文档视界 最新最全的文档下载
当前位置:文档视界 › 合成孔径雷达压缩感知成像方法

合成孔径雷达压缩感知成像方法

合成孔径雷达压缩感知成像方法
合成孔径雷达压缩感知成像方法

基于压缩感知的雷达成像

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程报告 课程名称:现代信号处理专题论文题目:基于压缩感知的雷达成像院系:电信学院 班级:电子一班 设计者:刘玉鑫 学号:13S005061 指导教师:张云 时间:2014.06 哈尔滨工业大学

第一章压缩感知理论基本原理 1.1 压缩感知的基本知识 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的香农信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。 压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 1.2 压缩感知的主要原理内容 总的说来,压缩感知方法的处理流程可简要描述为:基于待处理信号在某个基上的稀疏性或可压缩性,设计合理的测量矩阵,获得远小于信号维数但包含足够信号特征信息的采样,通过非线性优化算法重构信号。 在传统理论的指导下,信号X的编解码过程如图1-1所示。编码端首先获得X的N店采样值经变换后只保留其中K个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或者传输。 解压缩仅仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

雷达成像技术(保铮word版)第四章 合成孔径雷达

第四章 合成孔径雷达 合成孔径雷达(Synthetic Aperture Radar ,简称SAR )是成像雷达中应用最 多,也是本书讨论的重点。在前几章对雷达如何获取高的距离分辨率和横向分辨 的基础上,从本章开始用三章的篇幅对合成孔径雷达作较详细的讨论。 首先,结合工程实际介绍合成孔径雷达的原理。在前面的讨论中已经提到, 根据不同的要求,成像算法(特别是横向成像算法)有许多种,本章只介绍最简 单的距离-多普勒算法的原理,目的是由此联系到对合成孔径雷达系统的要求以 及工程实现方面的问题。 合成孔径雷达通常以场景作为观测对象,它与一般雷达有较大不同,我们将 在本章讨论合成孔径雷达有别于一般雷达的一些技术性能和参数。 4.1 条带式合成孔径雷达成像算法的基本原理 4.1所示,设X 轴为场景的中心 线,Q 为线上的某一点目标,载机以 高度H 平行于中心线飞行,离中心线 的最近距离B R 为 B R = (4.1) 当载机位于A 点时,它与Q 点的斜距 为 R = (4.2) 式中t X 为点目标Q 的横坐标。 当分析中心线上各个点目标的回波状况及成像算法时,可以在包括场景中心 线(即X 轴)和载机航线的平面里进行。至于场景里中心线外的情况将在后面 说明,这里暂不讨论。 一般合成孔径雷达发射线性调频(LFM )脉冲,由于载机运动使其到目标的 距离发生变化,任一点目标回波在慢时间域也近似为线性调频,而且包络时延也 几何示意图

随距离变化,即所谓距离徙动。合成孔径雷达成像算法的任务是从载机运动录取得到的快、慢时间域的回波数据,重建场景图像,它是二维匹配滤波问题。 严格考虑距离徙动的成像算法比较复杂,在实际应用中,一般均根据情况采用一些较简单的算法,这些将在第五章里系统介绍。在这里我们主要讨论分辨率较低,距离徙动影响可以忽略的最简单的情况,这时可采用简易的距离-多普勒基本算法。 所谓距离徙动的影响可以忽略不计是指雷达波束扫过某点目标的相干处理时间里,目标斜距变化引起的距离徙动值小于距离分辨单元长度的1/4~1/8,即场景中心线上所有点目标的回波(距离压缩后的)在慢时间域里均位于同一个距离单元。当然,因斜距改变引起的二次型相位变化还是需要考虑的,即系统的脉冲响应函数应考虑二次型相位。这种情况下的成像算法是比较简单的,可将回波信号先在快时间域作脉压匹配滤波,然后再对快时间域的每一个距离单元分别沿慢时间作方位压缩的匹配处理,于是得到场景的二维图像。在上面的图4.1中,我们提出只对中心线上的目标进行讨论,场景的二维图像当然包括场景里中心线以外的目标,这将在下一节里说明。 脉压匹配滤波可以在时域用回波数据与系统函数作卷积处理,也可以在频域作乘积处理,由于乘积的运算量小,同时时频域之间的傅里叶变换有FFT快速算法,频域计算用得更多。此外,由于场景有一定宽度,比发射脉冲宽度宽不少,而沿慢时间录取的数据长度一般也比波束扫过一个点目标的相干积累时间长得多,即时域信号长度比系统匹配函数长得多,这里应将信号分段处理后再加以拼接。 4.2合成孔径雷达回波的多普勒特性 信号有时域表示和频域表示,一般情况直接获取的是时域信号,通过傅里叶变换得到它的频谱。合成孔径雷达信号也是如此,快时间表示的发射信号是在时域生成,而慢时间回波则为载机运动过程中回波的变化序列。通过傅里叶变换,可以得到快时间频谱(距离谱)和慢时间频谱(多普勒谱或方位谱)。 合成孔径雷达信号有它的特殊性,它的回波为众多点目标回波的线性组合,而对一个点目标来说,其快、慢时间回波均为(或近似为)线性调频信号。对于

