文档视界 最新最全的文档下载
当前位置:文档视界 › 固定化酶技术及应用的研究进展

固定化酶技术及应用的研究进展

固定化酶技术及应用的研究进展
固定化酶技术及应用的研究进展

固定化技术研究进展

摘要:固定化酶技术作为一门交叉学科技术,在生命科学、生物医学、食品科学、化学化工及环境科学领域得到了广泛应用。新型载体材料的合成是今后固定化酶发展的一个非常重要的研究领域。本文主要介绍了固定化酶的载体,固定化技术以及在不同行业的应用,主要介绍了在污水处理和医疗行业的应用和发展趋势。

关键词:固定化载体污水医疗应用

酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶技术(Immobilized enzyme technology)克服了酶的上述不足。酶的固定化是指采用有机或无机固体材料作为载体,将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。

1.传统酶固定化技术

传统酶的固定化方法可分为吸附法、共价偶联法、交联法和包埋法等4 种。吸附法是指通过载体表面和酶表面间的次级键相互作用而达到酶固定化的方法,根据吸附剂的特点又可分为物理吸附和离子交换吸附。该法具有操作简便、条件温和及吸附剂可反复使用等优点,但也存在吸附力弱,易在不适pH、高盐浓度、高底物浓度及高温条件下解吸脱落的缺点。共价偶联法是将酶的活性非必须侧链基团与载体的功能基通过共价键结合,故表现出良好的稳定性,有利于酶的连续使用,是目前应用和研究最为活跃的一类酶固定化方法,但共价偶联反应容易使酶变性而失活。交联法是利用双功能或多功能基团试剂在酶分子之间交联架桥固定化酶的方法,其更易使酶失活。包埋法包括网格包埋、微囊型包埋和脂质体包埋等,包埋法中因酶本身不参与化学结合反应,故可获得较高的酶活力回收,其

缺点是不适用于高分子量底物的传质和用于柱反应系统,且常有扩散限制等问题。上述各种固定化酶的方法所表现出的不足之处限制了其广泛应用,因此,设计和合成性能优异的新型酶固定化材料,研制开发简便、实用的固定化方法是目前固定化酶研究的重点之一。

2.新型载体材料及固定化技术

传统酶的固定化方法虽在一定程度上可以增强生物催化剂的稳定性,但增强幅度有待进一步提高,并且在此过程中,生物催化剂酶催化活力通常损失严重。运用当代高新技术设计合成新型载体以及两者的有机结合是引人注目的研究动向。因此目前不断地有新的载体和技术引入酶的固定化领域,如:无载体固定化、微波/超声辅助的固定化、微胶囊固定化、电辅助固定化等,且固定化生物催化剂也越来越广泛地应用于医疗、生物医药、环境保护、食品工业、化学工业、能源等领域。

2.1 酶固定化过程中的新载体

2.1.1介孔材料

孔道的结构和尺寸对酶活力及稳定性有着明显的影响,在合适的孔道中酶固定化后其活力提高到游离酶的2倍,大孔道有利于固定化与催化过程中酶蛋白和底物、产物的传输,从而能提高酶的固定化和催化效果。目前,大孔道、高比表面积和孔容的新型介孔材料不断被引入酶固定化领域,因为在大孔道、高比表面积、高孔容的介孔材料中酶的负载量大。

2.1.2 纳米管

碳纳米管是一种新型纳米材料。它是由石墨片层卷曲而成的无缝纳米管。将生物大分子,如氨基酸、蛋白质、酶、DNA 等结合在碳纳米管的表面或端口上,可提高它在水溶液中的溶解度,为实现碳纳米管的各种生物应用奠定了基础。纳米管的内表面与酶之间存在强烈的相互作用,从而使得管内酶蛋白结构稳定且保留相当的催化活力,并且用其制成电极能够有效实现底物氧化及电子的传递。硅纳米管用于固定化酶时,能够保持酶的活性,并且提高酶的热稳定性及对PH的耐受性。

2.1.3 磁性高分子微球

磁性高分子微球是由无机磁性纳米粒子与有机高分子通过包埋法、单体聚合

法合成的具有磁响应性和微球特性的粒子。通过共聚合和表面改性,磁性高分子微球表面可被赋予多种活性功能基团(如-OH、-COOH、-CHO等)。无机磁性纳米

粒子应用较多的是Fe

3O

4

,单体聚合法主要包括乳液聚合、无皂乳液聚合、微乳

液聚合、种子乳液聚合。磁性微球有良好的表面效应和体积效应,如比表面积较大,微球官能团密度较高,选择性吸附能力较强,吸附平衡时间较短等。它的物理化学性质稳定,具备一定的机械强度和化学稳定性,能耐受一定浓度的酸碱溶液和微生物的降解,通过表面改性赋予多种活性的功能基团,这些功能基团可以连接生物活性物质。

2.2新型固定化技术

2.2.1 微波/超声辅助固定化法

微波是一种电磁波。微波加热的主要原理是介质材料的极性分子在微波高频电场的作用下反复快速取向转动而摩擦生热,从物质内部开始,瞬时达到需要的温度。微波加热具有许多传统加热不具备的优点等。

超声波是指振动频率大于20 kHz以上的一种纵波,在介质中传播时,使介质发生物理和化学变化,从而产生一系列超声效应,包括热效应、机械效应、空化效应和化学效应。研究认为,超声波对液体化学反应速度和产率的影响主要是由超声波在液体介质中的空化作用引起的。超声可使液体介质中形成微泡,其破裂伴随能量的释放,可以提高许多化学反应的速度。到目前为止,超声波技术对物质提取,高分子降解,酶解反应等都有很好的促进作用。

2.2.2无载体固定化法

无载体固定化酶技术是通过将结晶酶、物理共沉淀的酶进行交联形成固定化酶,包括交联酶结晶(CLEC)、交联酶聚集体(CLEA)。交联酶聚集体技术是一种将蛋白质先沉淀后交联形成不溶性的、稳定的固定化酶,这种技术是通过基本纯化的高浓度的蛋白质样品的共价交联来实现的。

2.2.3微胶囊固定化法

微胶囊是一种采用高分子聚合物或其他成膜材料将物质的微粒或微滴包覆所形成的微小容器,其粒径一般在微米至毫米级范围,通常为5~400μm。将酶用微胶囊包覆后形成的微胶囊固定化酶,由于被催化物质和产物可自由通过囊壁,因而能起到酶催化剂的作用。

3.固定化酶的应用

3.1医疗行业的应用

3.1.1 抗生素上应用

自20世纪70年代初,欧美国家已开始用特殊的合成树脂固定化青霉素酞化酶来生产6 -APA[5],但价格昂贵,酶活还较低。中国关于固定化青霉素酞化酶的研究工作起步较晚,还要靠进口价格昂贵的固定化载体或固定化青霉素酞化酶来满足半合成青霉素生产的需要。

