文档视界 最新最全的文档下载
当前位置:文档视界 › 动态规划解析

动态规划解析

动态规划解析
动态规划解析

动态规划解析

第一题导弹拦截

本题第一问实际上是给出数列a1..a n,求最长非递增序列的长度,{容易想到以n来划分子问题,即分别求a1..a n-1, a1..a n-2, …, a1,中最长非递增序列长度,但各级子问题之间不易建立转化关系}将子问题具体一些,我们可以用f[k]表示数列a1..a k中以a k结尾的最长非递增序列的长度,题目所求即为max{f[1..n]}。转移方程为

f[n]=max{f[k]}+1;(0<=k

第二问可以用贪心做,设拦截前k个导弹用o2个系统,其最后拦截的高度分别为l[1]..l[o2],则拦截第k+1个导弹时,找能够拦截这枚导弹的系统中最后拦截高度最小的,若没有这样的系统则新增一个系统。

附源程序:

const max = 10000;

type arr = array[0..max]of integer;

var d,l : arr;

i,j,k,m,n,o1,o2,t : longint;

procedure input;

begin

fillchar(d,sizeof(d),0);

fillchar(l,sizeof(l),0);

writeln('input:');

i:=0;

repeat

i:=i+1;

read(d[i]);

until eoln;

t:=i;

o1:=0; o2:=0;

end;

procedure output;

begin

writeln('Output:');

writeln(o1);

writeln(o2);

end;

procedure main1;

begin

l[t]:=1;

for i:=t-1 downto 1 do begin

k:=0;

for j:=i+1 to t do

if (l[j]>k)and(d[i]>=d[j]) then k:=l[j];

l[i]:=k+1;

end;

for i:=1 to t do

if l[i]>o1 then o1:=l[i];

end;

procedure main2;

begin

for i:=0 to t do l[i]:=maxint;

o2:=1;

for i:=1 to t do begin

k:=0;

for j:=1 to o2 do

if (l[j]>=d[i])and(l[j]<=l[k]) then k:=j;

if k=0 then begin

o2:=o2+1;

k:=o2;

end;

l[k]:=d[i];

end;

end;

begin

input;

main1;

main2;

output;

end.

第二题 石子合并

设f[i,j](i<=j)表示将第i 堆到第j 堆石子合并为一堆所得的最大分数(最小时类似)。问题所求即为f[1,n]。根据合并规则,f[i,j]的解只于f[i,k],f[k+1,j](i<=k

p=i Σd[p];初始时f[k,k]=0(1<=k<=n); 附源程序:

Program gether_stone;

type

Trock_best = Array[1..100,1..100] of longint; Trock_k = Array[1..100,1..100] of byte; Tstone = Array[0..100] of word;

Tbak = Array[1..100] of boolean;

var

rock_best:^Trock_best;

rock_k:Trock_k;

stone,tot:Tstone;

stone1:Tstone;

bak:Tbak;

n:Word;

function count(first,k,last:Word):longint;

var

s1:longint;

begin

if first<=last

then s1:=tot[last]-tot[first-1]

else s1:=tot[n]+tot[last]-tot[first-1];

count:=rock_best^[first,k]+rock_best^[(k mod n)+1,last]+s1;

end;

function try(now,old:longint;job:byte):boolean; begin

if ((job=1) and (nowold))

then try:=true

else try:=false;

end;

procedure get(first,last,job:integer);

var

k:Word;

now:longint;

begin

k:=first;

while k<>last do

begin

now:=count(first,k,last);

if try(now,rock_best^[first,last],job)

then

begin

rock_best^[first,last]:=now;

rock_k[first,last]:=k;

end;

k:=(k mod n)+1;

end;

end;

procedure init;

var

i:Word;

begin

动态规划例题

例1:机器负荷分配问题 某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。 例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表: 时期(k) 1 2 3 4 需要量(d k ) 2(单位) 3 2 4 假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为: 若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0 又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低? 例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元) 年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年 0 1 23 21 6 8 19 22

