文档视界 最新最全的文档下载
当前位置:文档视界 › 动态规划实例源代码

动态规划实例源代码

动态规划实例源代码
动态规划实例源代码

习题

1.最长公共子序列

一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=,则另一序列Z=是X的子序列是指存在一个严格递增的下标序列,使得对于所有j=1,2,…,k有

解答如下:

a) 最长公共子序列的结构

若用穷举搜索法,耗时太长,算法需要指数时间。

易证最长公共子序列问题也有最优子结构性质

设序列X=和Y=的一个最长公共子序列Z=,则:

i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;

iii. 若xm≠yn且zk≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=

最长公共子序列问题具有最优子结构性质。

b) 子问题的递归结构

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾

部加上xm(=yn)即可得X和Y的一个最长公共子序列。当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y 的一个最长公共子序列。

由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。例如,在计算X和Y的最长公共子序列时,可能要计算出X和Yn-1及Xm-1和Y的最长公共子序列。而这两个子问题都包含一个公共子问题,即计算Xm-1和Yn-1的最长公共子序列。

我们来建立子问题的最优值的递归关系。用c[i,j]记录序列Xi和Yj的最长公共子序列的长度。其中Xi=,Yj=。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列,故c[i,j]=0。建立递归关系如下:

c) 计算最优值

由于在所考虑的子问题空间中,总共只有θ(m*n)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。

计算最长公共子序列长度的动态规划算法LCS_LENGTH(X,Y)以序列X=和Y=作为输入。输出两个数组c[0..m ,0..n]和b[1..m ,1..n]。其中c[i,j]存储Xi与Yj的最长公共子序列的长度,b[i,j]记录指示c[i,j]的值是由哪一个子问题的解达到的,这在构造最长公共子序列时要用到。最后,X和Y的最长公共子序列的长度记录于c[m,n]中。

程序如下:

#include

#include

int lcs_length(char x[], char y[]);

int main()

{

char x[100],y[100];

int len;

while(1)

{

scanf("%s%s",x,y);

if(x[0]=='0') //约定第一个字符串以‘0’开始表示结束

break;

len=lcs_length(x,y);

printf("%d\n",len);

}

}

int lcs_length(char x[], char y[] )

{

int m,n,i,j,l[100][100];

m=strlen(x);

n=strlen(y);

for(i=0;i

l[i][0]=0;

for(j=0;j

l[0][j]=0;

for(i=1;i<=m;i++)

for(j=1;j<=n;j++)

if(x[i-1]==y[j-1]) //i,j从1开始,但字符串是从0开始

l[i][j]=l[i-1][j-1]+1;

else if(l[i][j-1]>l[i-1][j])

l[i][j]=l[i][j-1];

else

l[i][j]=l[i-1][j];

return l[m][n];

}

由于每个数组单元的计算耗费Ο(1)时间,算法lcs_length耗时Ο(mn)。思考:空间能节约吗?

2.计算矩阵连乘积

在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A 的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r 的矩阵,则其乘积C=AB是一个p×r的矩阵。由该公式知计算C=AB 总共需要pqr次的数乘。其标准计算公式为:

现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要求计算出这n个矩阵的连乘积A1A2…An。

递归公式:

程序如下:

#include

int main()

{

int p[101],i,j,k,r,t,n;

int m[101][101]; //为了跟讲解时保持一致数组从1开始

int s[101][101]; //记录从第i到第j个矩阵连乘的断开位置

scanf("%d",&n);

for(i=0;i<=n;i++)

scanf("%d",&p[i]); //读入p[i]的值(注意:p[0]到p[n]共n+1项)

for(i=1;i<=n;i++) //初始化m[i][i]=0

m[i][i]=0;

for(r=1;r

for(i=1;i

{

j=i+r; //j为列

m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j]; //给m[i][j]赋初值

s[i][j]=i;

for(k=i+1;k

{

t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];

if(t

{

m[i][j]=t; //m[i][j]取最小值

s[i][j]=k;

}

}

}

printf("%d",m[1][n]);