用于生产β内酞胺类抗生素中问体青霉素酞化酶在偏碱性环境下,可以催化青霉素G和头抱菌素G水解,制备生产半合成p内酞胺类抗生素所需的中问体:6-氨基青霉烷酸(6 -A PA)和7氨基脱乙酞头抱烷酸[7](7 -ADCA )。传统上多采用氧化反应酒旨化及扩环重排等化学反应来合成7- ADCA,但其过程存在着步骤多、反应条件要求高、成本高、三废污染等问题,现在已逐渐被固定化方法所替代。

3.1.2 氨基酸上应用

氨基酸是蛋白质结构的基本单位,对维持机体蛋白质的动态平衡有极其重要的意义。自然界的天然蛋白质中存在20余种基本氨基酸,皆为L型,非基本氨基酸多为外消旋体,然而D型和L型对映体的生理作用迥异。氨基酸主要通过发酵法和合成法生产,D-氨基酸一般通过光学拆分得到。D-氨基酰化酶利用其立体专一性反应,从化学合成的底物生产具有光学活性的D -氨基酸

现在技术研究了利用基因重组工程技术构建高活性的氨基酞化酶工程菌连续拆分D, L蛋氨酸。氨基酞化酶工程菌经发酵收集高活性的菌体,通过海藻酸钠包埋技术制备固定化酶,连续拆分D,L蛋氨酸,结果比酶活性大于6 000 u/g 湿菌体,酶柱比酶活性大于4 000 u/g酶,半衰期20d,可连续拆分24d,拆分率达90%,收率达74.5%左右。随着基因工程药物和固定化技术的发展,人们对D 氨基酸的需求日益增加,因此筛选具有高活力D氨基酰化酶的菌株,并且建立起简单快捷生产D氨基酸的方法有着广阔的工业前景。

3.1.3 酶制剂上应用

脂肪酶不仅能够催化酷的水解反应,而且能在有机溶剂中催化醇和酸的酷合成反应酒旨交换反应、氨解反应驮合成反应等等。现在技术以cM-纤维素为载体固定化脂肪酶的最适制备条件,固定化酶的酶学特性以及操作的稳定性,结果

表明本法制备得到的固定化酶酶活力较高,回收率也较高,最适温度,pH都有了提高,稳定性也提高了,酶和载体问的结合力较牢固。目前脂肪酶制造油化学品的重要障碍就是脂肪酶价格较高,而固定化酶具有可以回收、重复使用、稳定性高产品质量高等优点,所以脂肪酶的固定化技术可以在药物制备、食品及轻工等方面广泛应用。

3.1.4药物筛选上应用

药物筛选就是对可能作为药物的物质进行初步的药理活性的检测和试验,以求发现其药用价值和临床用途,为发展新药提供最初始的依据和资料。。直到20世纪70年代中期,动物实验一直是药物筛选的主要方法,但动物实验存在需时长、劳动强度大、操作技术要求高、受试样品需要量大等缺点。现代科技的发展为高效率的筛选药物提供了技术条件,高通量药物筛选技术(HTS)就是将多种技术方法有机结合而形成的一种新的技术体系。

用于药物筛选的膜蛋白微阵列,由于类脂环境影响膜蛋白的功能难以很好发挥,使微阵列制作有困难。最近微阵列技术取得了突破性进展,解决了膜和蛋白的固定化问题,发明了一种机械上稳定又允许单个分了在固定化膜内移动的系统,这种水平方向流动性是生物膜的特性之一。

3.1.5 手性药物上应用

手性药物的临床意义已引起了人们的注意,并成为国际开发热点,世界正在开发的1 200种新药种有三分之一是手性药物,同时手性药物又是药品开发中的难点,往往是一种对映体具有很大的药用价值,而另一对映体没有药效,甚至对人体有毒害作用。如何从对映异构体中分离出有效成分或合成有效成分是目前面临的一大课题。

手性药物相互作用的研究也应用了固定化的方法。如应用亲合色谱技术时,可以在色谱柱上固定化HAS[15]或AGP[16]来研究手性药物发生在分布环节的相互作用,就是在流动相中添加并用药物来考察并用药物与对映体在分布环节有无相互作用。

3.2食品行业

固定化酶可应用于食品检测。固定化酶技术的发展使生物传感器也得到相当大的发展,它不仅使食品成分的高选择性、快速、低成本分析测定成为可能,而

且生物传感器技术的持续发展将很快实现食品生产的在线质量控制,降低食品生产成本,并且可以保证安全可靠及高质量的食品生产。

3.3生物传感器方面

在医学领域,生物传感器因快速、灵敏、专一、响应快等优点发挥着越来越重要的作用。目前,在检测多种细菌、病毒及其毒素等多个方面生物传感器已有较广泛应用。比如高精度血糖分析仪是采用固定化酶的生物传感分析仪,其分析精度可以达到0.5%-2%,比家用保健类生物传感器几乎高一个数量级,比目前医用生化分析仪的精度也高2%-3%,这在血糖分析领域是非常重要的。酶电极现已用于测定各种糖类、抗生素、氨基酸、有机酸、脂肪、醇类、胺类以及尿素、尿酸等的含量。

3.4固定化细胞技术在废水处理中的应用研究

3.4.1处理氨、氮废水

微生物去除氨氮需经过好氧硝化、厌氧(缺氧)反硝化两个阶段。硝化菌、脱氮菌的增殖速度慢,要想提高去除率,必须要较长的停留时间和较高的细菌浓度,采用固定化细胞技术可做到这点。

固定化细胞技术在处理氨氮废水中的主要优势在于可通过高浓度的固定细胞,提高硝化和反硝化速度,同时还可以使在反硝化过程低温时易失活的反硝化菌保持较高的活性。

3.4.2难降解有机废水

含酚废水的处理普遍采用活性污泥法,但此法存在污泥产率较高,易产生污泥流失,处理效率低等缺点。固定化细胞对废水中酚类等有毒物质的降解能力远大于游离态细胞。用海藻酸钠包埋对酚具有高效降解作用的小球藻细胞和紫色非硫光合细菌混合菌株,在好氧条件下处理含酚废水,可以明显提高除酚效率,缩短废水停留时间,其共生体系对温度、pH值适应范围广,对焦化厂工业废水处理24h,去除率为95%以上。

3.4.3含芳香烃废水

利用固定化混合菌群可降解芳香烃废水。固定化细胞能利用这些物质进行生长并使之完全降解,例如酚、奈和菲均能被彻底降解。与游离细胞相比,固定化细胞表现出生长稳定,降解能力强的优点。据报道用海藻酸钙凝胶包埋固定化