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

连续变量动态规划例子

如对你有帮助,请购买下载打赏,谢谢! 一、用动态规划求解以下非线性规划问题: max u= xyz s.t. x +2y +z ≤12 x, y, z ≥ 0 阶段:k=4 决策变量:d 1=x ,d 2=y ,d 3=z 状态变量和状态转移方程:x 1=12,x 2=x 1-d 1,x 3=x 2-d 2,x 4=x 3-d 3 决策允许集合:0≤d 1≤x 1,0≤2d 2≤x 2,0≤d 3≤x 3 即: 0≤d 1≤x 1,0≤d 2≤1/2x 2,0≤d 3≤x 3 阶段指标:v k (x k ,d k )=d k 递推方程:f k (x k )=max{v k (x k ,d k )f k+1(x k+1)} 终端条件:f 4(x 4)=1 k=4,f 4(x 4)=1 k=3 k=2 k=1 x 1=12,d 1*=1/3x 1=4,x 2=x 1-d 1=12-4=8,d 2*=1/4x 2=1/4?8=2,x 3=x 2-2d 2=8-2?2=4,d 3*=x 3=4 max u=1/54?x 13=1/54?1728=32 即x=4,y=2,z=4,max u=32。 二、用动态规划求解以下连续变量的非线性规划问题 解: 决策变量: 状态变量: 由上式得到: 状态转移方程为: 决策允许集合为: 由x 0=0,得到d 1=x 1(唯一的),由x 2≥0,得到0≤d 2≤x 2,由x 3≥0,得到0≤d 3≤x 3 注意:以上的状态转移方程为)d ,x (T x k k 1k =-而不是)d ,x (T x k k 1k =+,即递推过程不是逆向递推而是正向递推,终端条件应为: f 0(x 0)=0 最优解为: x 3=12,d *3=1/3x 3=4,x 2=x 3-d 3=12-4=8,d *2=1/2x 2=4,x 1=x 2-d 2=4,d *1=x 1=4 min z=1/3x 23=48

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

(整理)matlab 动态规划讲义.

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的

一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划习题精讲

信息学竞赛中的动态规划专题 哈尔滨工业大学周谷越 【关键字】 动态规划动机状态典型题目辅助方法优化方法 【摘要】 本文针对信息学竞赛(面向中学生的Noi以及面向大学生的ACM/ICPC)中的动态规划算法,从动机入手,讨论了动态规划的基本思想和常见应用方法。通过一些常见的经典题目来归纳动态规划的一般作法并从理论上加以分析和说明。并介绍了一些解决动态规划问题时的一些辅助技巧和优化方法。纵观全文可知,动态规划的关键在于把握本质思想的基础上灵活运用。 【目录】 1.动态规划的动机和基本思想 1.1.解决重复子问题 1.2.解决复杂贪心问题 2.动态规划状态的划分方法 2.1.一维状态划分 2.2.二维状态划分 2.3.树型状态划分 3.动态规划的辅助与优化方法 3.1.常见辅助方法 3.2.常见优化方法 4.近年来Noi动态规划题目分析 4.1 Noi2005瑰丽华尔兹 4.2 Noi2005聪聪与可可 4.3 Noi2006网络收费 4.4 Noi2006千年虫 附录参考书籍与相关材料

1.动态规划的动机和基本思想 首先声明,这里所说的动态规划的动机是从竞赛角度出发的动机。 1.1 解决重复子问题 对于很多问题,我们利用分治的思想,可以把大问题分解成若干小问题,然后再把各个小问题的答案组合起来,得到大问题的解答。这类问题的共同点是小问题和大问题的本质相同。很多分治法可以解决的问题(如quick_sort,hanoi_tower等)都是把大问题化成2个以内的不相重复的小问题,解决的问题数量即为∑(log2n / k)。而考虑下面这个问题: USACO 1.4.3 Number Triangles http://122.139.62.222/problem.php?id=1417 【题目描述】 考虑在下面被显示的数字金字塔。 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。每一步可以走到左下方的点也可以到达右下方的点。 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 在上面的样例中,从7到3到8到7到5的路径产生了最大和:30。 【输入格式】 第一个行包含R(1<= R<=1000) ,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。所有的被供应的整数是非负的且不大于100。 【输出格式】 单独的一行包含那个可能得到的最大的和。 【样例输入】 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 【样例输出】 30 显然,我们同样可以把大问题化成小问题来解决。如样例中最底层的6就可以从次底层