基于压缩感知的DOA估计程序

程序可运行,有图有真相,MATLAB得事先装好cvx优化包。 clc; clear; close; lambda=1; d=lambda/2; %阵元间距离,取为入射波长的一半 K=500; %采样快拍数 theta=[-5 10]; %入射角度 SignalNum=length(theta); %入射信号数量 Nnum=5; %%阵列阵元数量 SNR1=-10; %%信噪比 Aratio=sqrt(10^(SNR1/10)); %信号幅度与噪声幅度比值,并假设信号幅度为1 Fs=5*10^3; %信号频率 Fc=[2*10^3,5*10^3,8*10^3]; %入射信号频率 fs=20*10^3; thetatest=(-90*pi/180:1*pi/180:90*pi/180); %theta角度搜索范围 thetanum=length(thetatest); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算信号协方差矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T_Vector=(1:K)/fs; A=zeros(Nnum,SignalNum); SignalVector=zeros(SignalNum,K); %NoiseVector=zeros(Nnum,K); Xt=zeros(Nnum,K); %%构造A矩阵 for k2=1:SignalNum for k1=1:Nnum %1:12 At(k1)=exp(j*(k1-1)*2*pi*d*sin(theta(k2)*pi/180)/lambda); A(k1,k2)=At(k1); end end %%%构造信号矩阵和噪声矩阵 for k1=1:SignalNum SignalVector(k1,:)=exp(j*2*pi*Fc(k1).*T_Vector); %信号 end Xtt=A*SignalVector;

真实和合成孔径雷达

Real and Synthetic Aperture Radar
Real Aperture Radar (RAR) flight direction
azimuth Synthetic Aperture Radar (SAR) flight direction
azimuth
1

Spatial Resolution (1)
2

距离分辨率 与真实孔径雷达距离向分辨率相同。但由于真实孔径 机载雷达一般用短脉冲来实现距离向分辨率,而合成孔 径雷达通常用带宽(脉冲频率的变化范围)为B的线性调 频脉冲来实现作用距离向的良好分辨率。
δr =
1 c cτ = 2 2B
Spatial Resolution (2)
For Real Aperture Radar (Side-looking Radar)
razimuth ?
λR
l cτ 2 sin θ
rground ? range =
For Synthetic Aperture Radar (SAR)
razimuth ?
l 2 c 2 B sin θ
rground ?range =
3

Rr =
τc
2 cos γ
=
ground Range resolution
pulse length × speed of light 2 cos ( depression angle )
Range Resolution (2)
4

合成孔径雷达成像自聚焦算法的比较

合成孔径雷达成像自聚焦算法的比较 【摘要】本文简要地分析和比较两类合成孔径雷达自聚焦算法的特点,并通过多点目标自聚焦成像对其进行验证,表明结论可靠。 【关键词】自聚焦算法;多点目标;孔径雷达 0 引言 SAR自聚焦算法的任务是首先要对经过处理后的未补偿的SAR信号进行相位误差估计,然后消除其相位误差。SAR自聚焦算法就其本质而言是一个二维估计问题,在公式(2)中的相位误差既是空变的又是不可分离的乘性噪声的事实使问题变得极为棘手。影响成像的几何线性,分辨率、图像对比度和信噪比的主要因素取决于相位误差的性质和大小,基于处理孔径上相位误差形式,表1给出两大类相位误差及其每一类对SAR成像的一般影响。 表1 相位误差的分类 1 几种实用的自聚焦算法的比较 一般来说,自聚焦算法可以划分为两类:基于模式算法和非参数算法。基于模式的自聚焦算法估计相位误差的模式展开系数。低阶模自聚焦仅能估计二阶相位误差,而更复杂的方法还可以估计高阶多项式相位误差。子孔径相关法(MD)和多孔经相关法(MAM)是针对低频相位误差补偿提出的基模自聚焦算法的范例。基于模式算法虽然执行起来相对简单而且算法高效。不过只能相位误差被正确估计的情况下才能保证这样的优越性。 第二类自聚焦算法,即非参数自聚焦算法,典型的有相位梯度自聚焦算法,基于最小熵准则和最大对比度准则的自聚焦方法,这些方法都不需要相位误差的先验知识。特别地,相位梯度自聚焦算法几种改进的算法。其中特征向量法是在PGA框架下运用了极大似然算子取代了原始的相位差算子核,改进的相位梯度自聚焦算法的策略通过选择一组高质量的目标以提供非迭代的PGA解。另一种方法是运用加权最小二乘法以实现相位误差最小化的PGA。适用范围扩大,计算高效。 在一些SAR应用中,相位误差显著依赖位置,空变的自聚焦的常用的方法是将大场景分成更小的子图像,每个子图像的误差近似不变的,因此,传统的空间不变的自聚焦程序可以应用到每个子图像。当重新聚焦时,个别的子图像拼接或镶嵌在一起产生完整的场景图像聚焦图像。 2 性能评价标准 第一个测试是检查在方位域一维的点目标响应。聚焦质量质量指标包括3dB