PinelohactersP细胞进行降解吡啶的研究,结果表明:与游离细胞相比,固定化细胞的比降解速率和对吡啶毒性的承受能力并没有提高,但由于固定化细胞具有较高的生物浓度,所以其体积降解速率较高,而且可以重复利用,因此利用固定化细胞降解吡啶是可行的。

3.4.4处理重金属废水

由于微生物经固定化后,其稳定性增加,抗生物毒性物质的能力也大大增加,因此,可以被广泛地用于各种有机废水中重金属离子的去除。GeoffeyW等将小球藻固定在藻阮酸盐中,用来聚集Co,Zn,Mn等金属,在5h内62%的Co,40%的Mn,54%的Zn被吸附;与之相比,在相同的条件下,悬浮细胞的吸附量要小得多。吴乾蓄等利用聚丙烯酸胺固定化酵母菌细胞去除电镀废水中的Cd2+,在pH=9,Cd2+的质量浓度为1~400mg/L时,反应lh,Cd2+的去除率98.9%;采用未固定化细胞则去除率为37.6%。

分别用0.lmol/L的HCI和0.lmol/L的EDTA解吸,Cd2+的回收率为88.5%和87.6%。在环境监测方面,固定化酶也可以用于测定有毒物质含量以进行环境监测。在废水处理中,固定化酶也越来越受科学家的关注。在水环境污染日益严重的今天,固定化酶的污水处理技术有着广阔的研究潜力和应用前景。

4.展望

近几年来,酶的固定化技术取得了长足的进步,并成为生物化学研究领域的重点和热点。研究者不断对传统固定化技术进行改进,并开发新的固定化方法,一定程度上改善了一些酶的性能,包括稳定性、催化活力、立体选择性和回收再利用性能,他们用实践证明了酶的固定化仍然是最好的改善酶的催化性能的手段。酶固定化技术已在食品工业、精细化学品工业、医药,尤其是手性化合物等行业得到广泛应用,在废水处理方面也取得了一定进展。用酶技术生产化工产品,条件温和,无“三废”产生,随着人类对环保的日益关注,酶的固定化及应用研究已得到长足进展。然而,固定化酶研究具有的高新技术特征与基础理论意义,仍使其处于国际学科前沿,具有很大的研究发展空间。。设计和开发新的合成载体材料,利用和改性质优价廉的天然高分子载体材料,探索和研究新的固定化技术将是这一领域的研究热点。而固定化酶在各行业的应用研究也必将推动酶固定化技术的进一步发展

参考文献:

【1】李黎,马力,李鹤.中国组织工程研究与临床康。

【2】李彦锋, 李军荣, 伏莲娣. 高分子通报。

【3】孙建华,邓玉林. 化工进展。

【4】武仙山,何立千,叶磊. 交联酶聚集体—一种无载体酶固定化方法[J].

生物技术。

【5】 Cao I, Langen L, SheHon RA. Inm obilised enzymes carrier-bound or carrier-free? [J]Curr Opin Biotechno。

【6】张志华,江昌明.酶催化剂耦合固定化技术的研究进展【J】.工业催化。【7】 Godjevargova T. Inmolilization of unease onto chem. Ically modified acrylonitrile、copolym emembranes[ J]. Journal of Biotechnolog。

【8】陈秀琳.CM-纤维素固定化脂肪酶的研究[J].海峡药学。

【9】高秀蓉,孙晓丰,余蓉.固定化胰蛋自酶的性质研究[J].华西药学杂志,2005,20 ( 2) :Cook ND. Scintillation proximity assay. a versatile highth roughput screening technology[ J]. Drug Discov Today。【10】于荣敏,高越,姚新生,等.银杏细胞固定化培养及其影响因素考察[J].