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

动态规划经典案例详解(背包问题)

动态规划经典案例详解之背包问题 【摘要】本文主要从动态规划经典案例——背包问题的动态规划设计思路出发,结合具体实例,对动态规划在程序设计中的典型应用以及衍生拓展进行详细分析。 【关键字】动态规划信息学奥赛0/1背包问题 动态规划并非一个算法,而是一种解题的思路,其核心思想是通过使用大量的存储空间把中间结果记录下来,大大减少重复计算的时间,从而提高的程序的执行效率,因为信息学奥林匹克复赛题目的解决程序一般是有时间限制的,对于某些用搜索必然耗费大量时间的题目,动态规划几乎是唯一的选择。但是动态规划并没有一个简单的模型可以套用,对于每个不同的题目都有对应的不同规划思路,我们只能通过对一些动态规划经典案例的学习来训练自己的动态规划思维能力,从而以不变应万变,应付各种复杂的程序设计,本文通过对动态规划经典案例之一的背包问题进行详细阐述,旨在让学生了解动态规划和搜索的不同设计思路以及动态规划的优越性。 【原型例题】 从n个物品中选取装入背包的物品,每件物品i的重量为wi,价值为pi。求使物品价值最高的选取方法。 【输入文件】 第一行一个数c,为背包容量。 第二行一个数n,为物品数量 第三行n个数,以空格间隔,为n个物品的重量 第四行n个数,以空格间隔,为n个物品的价值 【输出文件】 能取得的最大价值。 【分析】 初看这类问题,第一个想到的会是贪心,但是贪心法却无法保证一定能得到最优解,看以下实例: 贪心准则1:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2,w=[100,10,10],p=[20,15,15],c=105。当利用价值贪婪准则时,获得的解为x=[1,0,0],这种方案的总价值为20。而最优解为[0,1,1],其总价值为30。 贪心准则2:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n=2,w=[10,20], p=[5,100],c=25。当利用重量贪婪策略时,获得的解为x=[1,0],比最优解[0,1]要差。

动态规划matlab仿真实例整理

动态规划在火力分配中地应用. 1.问题描述 设有m个目标,目标价值(重要性和危害性)各不相同,用数值A(K=1,K =,其n枚导弹突袭,导弹击毁目标地概率P2,..m)表 示,计划用K为向目标发射地导弹数,问是常数,取决于导弹地特性与目标地性质;中题:做出方案使预期地突击效果最大. 2.问题建模 上述问题可以表述为 约束条件为 (为非负整数) 3.算法描述 ),和(n=5am=4下面通过一个实例说明:设目标数目为4(),导弹为5K取值情况如下表所示:表1:A取值情况k 4 2 3 1 K 目标 3 6 7 8 0.9 0.3 0.2

将火力分配可分为4个阶段,每个阶段指标函数为: 可能取值为0,1,2,3,4,5,将函数值带人如下表:表2函数值 u 0 0 0 0 0 1.79 1 1.81 1.45 2.36 2.51 2 3.16 2.64 3.79 2.81 4.66 3 4.15 3.61 2.93 4 4.89 5.19 4.41