}

3.凸多边形的最优三角剖分

多边形是平面上一条分段线性的闭曲线。也就是说,多边形是由一系列首尾相接的直线段组成的。组成多边形的各直线段称为该多边形的边。多边形相接两条边的连接点称为多边形的顶点。若多边形的边之间除了连接顶点外没有别的公共点,则称该多边形为简单多边形。一个简单多边形将平面分为3个部分:被包围在多边形内的所有点构成了多边形的内部;多边形本身构成多边形的边界;而平面上其余的点构成了多边形的外部。当一个简单多边形及其内部构成一个闭凸集时,称该简单多边形为凸多边形。也就是说凸多边形边界上或内部的任意两点所连成的直线段上所有的点均在该凸多边形的内部或边界上。

通常,用多边形顶点的逆时针序列来表示一个凸多边形,即P=表示具有n条边v0v1,v1v2,…,vn-1vn的一个凸多边形,其中,约定v0=vn 。

若vi与vj是多边形上不相邻的两个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成凸的两个子多边形。多边形的三角剖分是一个将多边形分割成互不重迭的三角形的弦的集合T。如图是一个凸多边形的两个不同的三角剖分。

凸多边形最优三角剖分的问题是:给定一个凸多边形P=以及定义在由多边形的边和弦组成的三角形上的权函数ω。要求确定该凸多边形的一个三角剖分,使得该三角剖分对应的权即剖分中诸三角形上的权之和为最小。

可以定义三角形上各种各样的权函数W。例如:定义ω(△vivjvk)=|vivj|+|vivk|+|vkvj|,其中,|vivj|是点vi到vj的欧氏距离。相应于此权函数的最优三角剖分即为最小弦长三角剖分。(注意:解决此问题的算法必须适用于任意的权函数)

4.防卫导弹

一种新型的防卫导弹可截击多个攻击导弹。它可以向前飞行,也可以用很快的速度向下飞行,可以毫无损伤地截击进攻导弹,但不可以向后或向上飞行。但有一个缺点,尽管它发射时可以达到任意高度,但它只能截击比它上次截击导弹时所处高度低或者高度相同的导弹。现对这种新型防卫导弹进行测试,在每一次测试中,发射一系列的测试导弹(这些导弹发射的间隔时间固定,飞行速度相同),该防卫导弹所能获得的信息包括各进攻导弹的高度,以及它们发射次序。现要求编一程序,求在每次测试中,该防卫导弹最多能截击的进攻导弹数量,一个导弹能被截击应满足下列两个条件之一:

a)它是该次测试中第一个被防卫导弹截击的导弹;

b)它是在上一次被截击导弹的发射后发射,且高度不大于上一次被截击导弹的高度的导弹。

输入数据:第一行是一个整数n,以后的n各有一个整数表示导弹的高

度。

输出数据:截击导弹的最大数目。

分析:定义l[i]为选择截击第i个导弹,从这个导弹开始最多能截击的导弹数目。

由于选择了第i枚导弹,所以下一个要截击的导弹j的高度要小于等于它的高度,所以l[i]应该等于从i+1到n的每一个j,满足h[j]<=h[i]的j中l[j]的最大值。

程序如下:

#include

int main()

{

int i,j,n,max,h[100],l[100];

scanf("%d",&n);

for(i=0;i

scanf("%d",&h[i]);

l[n-1]=1;

for(i=n-2;i>=0;i--)

{

max=0;

for(j=i+1;j

if(h[i]>h[j]&&max

max=l[j];

l[i]=max+1;

}

printf("%d",l[0]);

}

5.石子合并

在一个圆形操场的四周摆放着n堆石子(n<= 100),现要将石子有次序地合并成一堆。规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。编一程序,由文件读入堆栈数n及每堆栈的石子数(<=20)。

选择一种合并石子的方案,使得做n-1次合并,得分的总和最小;

输入数据:

第一行为石子堆数n;

第二行为每堆的石子数,每两个数之间用一个空格分隔。

输出数据:

从第一至第n行为得分最小的合并方案。第n+1行是空行.从第n+2行到第2n+1行是得分最大合并方案。每种合并方案用n行表示,其中第i行(1<=i<=n)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可)。要求将待合并的两堆石子数以相应的负数表示。Sample Input