中草药。

【11】刘谋盛,王平艳,刘维涓,等.固定化酶降解烟叶中淀粉的研究[J].化学与生物工程。

学号:201390512123

班级:文生135-1

姓名:冯文强

3.2制备和应用固定化酶

第三章酶的应用技术实践 3.2制备和应用固定化酶 探究目的: 1说出固定化酶和固定化细胞的作用和原理 2、尝试制备固定化酵母细胞,并利用固定化酵母细胞进行酒精发酵。探究预习: 固定化酶技术的发展也促进了固定化细胞技术的发展。20世纪70年代后期出现了固定化细胞 技术。通过各种方法将细胞与一定的载体结合,使细胞仍保持原有的生物活性,这一过程称为细胞固定化。固定化细胞仍能进行正常的生长、繁殖和代谢,由于保留了细胞内原有的多酶系统,这对多步催化的连续反应优势就更加明显。细胞固定化的方法也有多种,主要是吸附法和包埋法两大类。 吸附法是制备固定化动物细胞的主要方法。动物细胞大多数具有附着特性,能够很好地附着在容器壁、微载体和中空纤维等载体上。吸附法制备固定化植物细胞,是将植物细胞吸附在泡沫塑料的大孔隙或裂缝之中,也可将植物细胞吸附在中空纤维的外壁上。 包埋法是指将细胞包埋在多孔载体的内部而制成固定化细胞的方法。凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。凝胶包埋法所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 海藻酸钠凝胶包埋法制备固定化细胞的操作简便,条件温和,对细胞无毒性。通过改变海藻酸钠的浓度可以改变凝胶的孔径,适合于多种细胞的固定化。用海藻酸钠凝胶制备的固定化细胞已用于多种酶的发酵生产与研究。 固定化细胞技术可以取代游离的细胞进行发酵,生产各种物质。 材料用具:干酵母,聚乙烯醇,海藻酸钠,无水CaC2,蒸馏水,烧杯,玻璃棒,酒精灯,三 角架,石棉网,注射器等。 探究过程: 探究反思: 固定化酵母菌技术有哪些优点? 探究示例: 请参照细胞固定化技术的相关基础知识,完成下列问题。 (1)细胞固定化技术一般采用包埋法固定化,采用该方法的原因是 (2)包埋法固定化是指___________________________________ 。 (3)_____________________________________________________________________ 包埋法固定化细胞常用的载体有 ________________________________________________________________ _______________________ 。(答出三种即可) (4)与固定化酶技术相比,固定化细胞技术的优点是 (5)制备固定化酵母细胞的步骤为: 【解析】(1)固定化细胞的方法有包埋法、化学结合法和物理吸附法,一般来说多采用包埋法固定化,因为个大的细胞难以被吸附或结合,且不易从包埋材料中漏出。 (2)(3)包埋法固定化即将微生物细胞均匀地包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠等。 (4)与固定化酶技术相比,固定化细胞技术的成本更低?操作更容易。 (5)制备固定化酵母细胞的程序为:酵母细胞的活化T配制CaC2溶液T配制海藻酸钠溶液T海藻酸钠溶液与酵母细胞混合T固定化酵母细胞。 【答案】(1 )细胞个大,不易从包埋材料中漏出;(2)将微生物细胞均匀地包埋在不溶于水的多 孔性载体中;(3)明胶、琼脂糖、海藻酸钠、醋酸纤维素、聚丙烯酰胺等;(4)成本更低,操作更容易;(5)①酵母细胞的活化②配制CaC2溶液③配制海藻酸钠溶液④海藻酸钠溶液与酵 母细胞混合⑤酵母细胞的固定化。 【矫正反馈】 1?固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,其中适合细胞固定的方法是() A.包埋法 B.物理吸附法 C.化学结合法 D.高温冷却法 2.与固定化酶相比,固定化细胞制备的特点是() A.成本高,但操作更容易 B.成本低,但操作更复杂 C.成本高,且操作更复杂 D.成本低,且操作更容易 3.固定化细胞技术在废水处理中有着重要作用,用于处理含氮、氨丰富的废水的固定化微生物通常是() ①酵母菌②青霉菌③硝化菌④反硝化菌 ①③D.②④ 让酵母细胞在缺水状态下休眠 让处于休眠状态的酵母细胞重新恢复正常的生活状态 5.下面为制备固定化酵母细胞的步骤,其正确的操作程序是 () ①海藻酸钠溶液与酵母细胞混合②配制海藻 酸钠溶液③酵母细胞的活化 ⑤配制物质的量浓度为0.05 mol/L的CaC2溶液 A.①②③④⑤ B.③①②⑤④ C.③⑤②①④ 6 .试分析下图中,哪一种与用海藻酸钠作载体制备的固定化酵母细胞相似( 7 .下列有关固定化酵母细胞制备步骤叙述,不恰当的是() A.应使干酵母与水混合并搅拌,以利于酵母菌活化 B.配制海藻酸钠溶液时要用小火间断加热的方法 C.向刚溶化好的海藻酸钠溶液中加入已活化的酵母细胞,充分搅拌并混合均匀 D.将与酵母混匀的海藻酸钠溶液注入CaC2溶液中,会观察到CaC2溶液中有球形的凝胶珠形成 8.用固定化酵母细胞发酵葡萄糖溶液时,为了能产生酒精,下列措施错误的是() A.向瓶内泵入氧气 B.应将装置放于适宜的条件下进行 C.瓶内应富含葡萄糖等底物 D.将瓶口密封,效果更好 探究步骤探究记录结论或解释1.实验准备准备各种实验药品和器具。 2?制备麦芽汁称取一定质量的干麦芽粉,加入其质量4倍的水,在58~65C下 糖化3-4 h。每隔一定的时间用碘液测定,如果仍显蓝色,说明糖化还不完全,继续糖化直至不显色为止,得到麦芽汁。煮沸、冷却麦芽汁后用纱布过滤,再调节pH至6.0,在121 C下灭菌15min,制成无菌麦牙汁。 3.活化酵母菌细胞称取1g干酵母放入50 mL的小烧杯中,加入蒸馏水10 mL。用玻璃棒搅拌酵母菌液,使其活化1h左右。 4.制备固定化细胞称取4g聚乙烯醇(PVA)和0.2 g海藻酸钠,加入无菌水40 mL,适当加热至完全溶化,将溶液冷却至45 C,加入预热至35C的 酵母菌培养液,混合均匀形成酵母菌谒藻酸钠胶液;将酵母菌- 海澡酸钠胶液倒入带有孔径为 2 mm喷嘴的小塑料瓶或吸入注 射针筒中;以恒定的速度滴入预先盛有50 mL饱和硼酸-氯化钙 溶液的烧杯中,采用磁力搅拌器或手摇的方法使溶液不停地旋转;酵母菌-海藻酸钠胶液在溶液中逐渐形成凝胶珠。待凝胶珠在溶液中浸泡30 min后,取出用无菌水洗涤3次备用。 5.发酵麦芽汁将固定化酵母菌细胞凝胶珠加入300 mL无菌麦芽汁中,置于 25C下发酵7~9 d。待发酵结束后品尝其味道。A.①② B.③④ C. 4 .酵母细胞的活化是指() A.让酵母细胞恢复运动状态 B. C.让酵母细胞内酶活性加倍 D. ④固定化酵母细胞 D.③②⑤①④ )

固定化酶载体材料的最新研究进展

万方数据

万方数据

万方数据

万方数据

固定化酶载体材料的最新研究进展 作者:袁定重, 张秋禹, 侯振宇, 李丹, 张军平, 张和鹏, YUAN Dingzhong, ZHANG Qiuyu , HOU Zhenyu, LI Dan, ZHANG Heping, ZHANG Junping 作者单位:西北工业大学理学院应用化学系,西安,710072 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2006,20(1) 被引用次数:10次 参考文献(28条) 1.李伟.孙建中.周其云适于酶包埋的高分子载体材料研究进展[期刊论文]-功能高分子学报 2001(03) 2.Wilhelm Tischer.Frank Wedekind Immobilized enzyme:methods and applicatons 1999 3.Barbara.Krajewska Application of chitin-and chitosanbased materials for enzyme immobilizations:a review[外文期刊] 2004 4.Bullockc Immobilized enzymes 1995 5.Chaplin M F.Bucke C Enzyme technology 1990 6.Wiseman A Designer enzyme and cell applications in industry and in environment monitoring 1993 7.Pskin A K Therapeutic potential of immobilized enzymes 1993 8.Paul W.Sharma C P Chitosan,a drug carrier for the 21st century:a review 2000 9.安小宁.苏致兴高磁性壳聚糖微粒的制备与应用[期刊论文]-兰州大学学报(自然科学版) 2001(02) 10.Chiou Shaohua Immobilization of candida rugosa lipase on chitosan with activation of the hydroxgl groups 2004(02) 11.王斌.谢苗.曾竞华磁性壳聚糖微球固定化褐藻酸酶的研究学[期刊论文]-中国水产科学 2004(03) 12.袁春桃.蒋先明壳聚糖-g-丙烯腈固定化木瓜蛋白酶的研究[期刊论文]-应用化学 2002(09) 13.Prashanth S J.Mulimani V H Soymilk oligosaccharide hydrolysis by Aspergillus oryzae galactosidase immobilized in calcium alginate[外文期刊] 2005(3-4) 14.Patel S Stabilization of a haloophilic α-amlyase by callium alginate immobilization 1996(02) 15.Ding Liang.Yao Zihua Synthesis of macroporous polmer carrier and immobilization of papain 2003(06) 16.Li Songjun Use of chemically modified PMMA microspheres for enzyme immobilization 2004(1-3) 17.Cao Linqiu Immobilized enzyme:scence or art? 2005 18.薛屏.卢冠忠.郭杨龙青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[期刊论文]-化学通报(印刷版) 2003(10) 19.Han Yongjin.Jordan T Watson.Galen D Catalytic activity of mesoporous silicate-immobilized chloroperoxidase[外文期刊] 2002 20.Zhang Xin.Guan Ren feng.Wu Dan qi Enzyme immobilization on amino-fuctionalized mesostructrued cellular foam surfaces,characterization and catalytic properties[外文期刊] 2005 21.谢钢.张秋禹.李铁虎磁性高分子微球[期刊论文]-高分子通报 2001(0q) 22.邱广明.孙宗华磁性高分子微球共价结合中性蛋白酶 1995(03) 23.Han Lei.Wang Wei The preparation and catalytically active characterization of papain immobilized