压缩感知在高速(雷达)信号采集中的应用

2013雷达对抗原理期末报告 题目:压缩感知在高速(雷达)信号采 集中的应用 院(系)信息与电气工程学院 专业电子信息工程 学生 班级1002503 学号100250311 教师 报告日期2013-11-15 1研究背景 信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是着名的Nyquist采样定理。定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用[1],信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。为了

缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩,如基于小波变换的JPEG2000 标准。但是,信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。下图是一个传统方法采样压缩过程[2]。 图1.1 传统的信号压缩过程 2国内外在该方向的研究现状及分析 压缩感知(Compressed Sensing or Compressive Sampling)理论由Donoho, Candes和Tao等人提出,它的出现是充分利用了信号在某变换域的稀疏性或者可压缩的性质,将较长的接收信号随机投影到一个较短的矢量上面,经过求解一个非线性最优化问题,将一组远低于奈奎斯特采样率得到的信号实现精确的重构,这样在一定程度上就减轻了采样系统硬件的负担。雷达成像的原理是利用雷达接收端获得回波信号的反射特性在空间上分布的特点,因此根据雷达回波的信息来重建目标信息的过程就是雷达成像的最根本的体现。雷达目标的电磁散射特性研究结果表明:在高频区域,雷达目标的回波可以认为是由较为重要的散射中心回波的合成,发射宽带信号的雷达可以获得的对分析有用的目标数量远小于组成这些散射中心的原始的数据样本数。由以上分析可知,雷达目标的这种电磁特性达到了压缩感知理论对待压缩信号稀疏性的要求,为将CS理论运用于雷达成像的应用研究中提供了可能。以上结论说明雷达回波与信号的稀疏理论相匹配,可以将压缩感知的相关理论成果与雷达成像的相关技术相结合。 近几年来,国内外的专家与研究机构对基于压缩感知的雷达成像技术陆续展开研究工作,在某些领域已经有了一定程度的进展。为雷达接收端降低采样率,解决系统中的超大数据采集以及存储与传输的问题带来了巨大的变革。 3主要研究内容和研究方案 3.1主要研究内容 压缩感知(Compressive Sensing, or Compressed Sampling,简称CS),

压缩感知在雷达成像中的应用

2014雷达对抗原理期末报告 题目:压缩感知在雷达成像中的应用 院(系)信息与电气工程学院 专业电子信息工程 学生 班级 学号 教师 报告日期2014-11-25 1.课题来源 1.1摘要 以 ISAR 和 InISAR 为代表的高分辨率雷达成像技术在军事和民用领域有着广泛的需求。通常情况下,高分辨率雷达图像的获得需要宽带雷达信号,而宽带雷达信号则又会导致雷达数据率的增加。近年来在雷达技术领域得到高度关注的压缩感知理论,其非相关测量过程能够有效地降低高分辨率雷达成像系统的数据率,有望解决雷达系统中超大数据量的采集、存储与传输问题。因此压缩感知理论和技术在雷达成像领域的应用,有可能会为高分辨率雷达成像技术带来巨大变革。压缩感知在高分辨率雷达成像中的应用研究工作虽然取得了一定的进展,但还没有针对压缩感知雷达成像理论进行系统性研究,也没能在此基础上给出实用化的成像算法。论文以基于压缩感知的雷达成像理论与算法作为研究内容,将压缩感知理论应用到高分辨率雷达成像算法中。论文围绕着成像数据获取方法、