4

4 5 9 4

Sample Output

-4 5 9 -4

-8 -5 9

-13 -9

22 4 -5 -9 4

4 -14 -4

-4 -18

22

6.最小代价子母树

设有一排数,共n个,例如:22 14 7 13 26 15 11。任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为

最小。

输入、输出数据格式与“石子合并”相同。

Sample Input

4

12 5 16 4

Sample Output

-12 -5 16 4

17 -16 -4

-17 -20

37

7.商店购物

某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的顾客,商店提供了特殊优惠价。特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花的价格不是6而是5 ICU;2个花瓶加1朵花是10 ICU不是12 ICU。

编一个程序,计算某个顾客所购商品应付的费用。要充分利用优惠价以使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量,即使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种商品价格用优惠价如上所述,并且某顾客购买物品为:3朵花和2个花瓶。那么顾客应付款为14 ICU因为:

1朵花加2个花瓶优惠价:10 ICU

2朵花正常价:4 ICU

输入数据:第一个文件INPUT.TXT描述顾客所购物品(放在购物筐中);第二个文件描述商店提供的优惠商品及价格(文件名为OFF

ER.TXT)。两个文件中都只用整数。

第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5),表示所购商品种类数。下面共B行,每行中含3个数C,K,P。C 代表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件商品的价格),1≤P≤999。请注意,购物筐中最多可放5*5=25件商品。

第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤9 9),表示共有S 种优惠。下面共S行,每一行描述一种优惠商品的组合中商品的种类。下面接着是几个数字对(C,K),其中C代表商品编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。本行最后一个数字P(1≤P≤9999)代表此商品组合的优惠价。当然,优惠价要低于该组合中商品正常价之总和。

输出数据:在输出文件OUTPUT.TXT中写一个数字(占一行),该数字表示顾客所购商品(输入文件指明所购商品)应付的最低货款。8.旅游预算

一个旅行社需要估算乘汽车从某城市到另一城市的最小费用,沿路有若干加油站,每个加油站收费不一定相同。旅游预算有如下规则:

若油箱的油过半,不停车加油,除非油箱中的油不可支持到下一站;每次加油时都加满;在一个加油站加油时,司机要花费2元买东西吃;司机不必为其他意外情况而准备额外的油;汽车开出时在起点加满油箱;计算精确到分(1元=100分)。编写程序估计实际行驶在某路线所需的最小费用。

输入数据:从当前目录下的文本文件“route.dat”读入数据。按以下格式输入若干旅行路线的情况:

第一行为起点到终点的距离(实数)

第二行为三个实数,后跟一个整数,每两个数据间用一个空格隔开。其中第一个数为汽车油箱的容量(升),第二个数是每升汽油行驶的公里数,第三个数是在起点加满油箱的费用,第四个数是加油站的数量。(〈=50)。接下去的每行包括两个实数,每个数据之间用一个空格分隔,其中第一个数是该加油站离起点的距离,第二个数是该加油站每升汽油的价格(元/升)。加油站按它们与起点的距离升序排列。所有的输入都有一定有解。

输出数据:答案输出到当前目录下的文本文件“route.out”中。该文件包括两行。第一行为一个实数和一个整数,实数为旅行的最小费用,以元为单位,精确到分,整数表示途中加油的站的N。第二行是N个整数,表示N个加油的站的编号,按升序排列。数据间用一个空格分隔,此外没有多余的空格。

Sample Input

516.3 38.09 1

15.7 22.1 20.87 3 2

125.4 1.259

297.9 1.129

345.2 0.999

Sample Output

38.09 1

2

9.皇宫看守

太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫。皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状;某些宫殿间可以互

相望见。大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。可是陆小凤手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。

请你编程计算帮助陆小凤布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。

输入数据:输入数据由文件名为intput.txt的文本文件提供。输入文件中数据表示一棵树,描述如下:

第1行n,表示树中结点的数目。

第2行至第n+1行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号i(0

输出数据:输出到output.txt文件中。输出文件仅包含一个数,为所求的最少的经费。

如右图的输入数据示例:

Sample Input

6

1 30 3

2

3 4

2 16 2 5 6

3 5 0

4 4 0

5 11 0

6 5 0

Sample Output

25

10.游戏室问题

有一个游戏室里有多个游戏室,并且这每个游戏室里还有多个游戏室,每个游戏室里面还有游戏室,依此类推。进入每个游戏室都可得到一定的快乐,每个游戏室的门票价格都大于等于0,都有一个快乐值,并且只有进入了一个游戏室,才可以进入它内部的游戏室,小明现在有n元钱,问最大能得到多少的快乐。

11.*基因问题

已知两个基因序列如s:AGTAGT;t:ATTAG。现要你给序列中增加一些空格后,首先使得两个序列的长度相等,其次两个串对应符号匹配得到的值最大。基因只有四种分别用A、G、C、T表示,匹配中不允许两个空格相对应,任意两符号的匹配值由下表给出:

A G C T 〕

A 5 -2 -1 -2 -4

G -2 5 -4 -3 -2

C -1 -4 5 -5 -1

T -2 -3 -5 5 -2

〕-4 -2 -1 -2

提示:定义问题l[i][j]为取第一个序列的前i项,和第二个序列的前j项,这两个序列加空格匹配的最大值。它的最优值与三个子问题有关,l[i-1][j-1]、l[i][j-1]、l[i-1][j]。

建立递归公式如下:

其中m[0][t[j]表示表中空格和t[j]匹配的对应值。

思考:本问题的初始化。

12.*田忌赛马

田忌与齐王赛马,双方各有n匹马参赛(n<=100),每场比赛赌注为1

两黄金,现已知齐王与田忌的每匹马的速度,并且齐王肯定是按马的速度从快到慢出场,现要你写一个程序帮助田忌计算他最好的结果是赢多少两黄金(输用负数表示)。

分析:先排序,齐王的马的速度放在数组a中,田忌的马的速度放在数组b中。本问题应用的算法是动态规划和贪心算法相结合解决的。从两人的最弱的马入手:

若田忌的马快,就让这两匹马比赛;

若田忌的马慢,干脆就让他对付齐王最快的马;

若两匹马的速度相等,这时有两种选择方案,或者它俩比赛,或者对付齐王最快的马。

定义子问题:l(i,j)为齐王的从第i匹马开始的j匹马与田忌的最快的j 匹马比赛,田忌所获得的最大收益。

则:

程序具体实现时,为了适合c数据从0开始,稍加变动,定义子问题:l(i,j)为齐王的从第i匹马开始到第i+j匹马共j+1匹马与田忌的最快的j+1匹马比赛,田忌所获得的最大收益。初始化时:l[i][0]表示齐王的第i匹马与田忌最快的马比赛的结果。

程序如下:

#include

void readdata();

void init();

int n,a[100],b[100],l[100][100];

int main()

{

int i,j;

readdata();

init();

for(i=n-2;i>=0;i--)

for(j=1;j

if(a[i+j]

l[i][j]=l[i][j-1]+1;

else if(a[i+j]>b[j])

l[i][j]=l[i+1][j-1]-1;

else if(l[i+1][j-1]-1>l[i][j-1]) l[i][j]=l[i+1][j-1]-1;

else

l[i][j]=l[i][j-1];

printf("%d",l[0][n-1]);

}

void readdata()

{

int i;

scanf("%d",&n);

for(i=0;i

scanf("%d",&a[i]);

for(i=0;i

scanf("%d",&b[i]);

}

void init()

{

int i;

// qsort(a,n); //略

for(i=0;i

{

if(a[i]

l[i][0]=1;

else if(a[i]==b[0])

l[i][0]=0;

else

l[i][0]=-1;

}

}

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

土地开发整理规划数据库标准

土地开发整理规划数据库标准 目次 前言 1范围1 2规范性引用文件1 3术语和定义1 4数据库内容和要素分类编码2 5数据库结构定义4 6数据文件命名规则14 7数据交换格式16 8元数据17 附录A(规范性附录)土地分类代码18 附录B(资料性附录)土地开发整理规划空间矢量数据交换格式样本23附录C(资料性附录)土地开发整理规划信息元数据示例27 表1土地开发整理规划数据库要素代码表2 表2土地开发整理规划空间信息要素分层、定义与属性关联表4 表3表格信息要素属性关联表5 表4行政区属性结构表(属性表代码:XZQ)5 表5行政界线属性结构表(属性表代码:XZJX)6 表6等高线属性结构描述表(属性表代码:DGX)6 表7高程注记点属性结构描述表(属性表代码:GCZJD)6 表8地类图斑属性结构描述表(属性表代码:DLTB)6