苏教版生物选修1第二节制备和应用固定化酶

选修一:考点4:制备和应用酶的固定化技术 【学习目标】 1.说出固定化酶概念和方法(A) 2.制备固定化酵母细胞(B) 【知识梳理】 (一)课题背景 酶:优点:催化效率高,低耗能、低污染,大规模地应用于食品、化工等各个领域。 实际问题:对环境条件敏感,易失活;溶液中的酶很难回收,不能再次利用,提高了生产成本;反应后的酶会混合在产物中,如不除去,会影响产品质量。 设想:能否有一种方法使酶发挥它的优点,而没有这些缺点? 固定化酶:优点:容易与水溶性反应物和生成物分离,可被反复使用 实际问题:一种酶只能催化一种化学反应,而在生产实践中,很多产物的形成都 是通过一系列的酶促反应才能得到的 设想:细胞中有多种酶,能否用固定化酶类似的技术来处理细胞? 固定化细胞:优点:成本低,操作更容易 (二)、固定化酶的应用实例 高果糖浆是指果糖含量为42%的糖浆能将葡萄糖转化为果糖的酶是葡萄糖异构酶。使用固定化酶技术,将这种酶固定在一种颗粒状的载体上,再将这些酶颗粒装到一个反应柱内,柱子底端装上分布着许多小孔的筛板。酶颗粒无法通过筛板的小孔,而反应溶液却可以自由出入。生产过程中,将葡萄糖溶液从反应柱的上端注入,使葡萄糖溶液流过反应柱,与接触,转化成果糖,从反应柱的下端流出。反应柱能连续使用半年,大大降低了生产成本,提高了果糖的产量和质量。 (三)、固定化细胞技术 固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,包括包埋法、化学结合法和物理吸附法。一般来说,酶更适合采用化学结合法和物理吸附法固定,而细胞多采用包埋法固定化。这是因为细胞个大,而酶分子很小;个大的难以被化学结合或吸附,而个小的酶容易从包埋料中漏出。 包埋法固定化细胞即将微生物细胞均匀包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠、醋酸纤维素和聚丙烯酰胺等。 〖思考1〗对固定酶的作用影响较小的固定方法是什么?吸附法 〖思考2〗将谷氨酸棒状杆菌生产谷氨酸的发酵过程变为连续的酶反应,应当固定(细胞);若将蛋白质变成氨基酸,应当固定(酶)。 (四)、实验操作 (1)制备固定化酵母细胞 制备固定化酵母细胞需要的材料是干酵母、CaCl2和海藻酸钠溶液 1.酵母菌的活化 活化就是处于休眠状态的微生物重新恢复正常的生活状态。 2.配制物质的量尝试为0.05mol/L的Cacl2溶液 3.配制海藻酸钠溶液 加热溶化海藻酸钠时要注意:微火加热并不断搅拌,防止海藻酸钠焦糊 4.海藻酸钠溶液与酵母菌细胞混合

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

高中生物第三章酶的应用技术实践第二节固定化酶的制备和应用学案苏教版选修1

第二节固定化酶的制备和应用 学习导航明目标、知重点难点 固定化酶和固定化细胞的应用。(重点) 固定化酶与固定化细胞的制备方法。(难点) [学生用书P43] 一、阅读教材P63分析固定化酶 1.概念:是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用,且保持了酶的催化性能,可实现酶促反应的连续化和自动化。 3.制备固定化酶的常用方法 目前,制备固定化酶的方法主要有物理吸附法、化学结合法、包埋法等。 二、阅读教材P64~65分析固定化细胞技术的应用 1.应用:固定化细胞可以取代游离的细胞进行发酵,生产各种物质。 2.优点 (1)固定化细胞技术无须进行酶的分离和纯化,减少了酶的活力损失,同时大大降低了生产成本。 (2)固定化细胞不仅可以作为单一的酶发挥作用,而且可以利用细胞中所含的复合酶系完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 (4)细胞生长停滞时间短,反应快等。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,营养物质和产物的扩散受到一定限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键的限制因素。 4.酵母菌细胞的固定化技术的主要流程 准备各种实验药品和器材 ↓ 制备麦芽汁 ↓

活化酵母菌细胞 ↓ 配制物质的量浓度为0.05 mol/L的氯化钙溶液 ↓ 制备固定化细胞 ↓ 浸泡凝胶珠,用蒸馏水洗涤 ↓ 发酵麦芽汁 判一判 (1)酶在催化时会发生变化,不可反复利用。(×) (2)某种固定化酶的优势在于能催化一系列生化反应。(×) (3)固定化细胞所固定的酶都在细胞外起作用。(×) (4)制备固定化细胞的方法主要有包埋法、化学结合法和物理吸附法。(×) 连一连 固定化酶技术[学生用书P44] 由于酶的分离与提纯有许多技术性难题,造成酶制剂来源有限、成本高、不利于大规模使用。人们针对酶的这种不足寻着改善的方法之一是固定化酶技术的应用。结合教材P63内容完成以下探究。 (1)图A为物理吸附法,它的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)图B为化学结合法,它是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。将酶包裹在聚丙烯酰胺凝胶等高分子凝胶中(如图C),包埋成格子型;或包裹在硝酸纤维素等半透性高分子膜中(如图D),包埋成微胶囊型。 各种固定化酶方法的比较

2019年精选生物《生物技术实践》[第三章 酶的应用技术实践第二节 制备和应用固定化酶]苏教版巩固辅导[含答

2019年精选生物《生物技术实践》[第三章酶的应用技术实践第二节制备和应用固定化酶]苏教版巩固辅导[含答案解析]第四十五篇 第1题【单选题】 下列关于加酶洗衣粉的说法中,正确的是( ) ①加酶洗衣粉的效果总比普通洗衣粉的效果好②加酶洗衣粉效果的好坏受很多因素影响③加酶洗衣粉中目前常用的酶制剂有蛋白酶、脂肪酶、淀粉酶和纤维素酶④加酶洗衣粉相对普通洗衣粉来讲有利于保护环境. A、②③④ B、①②③ C、①② D、①③④ 【答案】: 【解析】: 第2题【单选题】 在原材料有限的情况下,能正确表示相同时间内果胶酶的用量对果汁产量影响的曲线是