成像信号处理方法和压缩感知在宽带雷达成像中的应用等紧密联系而侧重不同的三个方面展开了研究,建立了匹配滤波体制和去斜体制下的基带回波信号稀疏表示模型,提出了压缩感知测量器应用到雷达接收机的数字方案与模拟方案,构建了具有保相性的压缩感知距离压缩算法,通过距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法,并将其应用到调频步进宽带雷达成像中。论文通过对仿真和实测数据的处理,证明了所提出的方法的有效性。 1.2研究的目的和意义 在压缩感知雷达成像算法研究中,首先在常用的稀疏信号重建算法中筛选出适合雷达成像的算法,然后与雷达回波信号稀疏表示模型以及非相干测量矩阵一起构建了具有保相性的压缩感知距离压缩算法。在此基础上利用距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法。 在压缩感知宽带雷达成像算法研究中,结合调频步进信号的子脉冲合成方法,提出了针对调频步进信号的压缩感知测量方法,实现了压缩感知宽带雷达成像。 2.国内外在该方向的研究现状及分析 雷达成像的历史可以追溯到 20 世纪 50 年代。1951 年 6 月,美国Goodyear Aircraft 公司的 Carl Wiley 首先提出利用频率分析方法改善雷达的角分辨率,并设计了实验装置进行验证,这是合成孔径雷达思想的最初体现。1957 年 8 月,Michigan 大学雷达和光学实验室的 Cutrona 和 Leith 等人研制的机载合成孔径雷达进行了飞行试验,得到了第一张大面积的聚焦型合成孔径雷达图像。70 年代,Kirk 等人研制了第一台 SAR 数字处理系统。1978年 5 月,星载 SAR SeaSat 升空,标志着 SAR 技术已进入空间领域。目前,美国、欧空局、加拿大、日本等都有自己的实用化机载和星载合成孔径雷达系统,机载 SAR 系统有美国的 AN/APY-6,德国的 AER-Ⅱ,英国的 DERA ‘ESR’,以及瑞士的 DO-SAR 等;星载SAR 系统有美国的 SIR-A 和 SIR-B 卫星,欧空局的 ERS-1 和 ERS-2 卫星,日本的 JERS-1和 ALOS 卫星,加拿大的 Radarsat-1 和 Radarsat-2 卫星,意大利航天局的 COSMO-SkyMed高分辨雷达卫星星座系统,美国航天局、德国空间局和意大利空间局联合发射的SIR-C/X-SAR 以及德国空间中心和欧洲EADS Astrium 公司合作开发的 TerraSAR-X 卫星等。在国内,从七十年代开始大力研究 SAR 相关技术,中国科学院电子学研究所在 1979年成功研制了机载合成孔径雷达原理样机,并获得首批 SAR 成像数据。从“八五”开始,对SAR 系统的研究就一直是遥感技术中的重点研究方向之一。目前,中科院电子所、信息产业部 14 所、38 所、航空工业总公司 607 所,以及航科集团等单位都已对 SAR 技术开展了研究,许多单位已经有了机载 SAR 的实验系统,并获得了大量实际成像数据。bZ0YfRP。 逆合成孔径雷达是在合成孔径雷达的基础上发展起来的又一种高分辨成像雷达,其历史可以追溯到二十世纪六十年代。六十年代,在 Brown 领导下的Willow Run 实验室就开展了对旋转目标的成像。Walker 从 1970 年起开展对旋转目标成像的研究,他的研究工作对距离-多普勒成像理论做了更明确的阐述,并且由于引入了极坐标存储技术(光学处理),解决了运动穿越分辨单元的处理