5 5.44 5.06 5.51 动态规划问题基本方程为: c =0 逐次向前推一级 K=4 K=3 K=2 K=1

() 地最大值然后反推回去就可以获得最优地分配方案只需要求解4.Matlab仿 真求解 地最大值,对应取值为整数,可以采用动态规划地方法,获得与因为 地最优方案 function[p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) %求解动态规划问题最小值函数 k=length(x(1,:)) %判断决策级数 x_isnan=~isnan(x)。 % 非空状态矩阵 t_vubm=inf*ones(size(x))。 % 性能指标中间矩阵 f_opt=nan*ones(size(x))。 % 总性能指标矩阵 d_opt=f_opt。 %每步决策矩阵 tmp1=find(x_isnan(:,k))。 % 最后一步状态向量 tmp2=length(tmp1)。 % 最后一步状态个数 for i=1:tmp2 u=feval(DecisFun,k,x(tmp1(i),k))。 tmp3=length(u)。%决策变量 for j=1:tmp3 % 求出当前状态下所有决策地最小性能指标 tmp=feval(SubObjFun,k,x(tmp1(i),k),u(j))。 if tmp <= t_vubm(i,k) %t_vub f_opt(i,k)=tmp。 d_opt(i,k)=u(j)。 t_vubm(i,k)=tmp。 end。 end。 end for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii))。 tmp20=length(tmp10)。 for i=1:tmp20 %求出当前状态下所有可能地决策 u=feval(DecisFun,ii,x(tmp10(i),ii))。 tmp30=length(u) 。 for j=1:tmp30 % 求出当前状态下所有决策地最小性能指标 tmp00=feval(SubObjFun,ii,x(tmp10(i),ii),u(j))。 % 单步性能指标 tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j))。 % 下一状态 tmp50=x(:,ii+1)-tmp40。 % 找出下一状态在 x 矩阵地位置 tmp60=find(tmp50==0) 。 if~isempty(tmp60) if nargin<6 %矩阵不同需要修改nargin地值,很重要

动态规划典型例题

1、单调递增最长子序列 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0

2、最长公共子序列 描述 如题,需要写一个程序,得出最长公共子序列。 tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。 输入 第一行给出一个整数N(0

3、括号匹配 时间限制:1000 ms | 内存限制:65535 KB 描述 给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。 如: []是匹配的 ([])[]是匹配的 ((]是不匹配的 ([)]是不匹配的 输入 第一行输入一个正整数N,表示测试数据组数(N<=10) 每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符, S的长度不超过100 输出 对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。每组 测试输出占一行 样例输入 4 [] ([])[] ((] ([)] 样例输出 3 2

动态规划习题完整版

动态规划习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

动态规划专题分类视图数轴动规题: 题1.2001年普及组第4题--装箱问题 【问题描述】有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0

对于100%的数据,砝码的种类n满足:1≤n≤100; 对于30%的数据,砝码的总数量C满足:1≤C≤20; 对于100%的数据,砝码的总数量C满足:1≤C≤100; 对于所有的数据,砝码的总重量W满足:1≤W≤400000; 题3.石子归并-szgb.pas 【问题描述】有一堆石头质量分别为W1,W2,…,Wn.(Wi≤10000),将石头合并为两堆,使两堆质量的差最小。 【输入】输入文件szgb.in的第一行只有一个整数n(1≤n≤50),表示有n堆石子。接下去的n行,为每堆石子质量。 【输出】输出文件szgb.out的只有一行,该行只有一个整数,表示最小的质量差. 【样例输入】 5 5 8 13 27 14 【样例输出】 3 题4.补圣衣 【问题描述】有四个人,每人身上的衣服分别有s1,s2,s3和s4处破损,而且每处破损程度不同,破损程度用需修好它用的时间表示 (A1...As1,B1...Bs2,C1...Cs3,D1...Ds4)。不过你可以同时修补2处破损。但是这2处破损,只能是同一件衣服上的。就是说你只能同时修补一件衣服,修好了,才能修补下一件。 【输入】本题包含5行数据:第1行,为s1,s2,s3,s4(1≤s1,s2,s3,s4≤20) 第2行,为A1...As1共s1个数,表示第一件衣服上每个破损修好它所需的时间 第3行,为B1...Bs2共s2个数,表示第二件衣服上每个破损修好它所需的时间 第4行,为C1...Cs3共s3个数,表示第三件衣服上每个破损修好它所需的时间 第5行,为D1...Ds4共s4个数,表示第四件衣服上每个破损修好它所需的时间 (1≤A1...As1,B1...Bs2,C1...Cs3,D1...Ds4≤60) 【输出】输出一行,为修好四件衣服所要的最短时间。 【样例输入】 1213 5 43 6 243 【样例输出】 20 题5.光光的作业homework.pas/homework.exe 【问题描述】光光上了高中,科目增多了。在长假里,光光的老师们都非常严厉,都给他布置了一定量的作业。假期里,光光一共有的时间是k小时。在长假前,老师们一共给光光布置了n份作业,第i份作业需要的时间是ti小时。但是由于老师们互相不