A、甲 B、乙 C、丙 D、丁 【答案】: 【解析】: 第3题【单选题】 A、温度影响果胶酶的活性 B、若温度从10℃升高到40℃,酶的活性都将逐渐增强 C、40℃与60℃时酶的活性相等 D、该酶的最适温度一定是50℃ 【答案】: 【解析】: 第4题【单选题】 目前,酶已经大规模地应用于各个领域,下列属于酶应用中面临的实际问题的是( ) A、酶对高温不敏感,但对强酸、强碱非常敏感 B、加酶洗衣粉因为额外添加了酶制剂,比普通洗衣粉更易污染环境 C、固定化酶可以反复利用,但在固定时可能会造成酶的损伤而影响活性 D、酶的催化功能很强,但需给以适当的营养物质才能较长时间维持其作用 【答案】:

【解析】: 第5题【单选题】 下列关于纤维素酶的说法,错误的是( ) A、纤维素酶是一种复合酶,至少包括三种 B、葡萄糖苷酶可把纤维素分解成葡萄糖 C、纤维素酶可用于去掉植物的细胞壁 D、纤维素酶可把纤维素分解成葡萄糖 【答案】: 【解析】: 第6题【单选题】 下列有关固定化酶和固定化细胞的叙述,正确的是( ) A、反应产物对固定化酶的活性没有影响 B、实验室常用吸附法制备固定化酵母细胞 C、若发酵底物是大分子,则固定化细胞优于固定化酶 D、固定化细胞技术在多步连续催化反应方面优势明显【答案】: 【解析】:

酶的固定化方法的研究进展

l竖!壁塑翌苎垫!!竺篁!塑!篁箜!!!塑!:兰!旦旦旦垦二竺垒燮鱼!里!呈型!里壁!里!型旦塑鱼!垫!!塑:!!里!:!!!! 酶的固定化方法的研究进展 徐莉?,侯红萍2 (1.山西农业大学食品科学与工程学院,山西太谷030801;2.山西农业大学食品科学与工程学院,山西太谷030801) 摘要:固定化酶是酶工程的核心,利于实现酶的重复利用及产物与酶的分离。介绍了几种常用的固定化酶的方 法,如吸附法、包埋法、交联法和共价结合法,以及近几年研究的一些新型的固定化技术,如交联酶聚集体、定向固定 和共固定技术。 关键词:酶;固定化;研究近展 中图分类号:QSl4;Q55文献标识码:B文章编号:1001—9286(2010)01—0086—04 ResearchProgressintheImmobilizationofEnzymes ,xuLilandHOUHong—ping (1.FoodScience&EngineeringCollegeofShanxiAgriculturalUniversity,Taigu,Shanxi030801,China) Abstract:Immobilizedenzymeisthecoreine/izymeengineeringanditishelpfulforthel℃useofenzymeandtheseparationofproductsanden- zyme.Illthispaper,severalcommonly-usedimmobilizationmethodsofenzymewei'eintroducedincludingabsorptionmethod.embeddingmethod,cross-linkingmethodandcovalentbindingmethod.Besides,somenewly-developedimmobilizationmethodsinrecentyearssuchascross-linkedenzymeaggregates.orientationfixedandtotalfixationtechnique、^,erealsointroduced. Keywords:enzyme;immobilization;researchprogress 酶是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH下操作等优点,但同时也存在一些不足,如酶一旦从细胞中分离出来,其活性会迅速下降,由于酶是溶于水的,在水溶液中进行反应,会导致酶和底物、产物从水中分离的困难,不利于循环使用【ll。 然而,固定化技术的出现彻底解决了这些问题,不仅提高了酶的活性,而且还实现了酶的可重复使用性。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重要成果。下面以酶的固定化方法为核心,介绍一些有关固定化技术的研究新进展。 1吸附法 利用多种固体吸附剂将酶或含酶细胞吸附在其表面上而使酶固定的方法。该方法最显著的优点是操作简便,条件温和,不会引起酶的变异失活,且载体价廉易得,可反复使用。但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制[21。因此,人们不断尝试使用新的载体来解决这易脱落的问题。 通常,吸附法分为物理吸附法和离子吸附法。1.1物理吸附法 酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶[3】。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。 纵伟、刘艳芳等(2008)以磁性壳聚糖微球作为新型载体,并采用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,同时比较了游离酶和固定化酶的pH值和热稳定性。结果表明,固定化的适宜条件为:加酶量600U/g,温度5℃,pH7.0,固定化时间2h。固定化酶的pH值和热稳定性都优于游离酶,固定化酶连续使用5次后,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性问。 近年来,随着介孔分子筛制备技术的日臻成熟,人们正在考虑用其担当固定化酶的载体。与其他材料相比,介孔分子筛规则的孔道、大的比表面积、极强的吸附性能、稳定的结构等特点,使其具有担当固定化酶载体得天独 收稿日期:2009一10—12 作者简介:徐莉(1984一),女,山西省孝义市,在读硕士研究生,研究方向:食品微生物与食品发酵。 通讯作者:侯红萍,女,教授,硕士生导师,主要从事食品发酵及生物工程等方面的教学与科研工作。主持、参加基金项目与科研项目多项。万方数据

酶固定化技术研究进展

酶固定化技术研究进展 选题说明 酶作为一种生物催化剂,具有高催化效率,高选择性,催化反应条件温和,清洁无污染等特点,其卓越的催化效能,令普通无机催化剂难以望其项背,因此酶的工业化使用一直是广受社会关注的课题,但天然酶稳定性差、易失活、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。此外,分离和提纯酶以及其一次性使用也大大增加了其作为催化剂的成本,严重限制了酶的工业推广。在此条件下,固定化酶的概念和技术得以提出和发展,并成为近些年酶工程研究的重点。酶的固定化,是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应,并可回收及重复使用的一类技术。通过固定化,可以解决天然酶的局限性,实现酶的广泛运用。 基于对于酶的工业化使用和固定化酶的兴趣,我通过互联网和数据库信息检索的方式对酶的固定化技术发展状况进行了初步探索,并对目前的研究成果进行了简要的概括。希望能使大家对这一领域有所认识。 检索过程说明 1,检索工具和数据库 1.1,百度搜索引擎 1.2,Google搜索引擎 1.3,中国期刊全文数据库 1.4,万方数据系统 1.5,重庆维普中文科技期刊数据库 2,检索过程简述