基于压缩感知的电力监控系统研究

基于压缩感知的电力监控系统研究 摘要:随着经济和科技水平的快速发展,电力行业发展也十分快速。智能电网 的关键部分之一是构建低功耗、高效率的监控网络,该网络需要支持数以百万计 的智能电表或其它监控终端,其中,“最后一公里”成为制约当前智能电网发展的 首要问题。使用无线通讯技术以及由此衍生的无线传感器网络能够满足较少节点 的非实时数据采集和传输,然而当接入网络的智能电表或终端数量急剧增加、提 高系统实时性要求,则产生的大量数据及其通讯将导致较大的网络时延并降低网 络可靠性。在汇聚节点或区域基站采用压缩感知是解决该问题的有效方法之一, 与传统的数据压缩算法相比,压缩感知方法的稀疏矩阵的维数明显小于原始数据 矩阵维数,通过非线性重建算法能够获得比典型的线性回归方法更低的误差率。 压缩感知已被应用一些电力系统中,如文献[6]对智能电网中路由协议和质量问题 进行研究;在对智能电网文献综述中阐述了压缩感知在其中的应用发展情况;提 出基于压缩感知的小区电网数据监控方案。 关键词:智能电网;无线传感器网络;压缩感知 引言 随着社会经济的发展和科学技术的进步,电力企业得到了快速的发展,在电 力系统运行的过程中,由于电力系统的运行稳定性极易受到外界因素的影响,所 以为了避免电力系统运行故障的发生,我们需要给予电力监控系统网络安全监测 装置足够的重视,一定要能够确保电力系统安全、稳定的运行。电力行业的稳定 发展会直接影响到社会经济的发展速度,电力是现阶段社会工业生产建设中最主 要的能源,也是人们日常生活中最基础的能源,一旦电力系统的运行出现故障, 可能会给国家经济的增长以及人们的正常电力生活带来巨大的影响。 1电力监控系统特点分析 随着智能电网的建设和发展,电力监控系统在电网中得到了广泛的应用。电 力监控系统通过计算机技术对整个电网的运行状态进行实时监控和管理,为整个 电网的安全运行起到了保障作用。计算机技术和网络技术在电力监控系统中的应用,提高了电力监控系统的监控管理质量。在电力监控系统中,以太网技术实现 了电力监控系统的自动化和网络化。自动化装置和数字化电能表等智能电子设备 在电力监控系统中的应用,不仅建立了安全可靠的智能化电力监控系统,而且提 高了整个电力监控系统的自动化水平。中的很多设备都是由不同厂商制造,易出 现信息孤岛问题。MAS理论作为分布式人工智能技术,在电力监控系统中的应用,不仅解决了信息孤岛问题,而且实现了电力监控系统的自动化和智能化,并且在 电力监控系统的设计中得到了广泛应用。 2压缩感知系统测试 为了验证进一步验证系统及压缩感知模型的有效性,选取研究者所在大楼及 周边区域部署WSN测试系统,系统中包含了服务器(Host)、中继器(Router) 和传感器(Sensor)三类共7个设备节点构成典型的传感器网络测试环境。在该 测试模型中设定了两个具有路由功能的节点router1(R1)和router2(R2)它们 与测试终端构成两条基本待测通讯链路L1和L2,以及由R2R1H1所形成的路由中继链路L3L1;每个中继节点分别下辖2个传感器Sensor(S1~S4)。它们 分别使用传感器数据链路B1~B4向中继节点提交数据。各节点的温度传感器有高 低两种采样率,其中低速采样率为1h/次,高速采样率为6min/次;选取10月9 日这一天的天气温度作为对比测试样本,在小气候的作用下整体而言S1、S2获

合成孔径雷达

合成孔径雷达(SAR) 合成孔径雷达产生的过程 为了形成一幅真实的图像增加两个关键参数:分辨率、识别能力。 合成孔径打开了无限分辨能力的道路 相干成像特性:以幅度和相位的形式收集信号的能力 相干成像的特性可以用来进行孔径合成 民用卫星接收系统SEASA T、SIR-A、SIR-B 美国军用卫星(LACROSSE) 欧洲民用卫星(ERS系列) 合成孔径雷达(SAR)是利用雷达与目标的相对运动将较小的真实天线孔径用数据处理的方法合成一个较大孔径的等效天线孔径的雷达。 特点:全天候、全天时、远距离、和高分辨率成像并且可以在不同频段不同极化下得到目标的高分辨率图像 SAR高分辨率成像的距离高分辨率和方位高分辨率 距离分辨率取决于信号带宽 方位高分辨率取决于载机与固定目标相对运动时产生的具有线性调频性质的多普勒信号带宽 相干斑噪声 机载合成孔径雷达是合成孔径雷达的一种 极化:当一个平面将空间划分为各向同性和半无限的两个均匀介质,我们就可以定义一个电磁波的入射平面,用波矢量K来表征:该平面包含矢量K以及划分这两种介质的平面法线垂直极化(V):无线电波的振动方向是垂直方向与水平极化(H):无线电波的振动方向是水平方向 TE波:电场E与入射面垂直

