文档视界 最新最全的文档下载
当前位置:文档视界 › 生物化学技术原理及应用

生物化学技术原理及应用

生物化学技术原理及应用
生物化学技术原理及应用

生物化学技术原理及应用

题型:

1.填空题:(0.5分/空,共20分)

2.名词解释:(2分/个,共10分)

3.判断题:(1分/题,共20分)

4.简答题:(10分/题,共50分)

第一章生物大分子物质的制备

一.相关概念:

1.抽提:用抽提液(常用缓冲液,稀酸,稀碱,有机溶剂例如丙酮,乙醇)进行反复萃取,将原料中有效成分最大限度分离出来的过程。

二.知识点:

1.理想抽提液具备:有效成分溶解度大,杂质不溶解或溶解度很小,来源广泛,价格低廉,操作安全。

2.影响有效成分抽提的因素:溶液PH(偏离等电点的稳定范围内),离子强度(极性大在离子强度高,极性小在离子强度低),温度(低温0摄氏度时最稳定),搅拌(促使抽提物抽提液相互接触,增加溶解度,采用温和适中的速度,速度慢起不到搅拌作用,速度快产生气泡,使酶变性失活)氧化(氧化剂氧化分子与巯基导致失活,加入还原剂防止氧化),水解酶(蛋白受本身固有水解酶影响,加入抑制剂后使水解酶丧失活性),金属离子(蛋白与金属离子结合生成沉淀复合物,用无离子水或重蒸水配制试剂,配制试剂中加1~3mmol/L EDTA),抽提液与抽提物比例(5:1,抽提液过多有利于有效成分提取,不利于纯化程序。否则,反之)。

3.浓缩常用方法

沉淀法,吸附法,超过滤法,透析法,离心法,干燥法。

4.影响生物大分子保存的主要因素

空气(隔绝),温度(低温方面),水分,光线,样品的PH,时间。

第二章离心

一.知识点:

1.离心的基本原理:生物样品悬浮液在高速旋转下,在巨大的离心力作用下,离心力大于悬浮力,使悬浮颗粒以一定的速度沉降下来。

2.离心力表示方法:rpf

3.离心机的种类:普通离心机(转速小于1000),高速离心机,超速离心机(转速大于2000)。

4.离心机主要构件:转子,离心管

5.离心基本方法:沉淀离心,差速离心,密度梯度离心

6.离心机操作时注意:(1)转速设定,离心力>悬浮力/2。(2)对称于中心的两个离心管重量要平衡。(3)加样量勿超过3/4。(4)对于低温离心机要预先设置低温。(5)离心过程中注意听声音,看仪表。

第三章电泳技术

一.相关概念:

1.电泳:带电颗粒在电场作用下,向着与其电荷相反的电极移动的现象。

2.电泳迁移率:带电粒子在单位时间内移动的距离叫电泳迁移率。

3.电渗现象:液体层相对于介质移动的现象。

4.两性电解质:所带电荷随着溶液酸碱度的变化而变化,酸性溶液中带正电荷,碱性溶液带负电荷。

5.印迹:将生物大分子凝胶转移到物像载体上。

二知识点:

1.影响电泳分离的主要因素

内因:分子量大小,分子形状,分子性质,带电荷量,分子直径。

外因:电场强度,溶液PH,溶液黏度,离子浓度,缓冲液性质。

2.琼脂糖凝胶聚合原理:依靠琼脂糖上的羟基,在聚合过程中,羟基与羟基上的氢键的聚合。

3.PAGE的组成,聚合原理及聚合方式

[1]组成:丙烯酰胺(单体)和甲撑双丙烯酰胺(双体交换剂)组成。

[2]原理:丙烯酰胺(单体)和甲撑双丙烯酰胺(双体交换剂)为材料,在催化剂作用下,聚合为含酰胺基侧链的脂肪族长链,在相邻长链之间通过甲撑桥连接而形成的三维网状结构物质。

[3]聚合方式:(1)化学聚合法:加入过硫酸铵,当丙烯酰胺,交联剂,四甲基乙二胺的水溶液中加入过硫酸铵,立即产生自由基,丙烯酰胺与自由基作用,随之活化。(2)光催化法:B2作为催化剂,光聚合过程在光激发下催化完成,核黄素在氧及紫外线作用下,生成含自由基的产物,与上述AP作用相同。