表9线状地物属性结构描述表(属性表代码:XZDW)7 表10零星地类属性结构描述表(属性表代码:LXDL)7 表11开发整理潜力属性结构表(属性表代码KFZLQL)8 表12开发整理规划区域属性结构表(属性表代码KFZLGHQY)9 表13面状工程、线状工程、点状工程属性结构表(属性表代码KFZLGC)9表14面状项目、线状项目、点状项目属性结构表(属性表代码KFZLXM)10表15注记属性结构描述表(属性表代码:ZJ)11 表16土地开发整理补充耕地区域平衡表(属性表代码BG_BCGDPHB)11 表17土地开发整理规划结构调整表(属性表代码BG_GHJGTZ)11 表18土地开发整理规划指标分解表(属性表代码BG_GHZBFJ)12 表19土地开发整理规划文本信息表(属性表代码WB_WBXX)12 表20界线类型代码表12 表21界线性质代码表13 表22等高线类型代码表13 表23权属性质代码表13 表24土地开发整理类型代码表13 表25比例尺代码表14 表26规划图类型代码表15 表27土地开发整理规划文本信息编码16 表《全国土地分类(试行)》代码表18 表《全国土地分类(过渡期适用)》代码表20 前言 附录A为规范性附录,附录B和附录C为资料性附录。

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

动态规划算法分析实验报告

六、附录 A #include #include #include #include #define MAX 100 #define n 12 #define k 5 int c[n][n]; void init(int cost[]) { int i,j; for(i=0;i<13;i++) { for(j=0;j<13;j++) { c[i][j]=MAX; } } c[1][2]=9; c[1][3]=7;c[1][4]=3; c[1][5]=2; c[2][6]=4; c[2][7]=2; c[2][8]=1; c[3][6]=2; c[3][7]=7; c[4][8]=11; c[5][7]=11;c[5][8]=8; c[6][9]=6; c[6][10]=5; c[7][9]=4; c[7][10]=3; c[8][10]=5;c[8][11]=6; c[9][12]=4; c[10][12]=2; c[11][12]=5; } void fgraph(int cost[],int path[],int d[]) { int r,j,temp,min; for(j=0;j<=n;j++) cost[j]=0; for(j=n-1;j>=1;j--) { temp=0; min=c[j][temp]+cost[temp]; for(r=0;r<=n;r++) { if(c[j][r]!=MAX)

{ if((c[j][r]+cost[r])=2;i--) { path1[i]=d[path1[i+1]]; }

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

规划数据库类型代码

一、主要图层命名对照表: CZJSKZQ 村镇建设控制区 JSYDGZQ 建设用地管制区 TDYTQ 土地用途区 JQDLTB 基期地类图斑 MZJCSS 面状基础设施 MZZDJSXM 面状重点建设项目 XZQ 行政区 JBNTGHTB 基本农田规划图斑 JQXZDW 基期现状地物 DLMCZJ 地类名称注记 XZQJX 行政区界线 二、主要图层类型代码表 1.①建设用地管制区 属性代码表达图式 代码管制区类型SM 图式符号RGB 线宽 010 允许建设区011 现状建设用地 RGB(170,0,130) RGB(245,140,140) 1.5 012 新增建设用地 RGB(170,0,130) RGB(220,100,120) 1.5 020 有条件建设区/ / RGB(170,0,130) RGB(255,210,125) 1.5 030 限制建设区/ / RGB(165,255,115) / 040 禁止建设区/ / RGB(40,115,0) RGB(60,180,70) 1.5