TH波:电场E属于入射平面 合成孔径雷达的应用 军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应用、水资源、农业和林业 合成孔径雷达在军事领域的应用:战略应用、战术应用、特种应用。 SAR系统的几个发展趋势:多波段、多极化、多视角、多模式、多平台、高分辨率成像、实时成像。 SAR图像相干斑抑制的研究现状 分类:成像时进行多视处理、成像后进行滤波 多视处理就是对同一目标生成多幅独立的像,然后进行平均。 这是最早提出的相干斑噪声去除的方法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制 成像后的滤波技术成为SAR图像相干噪声抑制技术发展的主流 均值滤波、中值滤波、维纳滤波用来滤去相干斑噪声,这种滤波方法能够在一定程度上减小相干斑噪声的方差 合成孔径雷达理论概述 合成孔径雷达是一种高分辨率成像雷达,高分辨率包含两个方面的含义:方位向的高分辨率和距离向高分辨率。它通过采用合成孔径原理提高雷达的方位分辨率,并依靠脉冲压缩技术提高距离分辨率 由于SAR雷达发射信号(距离向信号)和合成孔径信号(方位信号)均具有线性调频性质,SAR成像的实质就是通过匹配滤波器对距离向和方位向具有线性调频信号的信号进行二维脉冲压缩的过程,也就是依靠脉冲压缩技术提高距离分辨率,通过合成孔径原理提高雷达的方位分辨率的过程 SAR成像处理是先利用距离向匹配滤波器,进行距离脉压,实现距离向高分辨率后,再通过方位向德匹配滤波,最终得到原始目标的高分辨图像。

基于压缩感知的人脸识别算法

龙源期刊网 https://www.docsj.com/doc/ab5259201.html, 基于压缩感知的人脸识别算法 作者:胡槟 来源:《科技探索》2013年第09期 中图分类号:TP391.41 文献标识码:A 文章编号:1007-0745(2013)09-0141-01 1 压缩感知介绍 过去的几十年间,各种传感系统获取数据的能力不断地增强,这就对系统的采集和处理能力提出了更高的要求。如果仍然采用传统的Nyquis T采样定理,就需要二倍于信号带宽的采 样率,这给采样硬件设备带来了极大的挑战。 压缩感知理论是由Donoho与Candes等人提出的一个新的理论框架,其在线性模型的基础上,核心是只要信号是稀疏的,低维信号就能很好的恢复到高维信号。 2 理论简介 传统的信息处理主要由采样、压缩、传输和解压缩四个部分组成。在这个传统过程中,采样率必须高于信号模拟信号中最高频率的二倍,随着图像数据的越来越大,这给采样设备提出了更高的要求。传统的信号压缩是通过对信号进行一些变换(如:小波变换、离散余弦变换),然后剔除掉变换后为零或近似为零的数据,通过对少数绝对这大的新书进行压缩编码,从而实现大数据的压缩。在传统信号获取过程中,将采样和压缩分开,是否可以将压缩和采样过程合并呢?于是有人就尝试着将采样和压缩过程合并,这不仅能够大大缓解香农定理对于采样率和传输处理的要求,也能够大大提高数据采集的效率和性能。 2.1 信号稀疏表示 通常,大部分自然信号并不是稀疏的,但是通过实验发现大部分自然信号都可以通过某些映射变将其变换为稀疏的根据调和分析理论,一个一维离散信号f,可以通过一组标准正交基线性表出: 或(3.1) 其中,N为信号长度,为标准正交基,为正交基的第 i列的向量,系数矩阵。如果系数 矩阵x是稀疏的,那么原始信号f就是可稀疏表示的。如果说系数矩阵x为信号f的K稀疏表示,则向量x中只有K个非零分量。 2.2信号重构

合成孔径雷达成像

合成孔径雷达第一次作业 姓名:xxx 学号:xxx 一题目: 1.LFM信号分析:(1)仿真LFM信号;(2)观察不同TBP的LFM信号的频谱。(3)观察不同过采样率下的DFT结果,注意频谱混叠情况。 2.脉冲压缩仿真:针对“基带LFM信号”:(1)实现无误差的脉冲压缩;(2)通过频域补0实现时域十倍以上的过采样率,得到光滑的时域波形,通过观察给出指标(IRW,PSLR);(3)阅读资料,按照公式实现3阶(-20dB),6阶(-40 dB)泰勒加权,观察加窗效果,分析指标(IRW,PSLR),并对比MATLAB TAYLORWIN 函数的一致性;(4)在3阶泰勒加权下实现15.30.45.60.90.135度QPE下的脉冲压缩,显示输出波形,观察记录QPE的影响。 3.一维距离向仿真:(1)输入参数:目标参数:RCS=1,分别位于10km,11km,11km+3m,11km+50m处。LFM信号参数:中心频率1.0GHz,脉冲宽度30us,带宽30MHz。 (2)输出:设计采样波门,仿真回波,完成脉冲压缩,检测各峰值位置,判断每个目标是否得以分辨,分析各出现在相应位置及幅度的原因。 二题目分析与解答: 1.问题分析:由基础知识知,决定LFM信号的主要参数有中心频率fc(此处仿真取fc=0),带宽B,脉冲宽度Tp, 调频斜率K,其中K=B/Tp。对LFM信号进行傅里叶变换时,不同的时宽带宽积(TBP)会对频谱有不同的影响。 主要程序段(源程序见附件): %参数设置 Tp=5e-6; B=10e6; K=B/Tp;Fs=2*B; Ts=1/Fs; N=Tp/Ts; TBP=Tp*B %波形产生 t=linspace(-Tp/2,Tp/2,N); St=exp(j*pi*K*t.^2); Phase=pi*K*t.^2; Fre=2*pi*K*t; f=linspace(-Fs/2,Fs/2,N); figure(2) plot(f*1e-6,fftshift(abs(fft(St))),'k'); xlabel('Frequency/MHz'); ylabel('Magnitude'); title('Frequence Response'); legend('TBP=50') fft_St=fftshift(abs(fft(St)));