4.PAGE分离样品时的三种效应:浓缩效应,分离效应,电荷效应。

5.SDS-PAGE电泳(变性凝胶电泳)主要成分的作用:

(1)甘油或蔗糖:密度大,与样品结合,不发生漂样。

(2)SDS:与蛋白质结合,破坏高级结构,破坏氢键,去除蛋白质带电荷差异。

(3)巯基乙醇:破坏二硫键,使完整结构变松散。

(4)溴酚蓝:电泳指示剂。

6.等电聚焦电泳基本原理:小分子进入凝胶内部,流下时路程较长,而大分子物质却被阻排在外部,下来的路程短。

7.等电聚焦电泳的基本原理:蛋白质等电点不同,在同一PH下带电荷量不同从而进行分离。

8.2D-PAGE的操作顺序:先等电聚焦电泳,再SDS-PAGE.

9.Western blotting的操作步骤:(1)对蛋白质样品电泳分离(2)转膜(3)封闭(4)加入一抗与目的蛋白结合(5)加二抗(6)洗膜(7)膜的光分析。

第四章沉淀法

一相关概念:

1.沉淀:溶液中的物质由液相变成固相析出的过程。

二知识点:

1.制备蛋白质常用的沉淀方法

(1).盐析法:中性盐的亲水性大于蛋白质和酶分子的亲水性;加入中性盐后,破坏了水膜暴露出疏水区域;同时又中和了电荷,破坏了亲水胶体。

(2)有机溶剂沉淀法:破坏蛋白质分子表面水化膜;降低水溶液的介电常数,增加蛋白质分子间的相互作用而使溶解度降低。

(3)蛋白质沉淀法

(4)聚乙二醇沉淀法:有机物与生物大分子发生共沉淀;使生物大分子脱水而发生沉淀;空间位置排斥将生物大分子挤在一起

(5)选择性沉淀法:根据各种蛋白质在不同物理、化学因子作用下稳定性不同的特点,用选择性沉淀法即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。

(6)结晶沉淀法

(7)等电点沉淀法:等电点易形成沉淀析出,常与盐析法、有机溶剂沉淀法等配合使用。

第五章层析技术

一相关概念:

1.层析:以基质为固定相(呈柱状或薄层状),以液体或气体为流动相,使有效成分和和杂质在这两个相中连续不断,反复多次地进行分配或交换,吸附作用,最终达到分离混合物的目的。

2.固定相:位置相对不动,对样品产生保留的一项。它可以是固体物质,也可以是固定于载体上的液体物质;能与待分离的化合物发生可逆的吸附,脱吸附的过程。

3.流动相:在层析过程中,推动固定相上待分离的物质朝着一个方向移动的液体,气体等。柱层析中称为洗脱剂,薄层层析中称为展层剂。

4.分配系数:是指一组分在固定相与流动相中含量的比值,常用k表示。

5.正相色谱:固定相的极性高于流动相的极性,非极性分子或极性大分子先从柱中流出来,分离纯化极性大的分子。

6.反相色谱:固定相的极性低于流动相的极性,极性分子或极性小的分子先从柱中流出来,分离纯化极性小的分子。

7.操作容量:在特定条件下,某种成分与基质反应达到平衡时,存在于基质上的饱和容量。

二知识点:

1.层析方法分类:

(1)根据流动相形式不同:液相层析,气相层析

(2)根据固定相形式不同:柱层析,纸层析薄层层析

(3)根据原理不同:吸附层析,分配层析,离子交换层析,凝胶过滤层析,亲和层析。

第六章离子交换层析

一相关概念:

1.离子交换层析:以离子交换剂为固定相,液体为流动相的系统中进行的层析方法

二知识点:

1.分离原理:离子交换剂与溶液中离子或离子化合物的反应主要以离子交换方式进行,或者借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。

2.[1]离子交换剂的组成:基质(载体),电荷基团(或功能基团),反离子。[2]离子交换剂的种类:

(1)阳离子交换剂:活化处理方式CM纤维素。

(2)阴离子交换剂:活化处理方式DEAE纤维素。

3.层析操作步骤

层析柱的选择?平衡缓冲液的选择?装柱?加样?洗脱?收集?样品的脱盐和浓缩

4.洗脱方式

单一洗脱法(适用于组分简单),阶段洗脱法,连续洗脱法(最常用)