②建设用地管制区(土地利用总体规划图) 建设用地管制分区 表达图式 图示符号RGB 允许建设区RGB(170,0,130) 有条件建设区 RGB(170,0,130) RGB(220,100,120) 2.土地用途区 属性代码表达图式代码土地用途区类型图式符号RGB 010 基本农田保护区RGB(250,255,50) 020 一般农地区RGB(245,255,125) 030 城镇建设用地区 RGB(170,0,130) RGB(220,100,120) 040 村镇建设用地区 RGB(170,0,130) RGB(245,140,140) 050 独立工矿用地区RGB(210,160,120) 060 风景旅游用地区RGB(0,135,255) 070 生态环境安全控制区RGB(40,110,25) 080 自然与文化遗产保护区RGB(20,230,0) 090 林业用地区RGB(120,220,120) 100 牧业用地区RGB(210,255,115) 990 其他用地区 水域RGB(115,225,255) 自然保留地RGB(180,180,180)

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

动态规划算法实验报告

实验标题 1、矩阵连乘 2、最长公共子序列 3、最大子段和 4、凸多边形最优三角剖分 5、流水作业调度 6、0-1背包问题 7、最优二叉搜索树 实验目的掌握动态规划法的基本思想和算法设计的基本步骤。 实验内容与源码1、矩阵连乘 #include #include using namespace std; const int size=4; //ra,ca和rb,cb分别表示矩阵A和B的行数和列数 void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) { if(ca!=rb) cerr<<"矩阵不可乘"; for(int i=0;i

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

动态规划讲解大全含例题及答案

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么简单了。 解决方法:

实验报告:动态规划---0-1背包问题)

XXXX大学计算机学院实验报告计算机学院2017级软件工程专业 5 班指导教师 学号姓名2019年10 月21 日成绩

实验内容、上机调试程序、程序运行结果 System.out.println("选中的物品是第"); for(int i=1;i<=n;i++){ for(int j=1;j<=maxweight;j++){ //当前最大价值等于放前一件的最大价值 maxvalue[i][j] = maxvalue[i-1][j]; //如果当前物品的重量小于总重量,可以放进去或者拿出别的东西再放进去 if(weight[i-1] <= j){ //比较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最高价值) if(maxvalue[i-1][j-weight[i-1]] + value[i - 1] > maxvalue[i-1][j]){ maxvalue[i][j] = maxvalue[i-1][j-weight[i-1]] + value[i - 1]; } } } } return maxvalue[n][maxweight]; } public static void main(String[] args) { int weight[] = {2,3,4,5}; int value[] = {3,4,5,7}; int maxweight = 8; System.out.println(knapsack(weight,value,maxweight)); } } 完成效果:

动态规划算法设计

算法设计与分析实验报 告 决实际问题。 1、天平平衡问题:已知一个天平左右两端共有n个挂钩,且 有m个不同质量的钩码,求将钩码全部挂到钩子上使天平平衡 的方法的总数。试设计求解该问题的动态规划算法。 2、数塔问题:对于诸如下图的数塔,若从顶层走到底层,每 一步只能走到相邻的结点,求经过的结点的数字之和最大的路 径。试设计求解该问题的动态规划算法。 1.天平平衡问题的解题思路或算法思想:

1. 天平平衡问题的程序: package com.t7; public class Tianping{ public static void main(String[] args) { int m = 27; //全部钩码的重量之和的二分之一,问题中的n int n = 9; //钩码的数量,即题目中的m(个钩码) int a[] = {10,9,8,7,6,5,4,3,2}; int h[] =new int[1001]; h[0]=1; for (int i = 1; i <=n; i++) { for (int j = m; j >=1; j--) { if(j>=a[i-1]){ h[j]=h[j]+h[j-a[i-1]]; } } } for (int j = 0; j <=m; j++) System.out.print(h[j]+""); } } 实例: 2. 数塔问题的程序: package com.t4; import java.util.Scanner; public class Main { public static void main(String [] args){ System.out.print("输入数组的层数: "); Scanner scan=new Scanner(System.in); int n=scan.nextInt();//定义数塔层数n; int d[][]=new int[n][n]; System.out.print("输入数组元素:"); for(int i=0;i=j) d[i][j]=scan.nextInt(); } } int result = dataTower(d);

相关文档
相关文档 最新文档