合成孔径雷达成像几何机理分析及处理方法研究

合成孔径雷达成像几何机理分析及处理方法研究合成孔径雷达作为二十世纪出现的尖端对地观测技术,由于它具有全天时、全天候的成像能力并能穿透一些地物,在土地覆盖制图、生态和农业、固体地球科学、水文、海冰等众多领域有着广泛的应用。随着未来更高分辨率、多极化、多波段、更优化的干涉测量设计的SAR系统的出现,合成孔径雷达遥感技术将会在更多的领域扮演更重要的角色。 合成孔径雷达遥感技术在我国有着极大的潜在应用市场,对于某些特殊问题的解决,例如西部困难地区的地形图测绘及南方阴雨地区地形图的快速更新,它甚至是唯一可行的解决之道。由于有关几何处理、辐射定标等基础问题没有很好地解决,影响了这一技术在我国的大规模应用及产业化进程。 本文致力于解决SAR影像的几何问题及与地形有关的辐射问题,对合成孔径雷达图像的几何特性作了系统深入的研究,以对构像方程的分析及推导为中心,研究并解决了包括地理编码、目标定位、影像模拟、利用控制点进行空间轨道精确重建、地形辐射影响的消除等一系列问题。为了加强对合成孔径雷达图像的理解,首先对合成孔径雷达成像的技术本质从数学上进行了简明阐述。 从信号处理的角度,分析了脉冲压缩的工作原理,解释了匹配滤波器的构造。分析了多普勒频率的特征及其作用。 从理论上推导了SAR距离向和方位向分辨率所能达到的极限值,并且指出了他们在实际中的限制。从系统的角度,分析了SAR距离向和方位向模糊度的限制。 构像方程是所有几何处理的基础。为推导了SAR构像方程,在定量分析了地球摄动力对卫星轨道影响的基础上,提出了一套改进的SAR轨道参数模型,与国外已有的模型相比,该模型更加简洁而且具有极高的精度。

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

合成孔径雷达(SAR)的点目标仿真(附件带代码程序)

合成孔径雷达(SAR)的点目标仿真(附件带代码程序) 合成孔径雷达(SAR)的点目标仿真 一. SAR原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。 二. SAR的成像模式和空间几何关系 根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR典型的成像模式 这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为: (2.1) 由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为: (2.2) 就表示任意时刻时,目标与雷达的斜距。一般情况下,,于是2.2式可近似写为: (2.3) 可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。

基于压缩感知认知模型的面像识别与理解

基于稀疏贝叶斯回归的人脸姿势识别方法(专利) 一种基于稀疏贝叶斯回归的人脸姿势识别方法,用于图像处理技术领域。步骤如下:采用Gabor滤波器为人脸姿势图像提取Gabor特征;将Gabor特征进行下采样,然后将采样后的特征行堆叠为一维向量;在训练样本上运用线性切空间排列方法,获得人脸姿势图像的本质低维子空间,并且得到相应的投影矩阵;在低维子空间运用稀疏贝叶斯回归方法训练识别参数;将每一个测试样本通过训练的得到的投影矩阵映射到低维子空间,运用训练的得到的识别参数进行人脸姿势识别。本发明能够得到人脸姿势的非确定解,降低错误率,提高实时性。 基于非负矩阵因子的人耳识别研究(硕士) 生物识别技术已经作为一种较为成熟的身份识别鉴定技术应用于实际生活的各个方面,目前常用的 生物特征包括人脸、虹膜、指纹、手形等。但是由于各个生物特征都有其局限性和不足,在研究和应用 过程中仍然存在一些尚未解决的问题。人耳识别技术是个体生物特征识别领域的一项新技术,人耳生物 特征自身的一些特点使人耳识别能丰富生物特征识别技术,能补充目前的一些生物识别技术的不足,其 可行性已经得到了试验证明。但是在现实生活中,人耳总是会有意或无意地被遮挡。系统所提取的人耳 特征将会受到很大的影响,则系统的鲁棒性、可靠性都将有所下降。所以在实现“非打扰识别”中,有必要 研究人耳遮挡问题。因此我们探索和研究了一种有效的针对遮挡情况下的人耳特征描述方法。首先提出 了一种改进的带有稀疏性限制的非负矩阵因子方法,为了使基空间和特征空间同时具有良好的稀疏性, 通过增加一个使系数矩阵尽可能正交的约束条件来定义原目标函数,给出了求解该新目标函数的迭代规则,并证明了迭代规则的收敛性。然后对人耳图像进行子区域划分,用改进的带有稀疏性限制的非负矩 阵因子方法对各子区域提取特征,并计算各子区域相似度,最后融合各子区域相似度得到整体相似度, 确定由局部相似度到整体相似度的最佳映射,以保证最优类间区分能力。在实验中,针对样本库的人耳 用改进的带有稀疏性限制的非负矩阵因子方法提取其特征变量,从结果数据可以看出所提取的特征向量 稀疏性及正交性都有所增强,使得特征向量之间的可区分性增强,导致识别率的提高。实验结果还证明,在遮挡情况下,采用基于子区域划分的融合方法的识别率比基于单一模式的识别率高。 作者:张玉学科专业:控制理论与控制工程授予学位:硕士学位授予单位:北京科技大学导 师姓名:穆志纯学位年度:2005 研究方向:分类号:TP391.4 关键词:人耳识别生物识别子 区域划分识别技术目标函数