第七章吸附层析法

一相关概念:

1.吸附层析法:以多孔凝胶填料为固定相,利用分子筛功能将分子大小不同的样品组分加以分离的方法。

二知识点:

1.分离原理:在吸附剂表面存在着许多随机分布的吸附位点,这些位点通过范德华力和静电引力与蛋白质核酸等生物分子结合,混合物在层析柱不断吸附,解吸再吸附即在固定相和流动相中连续分配,从而达到分离效果。

2.常见的吸附剂有:羟基磷灰石,硅胶,活化氧化铝-硅胶,活性炭,大孔吸附树脂。

3.依据层析方式不同,吸附层析法的种类:柱层析,薄层层析。

4.薄层层析的操作步骤:1、薄层板的制备2、点样3、展层4、显色5、检测

第八章凝胶层析法

一相关概念:

1.凝胶层析法:以多孔凝胶填料为固定相,利用分子筛功能将分子大小的样品组分加以分离的方法。

2.外水体积:指凝胶柱中凝胶颗粒周围空间的体积,即流动相的体积。

3.内水体积:凝胶颗粒中孔穴的体积。

4.柱床体积:凝胶柱中所能容纳的体积。

5.排阻极限:指不能进入凝胶颗粒孔穴内部的最小分子的分子量。

6.吸水率:1g干凝胶吸收水的体积或重量,但不包括颗粒间的吸附水分。

二知识点:

1.分离原理:凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排阻在外部,当一混合溶液通过,凝胶过滤层析柱时,溶液中的物质就按不同分子质量筛分开了。

2.常见的凝胶有:葡聚糖凝胶,聚丙烯酰胺凝胶,交联葡聚糖与双丙烯酰胶共聚凝胶,琼脂糖凝胶,交联琼脂糖凝胶。

第九章免疫层析

一.相关概念:

1.抗原:指进入异种机体后,能致敏淋巴细胞、能与抗体发生特异结合的物质。抗原与抗体结合的特异性称为抗原性。

2.抗体:机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,又称免疫球蛋白。

3.免疫佐剂:先于抗体或与抗原一起注入机体,可增强机体对该抗原的特异性免疫应答或改变免疫应答类型的物质。

4.半抗原:有些小分子物质只有抗原特异性而无免疫原性故称半抗原。

二知识点:

1.抗原性包括:免疫原性和抗原特异性。

2.一个良好的抗原应具备的条件:分子足够大,外源性强,结构尽量复杂,可降解性好。

3.人类抗体的种类:IgG、IgA、IgM、IgD、IgE。

4.佐剂的种类:无机佐剂、有机佐剂、合成佐剂。

5.单克隆抗体产生的机制:

[1]骨髓瘤细胞的特征:骨髓瘤细胞是一种恶变细胞。它在体外有无限的增殖力,并能分泌很多化学结构均一的免疫球蛋白,但特异性较差。当它与不同性质的动物脾细胞融合时,可形成杂交瘤细胞株。该细胞株在HAT培养基中生长良好,而骨髓瘤细胞则在HAT培养基中不能生长。[2]脾细胞的特点:经免疫的动物细胞,不能在体外增殖,但是能产生相应的特异抗体,能与骨髓瘤细胞融合,并形成可分泌单克隆抗体的细胞株。[3]单克隆抗体的产生:把骨髓瘤细胞和经免疫的鼠脾细胞置于聚乙二醇中融合,然后在HAT培养液中选择培养。

骨髓瘤细胞和动物脾细胞在聚乙二醇的作用下发生融合,在HAT培养基中骨髓瘤细胞,没有融合的脾细胞均不能进行增长繁殖,只有骨髓瘤细胞-脾细胞融合体才能发生增殖,增殖过程中产生单个细胞株,单个的细胞株在培养的过程中,脾细胞分泌一些免疫性物质。

第十章亲和层析法

一相关概念:

1.亲和层析:利用生物分子间所具有的专一而可逆的亲和力,使生物分子分离纯化的方法。

二知识点:

1.分离原理:以亲和吸附剂为固定相,以特异性溶液为流动相,欲分离物质通过在固定相所装的层析柱时,借助静电引力,范德华力,结构互补效应等作用,使待分离的物质吸附在固定相上,不吸附的被平衡缓液洗涤出来形成第一个层析峰。然后,改变缓冲溶液PH或增加离子强度等方式将有效成分从固定相上解离下来形成第二个层析峰。