动态规划matlab仿真实例

动态规划在火力分配中的应用。 1.问题描述 设有m个目标,目标价值(重要性和危害性)各不相同,用数值A K(K=1,2,..m)表示,计划用n枚导弹突袭,导弹击毁目标的概率P K=,其中是常数,取决于导弹的特性与目标的性质;为向目标发射的导弹数,问题:做出方案使预期的突击效果最大。 2.问题建模 上述问题可以表述为 约束条件为 (为非负整数) 3.算法描述 下面通过一个实例说明:设目标数目为4(m=4),导弹为5(n=5),和a K取值情况如下表所示: 表1:A k 取值情况 目标K 1 2 3 4 8 7 6 3 0.2 0.3 0.5 0.9 将火力分配可分为4个阶段,每个阶段指标函数为:

可能取值为0,1,2,3,4,5,将函数值带人如下表: 表2 函数值 u 0 0 0 0 0 1 1.45 1.81 2.36 1.79 2 2.64 3.16 3.79 2.51 3 3.61 4.15 4.66 2.81 4 4.41 4.89 5.19 2.93 5 5.0 6 5.44 5.51 2.97 动态规划问题基本方程为: c =0 逐次向前推一级 K=4 K=3 K=2 K=1 () 只需要求解的最大值然后反推回去就可以获得最优的分配方案

4.Matlab仿真求解 因为与取值为整数,可以采用动态规划的方法,获得的最大值,对应的

最优方案 function[p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) %求解动态规划问题最小值函数 k=length(x(1,:)) %判断决策级数 x_isnan=~isnan(x); % 非空状态矩阵 t_vubm=inf*ones(size(x)); % 性能指标中间矩阵 f_opt=nan*ones(size(x)); % 总性能指标矩阵 d_opt=f_opt; %每步决策矩阵 tmp1=find(x_isnan(:,k)); % 最后一步状态向量 tmp2=length(tmp1); % 最后一步状态个数 for i=1:tmp2 u=feval(DecisFun,k,x(tmp1(i),k)); tmp3=length(u);%决策变量 for j=1:tmp3 % 求出当前状态下所有决策的最小性能指标 tmp=feval(SubObjFun,k,x(tmp1(i),k),u(j)); if tmp <= t_vubm(i,k) %t_vub f_opt(i,k)=tmp; d_opt(i,k)=u(j); t_vubm(i,k)=tmp; end; end; end for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii)); tmp20=length(tmp10); for i=1:tmp20 %求出当前状态下所有可能的决策 u=feval(DecisFun,ii,x(tmp10(i),ii)); tmp30=length(u) ; for j=1:tmp30 % 求出当前状态下所有决策的最小性能指标 tmp00=feval(SubObjFun,ii,x(tmp10(i),ii),u(j)); % 单步性能指标 tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); % 下一状态 tmp50=x(:,ii+1)-tmp40; % 找出下一状态在 x 矩阵的位置 tmp60=find(tmp50==0) ; if~isempty(tmp60) if nargin<6 %矩阵不同需要修改nargin的值,很重要 tmp00=tmp00+f_opt(tmp60(1),ii+1); % set the default object value else tmp00=feval(ObjFun,tmp00,f_opt(tmp60(1),ii+1)); end %当前状态的性能指标 if tmp00<=t_vubm(i,ii) f_opt(i,ii)=tmp00; d_opt(i,ii)=u(j);