首先,我选择了使用百度和Google搜索引擎进行关键词检索,都得到了浩繁的搜索结果,所的信息主要是百科简介和企业广告信息,介绍较为浅显陈旧,可利用性较差,但可以用于简单的信息了解,在搜素过程中,尝试使用了布尔检索规则如“固定化酶and应用”、高级检索和结果中检索的检索方式,以减小数据量。也尝试了Google学术搜索,得到了很多有用信息。运用维普中文科技期刊数据库搜素“题名或关键词”为“固定化酶”的相关资料得到655条,搜素“题名或关键词”为“固定化酶应用”的相关资料得到72条,检索关键词搜素“题名或关键词”为“固定化酶研究”的相关资料得到4条. 万方数据系统搜索主题词"固定化酶",得到相关资料1024条,搜索“固定化酶技术应用”得到相关资料23条.。中国期刊全文数据库中检索“固定化酶技术”得到相关资料2604条,搜索“固定化酶技术应用”得到相关资料742条 关键词 酶固定化载体制备研究应用 酶固定化技术研究进展 提要: 固定化酶有许多优点,尤其是稳定性和可重复使用性使其在许多领域得到广泛应用。固定化酶技术是一门交叉学科技术。目前已得到长足的发展。本文重点介绍了固定化酶制备的传统方法和近些年出现的一些新方法,同时对酶在一些性能优良的栽体上的固定进行了综述。 正文: 一,传统的酶固定化方法

【小初高学习]2017-2018学年高中生物 第三章 酶的应用技术实践 第二节 制备和应用固定化酶素

第二节固定化酶的制备和应用 1.掌握制备固定化酶的常用方法。(重点) 2.掌握酵母菌细胞的固定化技术。(重难点) 1.固定化酶 固定化酶是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.制备固定化酶的方法 (1)物理吸附法的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)化学结合法是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。 3.固定化酶的优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用。 [合作探讨] 探讨1:对固定化酶的作用影响最小的固定方法是哪一种? 提示:物理吸附法。 探讨2:为什么固定化酶不适合采用包埋法? 提示:由于酶分子较小,容易在包埋材料中漏出,所以不适合采用包埋法固定化。 探讨3:如果反应物是大分子物质,应该采用哪种方法? 提示:因为大分子物质不容易进入细胞内,应采用固定化酶技术。 [思维升华] 1.制备固定化酶的常用方法可用下图所示: 2.常用的制备固定化酶的方法

1.最广泛的细胞固定化方法 凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 2.优点 (1)无须进行酶的分离和纯化,减少了酶的活力损失,降低了生产成本。 (2)不仅可以作为单一的酶发挥作用,且可以利用细胞中所含的复合酶完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,使营养物质和产物的扩散受到一定的限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键性的限制因素。 [合作探讨] 探讨1:固定化细胞为什么只能用于生产胞外酶和其他能分泌到细胞外的产物? 提示:因为固定化细胞固定的是活细胞,细胞膜具有选择透过性,细胞内有用的物质(如胞内酶)是不能自由进出细胞的。 探讨2:能否在刚溶化好的海藻酸钠溶液中加入活化的酵母菌细胞? 提示:不能,因为刚溶化好的海藻酸钠溶液温度较高,会将酵母菌细胞杀死。 探讨3:如果制作的凝胶珠颜色过浅,呈白色,则说明了什么?如果凝胶珠不是圆形或椭圆形,又说明了什么? 提示:如果凝胶珠的颜色过浅,则说明了海藻酸钠溶液的浓度偏低,固定的酵母菌细胞数目较少;如果凝胶珠不是圆形或椭圆形,则说明了海藻酸钠的浓度过高,制作失败。 [思维升华] 1.制备固定化酵母菌细胞的操作流程 准备各种实验药品和器具

最新固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展摘要:本文主要从分析酶单独应用中的不足、酶的固定化载体、固定化方法等方面介绍了固定化酶制备中的研究进展情况,并且从医药、食品、环保、化学工业、能源等方面其在其中的新应用出发,对固定化酶在新领域中的应用作了综述,给固定化酶研究的发展前景进行了展望,并且指出了今后酶固定化研究的主要方向是多酶的固定化及制备高活性、高负载、高稳定性的固定化酶。 关键字:酶;酶的固定化;载体;酶固定化应用领域 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。本文将从酶生

物催化剂固定化载体、固定化方法和技术及固定化酶的应用等几个方面出发,归纳和综述这些方面近年来的研究进展。 1酶固定化的传统方法 关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进。 1.1 吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

苏教新选修1 《固定化酶的制备和应用》作业 (2)

2013年高中生物 3.2 制备和应用固定化酶同步训练苏教版选修1 1.(2012·海安高二期中)固定化酶与普通酶制剂相比较,主要优点是( ) A.可以反复使用,降低成本 B.固定化酶不受酸碱度、温度等的影响 C.酶的制备更简单容易 D.酶能够催化的反应类型大大增加 解析:选A。固定化酶与普通酶制剂相比较主要优点是可以反复使用,降低成本,固定化酶仍具有酶的特性。 2.下列图形依次表示包埋法、吸附法、交联法、包埋法的一组是( ) A.①②③④B.④③②① C.③①②④D.④②③① 解析:选C。考查酶固定的方法及对每种方法的原理的理解。 3.关于固定化酶技术的说法,正确的是( ) A.固定化酶技术就是固定反应物,将酶依附着载体围绕反应物旋转的技术 B.固定化酶的优势在于能催化一系列的酶促反应 C.固定化酶中的酶无法重复利用 D.固定化酶技术是将酶固定在一定空间内的技术 解析:选D。固定化酶是利用物理或化学方法将酶固定在一定空间内的技术,其优点是酶被固定在一定装置内可重复利用;其缺点是无法同时解决一系列酶促反应。在固定过程中,固定的是酶而不是反应物。 4.使用固定化细胞的优点是( ) A.能催化大分子物质的水解 B.可催化一系列化学反应 C.与反应物易接近

D.有利于酶在细胞外发挥作用 解析:选B。固定化细胞的优点是可催化一系列反应。 5.(2012·无锡高二检测)下列叙述不.正确的是( ) A.从操作角度来考虑,固定化细胞比固定化酶更容易 B.固定化细胞比固定化酶对酶活性的影响更小 C.固定化细胞固定的是一种酶 D.将微生物的发酵过程变成连续的酶反应,应选择固定化细胞技术 解析:选C。固定化细胞内酶的活性基本没有损失,保留了细胞内原有的多酶系统,所以固定化细胞不同于固定化酶只固定一种酶。 6.某一实验小组的同学,欲通过制备固定化酵母菌细胞进行葡萄糖溶液发酵实验,实验材料及用具齐全。 (1)制备固定化酵母菌细胞常用________法。 (2)制备固定化酵母细胞的过程为: ①使干酵母与________混合并搅拌,使酵母菌活化; ②将无水CaCl2溶解在蒸馏水中,配成CaCl2溶液; ③用酒精灯加热配制海藻酸钠溶液; ④海藻酸钠溶液冷却至常温再加入已活化的酵母菌细胞,充分搅拌并混合均匀; ⑤用注射器将海藻酸钠和酵母菌细胞的混合物缓慢滴入氯化钙溶液中。 (3)该实验小组用下图所示的装置来进行葡萄糖发酵:(a是固定化酵母,b是反应柱) ①从上端漏斗中加入反应液的浓度不能过高的原因是: ________________________________________________________________________。 ②要想得到较多的酒精,加入反应液后的操作是________活塞1和________活塞2。 ③为使该实验中所用到的固定化酵母菌细胞可以反复利用,实验过程一定要在________条件下进行。