2.亲和吸附剂的结构:基质--间隔臂分子 --配体

第十一章气相色谱法

一相关概念:

1.气相色谱法:以气体为流动相的色谱分离技术。

2.载气:是指沿着固定相移动的惰性气体。

3.固定液:在担体或毛细管表面均匀涂渍的有机化合物液膜称为固定液。

4.保留值:试样各组分在色谱柱中滞留的时间或将组分带出色谱柱所需载气的体积。

5.色谱峰:由检测器输出的电信号对时间作图,所得的曲线称色谱流出曲线,在曲线上隆起部分称色谱峰。

6.峰面积:色谱峰与基线之间构成的面积。

二知识点:

1.分离原理:多种组分的混合样品进入色谱仪的气化室气化后呈气态,由于样品中各组分性质不同,在色谱柱中两项间的分配系数和吸附系数不同,在载气带动下各组分在柱子中运行速度也不同,根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。

2.气相色谱法的构造:载气系统;进样系统;分离系统,检测系统,记录系统。

3.气相色谱法的用途:定量测定,定性检测。

第十二章高效液相色谱法

一知识点:

1.根据分离机制的不同,高效液相色谱法的类型:液固吸附色谱;离子交换色谱;凝胶色谱;亲和色谱。

第十三生物芯片

一知识点:

1.生物芯片的分类:

(1)按制备方式:原位合成芯片,DNA微阵列

(2)支持物不同:无机基因芯片,有机合成芯片

(3)功能不同:基因表达芯片,DNA测序芯片

2.基因芯片的应用:1基因测序;2基因表达量检测;3基因含量的检测;4基因突变的检测

生物化学原理- 糖酵解

第十五章糖酵解 本章主线: 糖酵解 丙酮酸代谢命运 (乙醇发酵乳酸发酵) 糖酵解调控 巴斯德效应 3种单糖代谢 (果糖、半乳糖、甘露糖) 一、糖酵解 糖酵解概述: ●位置:细胞质 ●生物种类:动物、植物以及微生物共有 ●作用:葡萄糖分解产生能量 ●总反应:葡萄糖+2ADP+2 NAD++2Pi →2 丙酮酸+2ATP+2NADH+2H++2H2O 具体过程: 第一阶段(投入A TP阶段): 1分子葡萄糖转换为2分子甘油醛-3-磷酸;投入2分子ATP。 ○1 反应式:葡萄糖+ ATP→葡萄糖-6-磷酸+ADP 酶:己糖激酶(需Mg2+参与) 是否可逆:否 说明: ●保糖机制——磷酸化的葡萄糖被限制在细胞内,磷酸化的糖带有负电荷的磷酰基,可防 止糖分子再次通过质膜。(应用:解释输液时不直接输葡萄糖-6-磷酸的原因) ●己糖激酶以六碳糖为底物,专一性不强。 ●同功酶——葡萄糖激酶,是诱导酶。葡萄糖浓度高时才起作用。 ○2 反应式:葡萄糖-6-磷酸→果糖-6-磷酸 酶:葡萄糖-6-磷酸异构酶 是否可逆:是 说明:

●是一个醛糖-酮糖转换的同分异构化反应(开链?异构?环化) ●葡萄糖-6-磷酸异构酶表现出绝对的立体专一性 ●产物为α-D-呋喃果糖-6-磷酸 ○3 反应式:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP 酶:磷酸果糖激酶-I 是否可逆:否 说明: ●磷酸果糖激酶-I的底物是β-D-果糖-6-磷酸与其α异头物在水溶液中处于非酶催化的快 速平衡中。 ●是大多数细胞糖酵解中的主要调节步骤。 ○4 反应式:果糖-1,6-二磷酸→磷酸二羟丙酮+甘油醛-3-磷酸 酶:醛缩酶 是否可逆:是 说明: ●平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷酸不断地转化成丙酮酸,大大 地降低了甘油醛-3-磷酸的浓度,从而驱动反应向裂解方向进行。 ●注意断键位置:C3-C4 ○5 反应式:磷酸二羟丙酮→甘油醛-3-磷酸 酶:丙糖磷酸异构酶 是否可逆:是 说明: ●葡萄糖分子中的C-4和C-3 →甘油醛-3-磷酸的C-1; 葡萄糖分子中的C-5和C-2 →甘油醛-3-磷酸的C-2; 葡萄糖分子中的C-6和C-1 →甘油醛-3-磷酸的C-3。 ●缺少丙糖磷酸异构酶,将只有一半丙糖磷酸酵解,磷酸二羟丙酮堆积。 第二阶段(产出A TP阶段):此阶段各物质的量均加倍 2分子甘油醛-3-磷酸转换为2分子丙酮酸;产出4分子ATP ○6 反应式:甘油醛-3-磷酸+NAD++Pi→1,3-二磷酸甘油酸+NADH+H+ 酶:甘油醛-3-磷酸脱氢酶 是否可逆:是 说明: ●酵解中唯一一步氧化反应。是一步吸能反应,与第7步反应耦联有利于反应进行。 ●NAD+是甘油醛-3-磷酸脱氢酶的辅酶 ●1,3-二磷酸甘油酸中形成一个高能酸酐键。 ●无机砷酸(AsO43-)可取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底物,生成一个不稳