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划的优化讲义

动态规划的优化一、时间上的优化 花店橱窗布置问题(IOI99试题)。假设想以最美观的方式布置花店的橱窗,有F束花,每束花的品种都不一样,同时,至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,并从左到右,从1到V顺序编号,V是花瓶的数目,编号为1的花瓶在最左边,编号为V的花瓶在最右边,花束可以移动,并且每束花用1到F的整数唯一标识,标识花束的整数决定了花束在花瓶中列的顺序,即如果I<J,则花束I必须放在花束J左边的花瓶中。例如,假设杜鹃花的标识数为1,秋海棠的标识数为2,康乃馨的标识数为3,所有的花束在放入花瓶时必须保持其标识数的顺序,即:杜鹃花必须放在秋海棠左边的花瓶中,秋海棠必须放在康乃馨左边的花瓶中。如果花瓶的数目大于花束的数目,则多余的花瓶必须空,即每个花瓶中只能放一束花。 每一个花瓶的形状和颜色也不相同,因此,当各个花瓶中放入不同的花束时,会产生不同的美学效果,并以美学值(一个整数)来表示,空置花瓶的美学值为0。在上述例子中,花瓶与花束的不同搭配所具有的美学值,可以用如下表格表示:

根据表格,杜鹃花放在花瓶2中,会显得非常好看,但若放在花瓶4中则显得很难看。 为取得最佳美学效果,必须在保持花束顺序的前提下,使花的摆放取得最大的美学值,如果具有最大美学值的摆放方式不止一种,则输出任何一种方案即可。题中数据满足下面条件:1≤F≤100,F≤V ≤100,-50≤A IJ≤50,其中A IJ是花束I摆放在花瓶J中的美学值。输入整数F,V和矩阵(A IJ),输出最大美学值和每束花摆放在各个花瓶中的花瓶编号。 【分析】问题实际就是给定F束花和V个花瓶,以及各束花放到不同花瓶中的美学值,需要你找出一种摆放的方案,使得在满足编号小的花放进编号小的花瓶中的条件下,美学值达到最大。 (1)将问题进行转化,找出问题的原型。首先,看一下上述题目的样例数据表格。 将摆放方案的要求用表格表现出来,则摆放方案需要满足:每行选且只选一个数(花瓶);摆放方案的相邻两行中,下面一行的花瓶编号要大于上面一行的花瓶编号两个条件。这时可将问题转化为:给定一个数字表格,要求编程计算从顶行至底行的一条路径,使得这条路径所经过的数字总和最大(要求每行选且仅选一个数字)。同时,路径中相邻两行的数字,必须保证下一行数字的列数大于上一行数字的列数。

动规-背包九讲完整版

背包问题九讲 v1.0 目录 第一讲 01背包问题 第二讲完全背包问题 第三讲多重背包问题 第四讲混合三种背包问题 第五讲二维费用的背包问题 第六讲分组的背包问题 第七讲有依赖的背包问题 第八讲泛化物品 第九讲背包问题问法的变化 附:USACO中的背包问题 前言 本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。现在你看到的是这个写作计划最先发布的一部分。 背包问题是一个经典的动态规划模型。它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。 读本文最重要的是思考。因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。 你现在看到的是本文的1.0正式版。我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。 目录 第一讲 01背包问题 这是最基本的背包问题,每个物品最多只能放一次。 第二讲完全背包问题 第二个基本的背包问题模型,每种物品可以放无限多次。

第三讲多重背包问题 每种物品有一个固定的次数上限。 第四讲混合三种背包问题 将前面三种简单的问题叠加成较复杂的问题。 第五讲二维费用的背包问题 一个简单的常见扩展。 第六讲分组的背包问题 一种题目类型,也是一个有用的模型。后两节的基础。 第七讲有依赖的背包问题 另一种给物品的选取加上限制的方法。 第八讲泛化物品 我自己关于背包问题的思考成果,有一点抽象。 第九讲背包问题问法的变化 试图触类旁通、举一反三。 附:USACO中的背包问题 给出 USACO Training 上可供练习的背包问题列表,及简单的解答。 联系方式 如果有任何意见和建议,特别是文章的错误和不足,或者希望为文章添加新的材料,可以通过https://www.docsj.com/doc/ac14720511.html,/user/tianyi/这个网页联系我。 致谢 感谢以下名单: ?阿坦 ?jason911 ?donglixp

相关文档
相关文档 最新文档