拟复解调处理的方式已不能满足对输出信号的幅度一致性、相位一致性越来越高的要求。而高速、宽动态范围A /D 变换器和大规模集成电路器件的发展,使高速数字复解调方法的实现成为现实。 1 数字复解调的原理 随着A/D 变换器和数字逻辑器件速度的不断提高,传统的信号模拟解调机制正在被数 字复解调逐步替代,在通信比如第三代无线通信等领域,中频信号的数字化和复解调已经成为降低成本、提高系统稳定性、灵活性和一致性的重要手段[1] 。如果A/D 变换器和数字逻辑器件的速度足够快,甚至可以实现射频直接解调,这就是目前数字信号处理研究的热点“软件无 线电”[2]。 传统的信号处理中,中频解调采用模拟复 解调的方法,其基本原理是用压控振荡器和锁相环产生两路正交的中频载波信号。输入的中 频信号通过模拟乘法器分别和两路正交的中频载波信号相乘实现输入信号在频域的搬移,然后通过模拟低通滤波器得到I(in-phase,同相)和Q(quadrature,正交)两路基带信号,从而实现信号的下变频搬移和得到两路正交信号。由于模拟复解调采用模拟器件实现,因而稳定性和灵活性都不理想。具体表现在:模拟器件产生的中频载波信号的稳定性差;模拟乘法器的线性不好;模拟滤波器多采用LC 电路,其滤波特性难以调节且不易随具体应用的需求而改变;模拟分立元件的不一致性,I 、Q 两路的幅度和相位一致性难以得到保证。 数字复解调可以很好地解决这些问题:数字器件的精度只取决于数据的位数,不受温度、元器件个体差异等因素的影响。可以最大程度地确保信号的一致性。数字复解调一般是先用高速、宽动态范围的A/D 变换器直接将中频信号变成数字信号,然后和数字控制振荡器产生的两路正交的数字中载波信号相乘,实现输入信号在频域的搬移,再经数字滤波后得到数字基带信号,输出结果可以用DSP 或计算机作进一步处理。与传统的模拟复解调方法相比,数字复解调由于采用数字器件,其稳定性得到保证,同时载波的频率和相位、滤波器的特性等很容易根据应用的需求而调整,解调输出信号的幅度、相位一致性有很大提高。这些是模拟方法无

Matlab雷达回波数据模拟

clear, hold off format compact J = sqrt(-1); close all% Get root file name for saving resultsfile=input('Enter root file name for data and listing files: ','s'); % form radar chirp pulseT = 10e-6; % pulse length, seconds W = 10e6; % chirp bandwidth, Hz fs = 12e6; % chirp sampling rate, Hz; oversample by a littlefprintf('\nPulse length = %g microseconds\n',T/1e-6) fprintf('Chirp bandwidth = %g Mhz\n',W/1e6) fprintf('Sampling rate = %g Msamples/sec\n',fs/1e6) s = git_chirp(T,W,fs/W); % 120-by-1 array plot((1e6/fs)*(0:length(s)-1),[real(s) imag(s)]) title('Real and Imaginary Parts of Chirp Pulse') xlabel('time (usec)') ylabel('amplitude') gridNp = 20; % 20 pulses jkl = 0:(Np-1); % pulse index array, 慢时间采样的序列,注意第一个PRI标记为0是为了慢时间起始时刻从零开始 PRF = 10.0e3; % PRF in Hz PRI = (1/PRF); % PRI in sec T_0 = PRI*jkl; % relative start times of pulses, in sec g = ones(1,Np); % gains of pulses T_out = [12 40]*1e-6; % start and end times of range window in sec,这个就是接收窗的时间宽度Trec T_ref = 0; % system reference time in usec,T_ref = 0指T_0=0时,r_at_T_0 = ri ;当T_0 ~= 0时,r_at_T_0 = ri - vi*T_0(j)fc = 10e9; % RF frequency in Hz; 10 GHz is X-bandfprintf('\nWe are simulating %g pulses at an RF of %g GHz',Np,fc/1e9) fprintf('\nand a PRF of %g kHz, giving a PRI of %g usec.',PRF/1e3,PRI/1e-6) fprintf('\nThe range window limits are %g to %g usec.\n', ... T_out(1)/1e-6,T_out(2)/1e-6)% Compute unambiguous Doppler interval in m/sec % Compute unambiguous range interval in metersvua = 3e8*PRF/(2*fc); %第一盲速rmin = 3e8*T_out(1)/2; rmax = 3e8*T_out(2)/2; rua = 3e8/2/PRF;fprintf('\nThe unambiguous velocity interval is %g m/s.',vua) fprintf('\nThe range window starts at %g km.',rmin/1e3) fprintf('\nThe range window ends at %g km.',rmax/1e3) fprintf('\nThe unambiguous range interval is %g km.\n\n',rua/1e3)% Define number of targets, then range, SNR, and % radial velocity of each. The SNR will be the actual SNR of the target in % the final data; it will not be altered by relative range.Ntargets = 4; del_R = (3e8/2)*( 1/fs )/1e3; % in km