2015高级生物化学及实验技术试题答案

高级动物生化试题 问答题: 1. 简述非编码RNA(non-coding RNA)的种类、结构特点及其主要功能。 非编码RNA的种类结构和功能 1tRNA转运RNA(transfer RNA,tRNA) 结构特征之一是含有较多的修饰成分,核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。5’末端具有G(大部分)或C。3’末端都以ACC的顺序终结。有一个富有鸟嘌呤的环。有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。有一个胸腺嘧啶环。tRNA具有三叶草型二级结构以及“L”型三级结构,tRNA 的不同种类及数量可对蛋白质合成效率进行调节。tRNA负责特异性读取mRNA中包含的遗传信息,并将信息转化成相应氨基酸后连接到多肽链中。 tRNA为每个密码子翻译成氨基酸提供了结合体,同时还准确地将所需氨基酸运送到核糖体上。鉴于tRNA在蛋白质合成中的关键作用,又把tRNA称作第二遗传密码。tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。 2rRNA核糖体RNA(ribosomal RNA, rRNA) 核糖体RNA是细胞中最为丰富的RNA,在活跃分裂的细菌细胞中占80%以上。

他们是核糖体的组分,并直接参与核糖体中蛋白质的合成。核糖体是rRNA 提供了一个核糖体内部的“脚手架”,蛋白质可附着在上面。这种解释很直接很形象,但是低估了rRNA在蛋白质合成中的主动作用。较后续的研究表明,rRNA并非仅仅起到物理支架作用,多种多样的rRNA可起到识别、选择tRNA以及催化肽键形成等多种主动作用。例如:核糖体的功能就是,按照mRNA的指令将氨基酸合成多肽链。而这主要依靠核糖体识别tRNA 并催化肽键形成而实现。可以说核糖体是一个大的核酶( ribozyme)。而核糖体的催化功能主要是由rRNA来完成的,蛋白质并没有直接参与。 3 tmRNA tmRNA主要包括12个螺旋结构和4个“假结”结构,同时还包括一 个可译框架序列的单链RNA结构。tmRNA中H1由5’端和3’端两个末端形成,与tRNA的氨基酸受体臂相似。H1和H2的5’部分之间有一个由10-13nt 形成的环,类似tRNA中的二氢尿嘧啶环,称为“D”环。H3和H4,H6和H7,H8和H9,H10和H11之间分别形成Pk1,pK2,pK3,pK4。H4和H5之间则由一段包含编码标记肽ORF的单链RNA连接。H12由5个碱基对和7nt 形成的环组成,类似tRNA中的TΨC臂和TΨC环,称为“T”环。tmRNA 结构按照功能进行划分可分为tRNA类似域(TLD)和mRNA类似域(MLD),TLD主要包括H1,H2,H12,“D”环和“T”环,MDL则包括ORF和H5,这两部分分别具有类似tRNA和mRNA的功能。tmRNA是一类普遍存在于各种细菌及细胞器(如叶绿体,线粒体)中的稳定小分子RNA。它具有mRNA分子和tRNA分子的双重功能,它在一种特殊的翻译模式——反式翻译模式中发挥重要作用。同时,它与基因的表达调控以及细胞周期的调控等生命过程密切相关,是细菌体内蛋白质合成中起“质量控制”的重要分子之一。识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