固定化酶在现代工业中的应用

固定化酶在现代工业中的应用姓名:胡艳芬学号:2008132106 指导教师:张孟 摘要酶是一类有催化功能的蛋白质,具有反应条件温和, 底物专一性强, 可在水溶液和中性pH 下操作等优点。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处。本文简要介绍了固定化酶的概念、制备方法及其在生物、医药、环境保护等方面的广泛应用。重点介绍一些固定化酶在现代工业中的应用,并对其应用前景进行了展望。 关键词固定化酶制备工业应用前景 酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。大多数酶是水溶性的。由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。酶的最大缺点是其不稳定性,在酸、碱、热及有机溶剂中易发生变性,活性降低或丧失;而且酶反应后,会在溶液中残留,造成酶反应难以连续化、自动化,同时也不利于终产品的分离提纯,这些都大大阻碍了酶工业的发展,所以有必要采取酶工程技术改善这些缺点。酶工程技术措施较多,其中酶的固定化技术是重要举措之一。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能[2]。 已固定化的酶像化学反应所用的固体催化剂那样, 既能发挥它们的催化特性, 又能回收, 并能多次反复使用, 使整个生产工艺可以连续化、自动化。近年来, 国内外科技工作者在固定化酶在工业生产中的应用做了大量研究,并得到了广泛的发展,本文将对这些成就做具体介绍。 1 固定化酶的概念 1916 年Nelson 和Griffin最先发现了酶的固定化现象后, 科学家就开始了固定化酶的研究工作。1969 年日本一家制药公司第1 次将固定化的酰化氨基酸水解酶用来从混合氨基酸中生产L-氨基酸, 开辟了固定化酶工业化应用的新纪元。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能。通常酶是游离的,而经过固定化以后,酶被束缚在一定区域内,因而这样的酶被称为固定化酶[ 3, 4 ]。

纳米材料固定化酶的研究进展_高启禹

?综述与专论? 2013年第6期 生物技术通报 BIOTECHNOLOGY BULLETIN 酶的固定化方法和技术研究是酶工程研究的重点之一,其核心是如何将游离的酶通过一定的方式与水不溶性的载体相结合,同时保持酶的催化活性和催化特性。固定化酶的概念自1953年由德国科学家Gubhofen [1]提出以来,先后经过了实验室研发到工业化生产的重大转折,并建立了传统的固定化酶的基本方法,如包埋法、交联法、吸附法和共价结合法[2]。近年来,随着结构生物学、蛋白质工程及材料科学的不断发展,在酶的固定中出现了一些新型载体和新型技术,从而使酶在负载能力、酶活力和稳定性等方面获得了极大提高,且降低了酶在工农业应用中的催化成本。这些载体和技术包括交联酶聚集体、“点击”化学技术、多孔支持物和最近的以纳米粒子为基础的酶的固定化[3]。纳米材料作为 收稿日期:2012-11-27基金项目:河南省科技厅科技攻关项目(112102210299),河南省教育厅自然研究计划项目(2011A180026)作者简介:高启禹,男,硕士,讲师,研究方向:酶与酶工程;E -mail :gaog345@https://www.docsj.com/doc/ae16575785.html, 纳米材料固定化酶的研究进展 高启禹1 徐光翠2 陈红丽1 周晨妍1 (1.新乡医学院生命科学技术学院 河南省遗传性疾病与分子靶向药物重点实验室培育基地,新乡 453003; 2.新乡医学院公共卫生学院,新乡 453003) 摘 要: 纳米材料在蛋白酶及核酶的固定化研究领域进展迅速,主要包括各种磁性纳米载体及非磁性纳米载体。目前在固定化纳米载体的特性、固定化方法及固定化效果上已进行了广泛探讨。综述以纳米载体的研究现状为基础,分析纳米载体固定化酶的应用前景及纳米载体固定对酶学性质的影响,并对该技术的研究进行介绍和展望。 关键词: 纳米材料 固定化酶 磁性载体 非磁性载体 核酶 Research Progress of Nanoparticles for Immobilized Enzymes Gao Qiyu 1 Xu Guangcui 2 Chen Hongli 1 Zhou Chenyan 1 (1. College of Life Science and Technology ,Xinxiang Medical University ,Henan Key Laboratory of Hereditary Disease and Molecular Target Drug Therapy (Cultivating Base ),Xinxiang 453003;2. College of Public Health ,Xinxiang Medical University ,Xinxiang 453003) Abstract: Immobilization of protease and ribozyme by nanometer carrier are researched as a more useful means, including of the magnetic nanoparticle and nonmagnetic nanoparticles. Currently, the types of immobilized carrier and methods and results of nanoparticles are discussed. In this paper, we describe the current application of immobilized enzyme by nanocarrier, the effect of nanoparticles matrix to enzymatic properties and the prospect of application for the above mentioned technology were introduced, and the direction of the development of nanoparticles immobilization of enzyme was analyzed. Key words: Nanoparticle cartie Immobilized enzymes Magnetic nanoparticles Non magnetic nanoparticles Ribozyme 酶固定化的新型载体,能够体现良好的生物相容性、较大的比表面积、较小的颗粒直径、较小的扩散限制、有效提高载酶量及在溶液中能稳定存在等优点[4]。固定化的微粒状态根据纳米材料物理形态的差异性可分为纳米粒(包括纳米球、纳米囊)、纳米纤维(包括纳米管、纳米线)、纳米膜及纳米块等。目前,用于酶固定化的纳米形态以纳米粒(Nanoparticles,Nps)最为常见,纳米粒通常指粒子尺寸在1-1 000 nm 范围内的球状或囊状结构的粒子。而用于酶固定的纳米载体材料有磁性纳米载体、非磁性纳米载体等[5]。但是,在进行相关固定化设计时,仍然需严格遵循固定化酶的主要任务,即一方面要满足应用上的催化要求;另一方面又要满足在调节控制及分离上的非催化要求。

相关文档