天气雷达回波模拟系统的设计与实现

天气雷达回波模拟系统的设计与实现 摘要:天气雷达回波模拟系统能够成功模拟出具有真实天气目标特征的回波信号,利用这种回波信号可以实现在实验室环境中完成本需在外场试验条件下才可以进行的雷达性能测试。首先介绍了天气雷达回波模拟的原理,设计出回波模拟流程图,其次给出了回波模拟硬件平台的设计及模拟软件实现的思路,最后根据真实天气回波的特征等信息生成模拟回波图,并对模拟前后的回波图进行对比分析。 关键词:天气雷达;回波;信号模拟 0 引言 在现代地基主动气象遥感领域,多普勒天气雷达占据着重要的地位,特别是在对一些突发性、灾害性等中小尺度天气过程的捕获与跟踪时,其较高的时间与空间分辨能力就显得越来越重要[1]。随着多普勒天气雷达在气象探测业务运行中的广泛使用,在雷达的研发与维护过程中,对雷达的性能进行完整测试就显得非常重要[2]。由于实验条件及天气状况等因素的影响,要在完全真实的天气过程的环境中对雷达各个模块及系统进行测试将非常困难。国内现阶段对雷达接收机性能测试所采用的方法一般是给其提供一个不具有天气目标回波特征的单一频率的信号,这些信号能够通过测量系统通道的技术参数来验证系统硬件的性能。但由于这些测试信号不具有天气信号的时频特征,故测试结果仍与处理真实天气回波时的状态存在差异。而将实时天气目标回波作为接收机的测试信号的方法却有成本过高、测试过程复杂、所需时间长等缺点。除此之外,由于实时气象目标的参数是不可控的,所以这种方法不能实现对接收机性能参数的定量测试。如果能够模拟产生具有真实天气目标特征的雷达回波信号,就可以在实验室环境中模拟完成外场试验所需的测试,同时也可以降低测试成本,缩短研发周期,提高工作效率[3]。除此之外,对模拟回波的参数进行控制,可以实现定量测试,进而可对接收机及后端的信号处理算法进行验证。 1 天气回波信号模拟的原理 由于天气目标的径向移动会造成接收信号的频率相对于发射信号的频率存在一定的频移(多普勒频移),即天气雷达回波信号可以看成原始发射信号在时间上的延迟并且频谱进行搬移后的一个时间序列,这就是回波信号模拟的基本原理[4]。 ZRNIC D S[5]在总结了滤波器法与快速卷积法等模拟算法后,从天气雷达回波信号的功率谱的角度,提出了简单实用的基于谱模型的直接拟合法。气象回波的功率谱密度函数为Pn(f): 其中,pr为回波的功率,fd为多普勒频率,f为频率标准差,PRF为脉冲重复频率,N 为样本个数。 由气象雷达方程及相关理论可知:pr=CZ/r2,fd=2vr。其中,C为雷达常数,只与雷达系统的参数有关;Z为反射率因子;r为气象目标与雷达站的径向距离;vr、v分别为径向速度和速度谱宽;为雷达发射电磁波波长。 为了模拟出具有真实回波信号的频谱特性,需要在式(1)中加入噪声,然后进行随机化可得式(4): 式中,随机变量rnd在区间[0,1]上具有均匀分布,PN(f)为每秒钟噪声总功率,则PN(f)/PRF为噪声功率谱密度。 为了获取回波信号的复频谱特征,需要在Pn(f)中引入0~2π变化的随机相位谱?渍n(f)=rnd·2π/rndmax,即可以构成回波信号的复频谱,然后将其进行离散傅里叶逆变换(IDFT)得到对应的时间序列sn:

相关文档