生化分析仪原理与结构

生化分析仪基本原理与结构 生化分析仪是临床诊断常用的重要仪器之一。它是通过对血液和其他体液的分析来测定各种生化指标,如血红蛋白、胆固醇、肌肝、转氨酶、葡萄糖、无机磷、淀粉酶、白蛋白、总蛋白、钙等。同时结合其他临床资料进行综合分析,可帮助诊断疾病,并可鉴别并发因子以及决定今后治疗的基准等。 近几十年来,随着科学技术特别是医学科学的发展,各种自动生化分析仪器和试剂均得到很大发展,生化分析由手工操作进入机械化、自动化阶段。自动生化分析仪器的特点是精度高,可达0002A;重复性好,功能齐全,可进行吸光度、浓度和酶活力的测定,能使用终点法、动力学法和初速度法进行分析,测试项目多。另外,自动生化分析仪还有快速、简便、微量等优点。因此,自动生化分析仪在实验室和临床检验中均得到了广泛的 应用。 生化分析仪的种类较多,可从不同的角度进行分类: 1.按反应装置的结构可分为连续流动式、分立式和离心式3类。 2.按自动化程度可分为全自动、半自动和手工型3类。 3.按同时可测定项目可分为单通道和多通道两类。单通道每次只能检测一个项目,但项目可以更换。多通道每次同时可以测多个项目。 4.按仪器的复杂程度及功能可分为小型、中型和大型3类。小型一般为单通道、半自动及专用分析仪;中型为单通道(可更换几十个项目)或多通道,常同时可测2~10个项目;大型均为多通道仪器,同时可测10个以上项目,分析项目可自选或组合,不仅能进行临床生化检验,而且可进行药物监测及进行免疫球蛋白的测定。 5.按规定程序可变与否,可分为程序固定式和程序可变式两类。 第一节工作原理及基本结构 所谓自动生化分析仪就是生化分析中的取样、加试剂、去干扰物、混合、保温反应、检测。结果计算和显示,以及清洗等步骤都能自动完成的仪器,实现自动化的关键在于采用了微机控制系统。 目前,绝大多数生化分析仪都是基于光电比色法的原理进行工作的。其结构可粗略地看成是由光电比色计或分光光度计加微机两部分组成。由于整个测试过程是自动完成的,因此除微机外,在采样、进样、反应等过程使用了一些特殊的部件。下面作简要介绍。 一、连续流动式自动生化分析仪 图1-1单通道连续流动式生化分析仪的结构示意图 在微机控制下,通过比例泵将标本和试剂吸到连续的管道之中,在一定的温度下,在管道内完成混合、去除干扰物、保温反应、比色测定、信号放大及运算处理,最后将结果显示并打印出来。因为这种检测分析是一个样品接着一个样品在连续流动状态下进行的,故称之为连续流动式分析仪。 这类仪器中,样品和样品之间可以用空气来隔离,也可以用空白试剂或缓冲液来隔离。用