合成孔径雷达干涉测量概述

合成孔径雷达干涉测量(InSAR)简述 摘要:本文主要介绍了合成孔径雷达干涉测量技术的发展简史、基本原理、及其3种基本模式,并且对其数据处理的基本步骤进行了概述。最后,还讲述合成孔径雷达干涉测量的主要应用,并对其未来发展进行了展望。 关键字:合成孔径雷达合成孔径雷达干涉测量微波遥感影像 1.发展简史 合成孔径雷达(Synthetic Aperture Radar,SAR)是一种高分辨率的二维成像雷达。它作为一种全新的对地观测技术,近20年来获得了巨大的发展,现已逐渐成为一种不可缺少的遥感手段。与传统的可见光、红外遥感技术相比,SAR 具有许多优越性,它属于微波遥感的范畴,可以穿透云层和甚至在一定程度上穿透雨区,而且具有不依赖于太阳作为照射源的特点,使其具有全天候、全天时的观测能力,这是其它任何遥感手段所不能比拟的;微波遥感还能在一定程度上穿透植被,可以提供可见光、红外遥感所得不到的某些新信息。随着SAR 遥感技术的不断发展与完善,它已经被成功应用于地质、水文、海洋、测绘、环境监测、农业、林业、气象、军事等领域。 L. C. Graham 于1974 年最先提出了合成孔径雷达干涉测量(InSAR )三维成像的概念,并用于金星测量和月球观察。后来Zebker、G. Fornaro及A. Pepe 等做出了进一步的研究,以解决InSAR 处理系统中有关基线估计、SAR 图像配准、相位解缠及DEM 生成等方面的问题。自1991 年7 月欧空局发射载有C 波段SAR 的卫星ERS- 1 以来,极大地促进了有关星载SAR 的InSAR 技术研究与应用。由于有了优质易得的InSAR 数据源,大批欧洲研究者加入到这个领域,亚洲(主要是日本)的一些研究者也开展了这方面的研究。日本于1992 年2 月发射了JERS- 1,加拿大于1995 年初发射了RADARSAT,特别是1995 年ERS- 2 发射后,ERS- 1 和ERS- 2 的串联运行极大地扩展了利用星载SAR 干涉的机会,为InSAR 技术的研究提供了数据保证。目前用于InSAR 技术研究的数据来源主要有:ERS- 1/2、SIR- C/X SAR、RADARSAT、JERS- 1、TOPSAR 和SEASAT 等。 1979年9月,我国自行研制的第一台合成孔径雷达原理样机在实验室完成,并在试飞中获得我国第一批SAR影像。1989年起国家科委设立了“合成孔径雷达遥感应用实验研究项目”,拉开了大规模雷达遥感研究的帷幕。目前国内外许多部门和科研机构正积极从事着InSAR 技术机理及其应用的研究,已经取得了许多成果,InSAR 技术的前景日益看好。 2.InSAR的基本原理 InSAR 技术是一门根据复雷达图像的相位数据来提取地面目标三维空间信息的技术。其基本思想是:利用两副天线同时成像或一副天线相隔一定时间重复成像,获取同一区域的复雷达图像对,由于两副天线与地面某一目标之间的距离

相关文档
相关文档 最新文档