膜片钳技术的发展和应用

膜片钳的发展和应用 1.背景 细胞是生物的基本组成单元,细胞外围有一层薄膜,彼此分离又互相联系,细胞间与细胞内的通信、信号传递依靠其膜上的离子通道来进行,离子和离子通道是细胞兴奋性的基础,亦是产生生物电的基础。生物电信号通常是用电学或电子学的方法进行测量。早期多采用双电极电压钳技术作胞内记录,近年来逐渐被膜片钳所取代,这项技术为从细胞和分子水平了解生物膜离子单通道“开启”和“关闭”的门控动力学及各种不同离子通道的通透性和选择性等膜信息提供了最直接的手段。 膜片钳记录(patch clamp recording)是利用玻璃微电极吸引封接面积仅为几个um2的细胞膜片,在10-12A水平,记录单个或几个通道的离子电流,已达到当今电子测量的极限。此技术广泛用于细胞膜离子通道电流的测量和细胞分泌、药理学、病理生理学、神经科学、脑科学、植物细胞的生殖生理等领域的研究。从而点燃了细胞和分子水平的生理学研究的生命之火,并取得了丰硕的成果。 2.膜片钳技术简介 2.1 基本原理和记录方法 电压钳(V oltage-clamp)是由英国学者Huxley和Katz最先应用的[1]。其实质是通过负反馈微电流放大器在兴奋性细胞膜上外加电流,保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流的情况。膜电流的改变反映了膜电阻和膜电容的变化,因此电压钳可用来研究整个细胞膜或一大块细胞膜上所有离子通道的活动,但该技术由于在细胞内插人两根电扳,对细胞损伤很大,在小细胞中难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致,而逐渐被膜片钳所取代。 膜片钳技术(patch-clamp)是在电压钳基础上发展起来一种新技术,与电压钳的主要区别有二:一是钳制膜电位的方法不同;二是电位固定的细胞膜面积不同,即所研究的离子通道数目不同。与电压钳一样,膜片钳也是利用负反馈电子线路,将微电板尖端所吸附的一个至几个平方微米的细胞膜电位固定在一定水平,观察流过通道的离子电流。其实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻封接,使电极尖开口处与相接的细胞膜小区域(膜片)形成无论是从机械上还是电学上都极为紧密地封接,从而可反映细胞上单一(或多数)离子通道的分子活动[2]。1976年,德国科学家Neher和Sakmann首先用此技术对蛙胸皮肌细胞膜上的己酰胆碱受体通道进行了研究,记录出了量值在皮安级(10-12 A)的微弱电流[3,4]。1981年,经Hamill等[5]后人的进一步完善,其电流测量灵敏度已达1pA,时间和空间分辨率达10 us和1 um。 随着膜片钳技术的出现,目前有几种不同的记录方式: (1)细胞吸附式(cell-attached patch)将两次拉制后,经热抛光的微管电极置于清洁的细胞膜表面, 形成高阻封接,在细胞膜表面隔离出一小片膜,即通过微管电极对膜片进行电压钳制,从而测量膜电流。 (2)内面向外模式(inside-out patch)高阻封接形成后,将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中,使小泡的外半部分破裂即得。

生物化学原理——RNA合成

第11章RNA合成 本章概念总结: 1、遗传学中心法则: 2、转录: 3、模板链: 4、编码链: 5、核心酶: 6、RNA聚合酶: 7、启动子: 8、内含子: 9、外显子: 10、终止因子: 11、核酶: 12、剪接体: 13、RNA加工过程: 14、RNA剪接: 15、转录因子: 16、操纵子: 17、操纵基因: 18、结构基因: 19、基因: 20、阻遏物: 21、衰减作用: 希望同学们明确以上概念的含义,加油!!! 一、转录概述: 蛋白质合成不是直接由DNA指导的,而是通过一个中介物mRNA实现的。所有的RNA都可与DNA的互补序列杂交,即所有的RNA都是从DNA模板转录来的。要注意:DNA复制要求染色体两条链同时进行完全复制,而遗传信息的表达却只是基因组中某些单链区域。转录就是将遗传信息由DNA转给RNA,也叫作RNA合成。转录的模板只是双链DNA中的某一条链,能作为模板的链称为模板链,互补链叫做编码链。从DNA到RNA的转录是由RNA聚合酶催化的。 同时,请同学们注意RNA合成和DNA复制之间存在的差别: ① RNA合成的底物是核糖核苷三磷酸; ②在RNA中,尿嘧啶与腺嘌呤配对; ③ RNA合成不需要一个预先存在的引物; ④ RNA合成的选择性非常强,只有基因中很小的一部分被转录。 二、RNA聚合酶 大肠杆菌RNA聚合酶的核心酶是由5个蛋白亚基组成的,分别被命名为β,βˊ,α(2个)和ω亚基。其中β亚基是催化亚基。 请注意:RNA聚合酶全酶还含有第6个亚基,称之σ亚基(也称为ζ因子),与核心的RNA聚合酶瞬时结合,其功能是识别模板上的启动子,使RNA聚合酶与启动子结合。一旦延伸开始σ亚基就脱离聚合酶。 三、转录起始

生化技术原理

第一章生命大分子物质的制备 某一骨骼肌的无细胞粗抽提液每毫升含蛋白质32mg,在适宜条件下,10/-l该抽提液以每分钟O.14,umol 的速度催化一个反应。用硫酸铵沉淀法分级分离50ml上述抽提液,将饱和度为20% - 40%的沉淀物重新溶于10ml溶液中,测得其蛋白质含量为50rng/m1’取ioy.i该溶液催化一反应,其速度为每分钟o.65弘mol。试计算纯化倍数和回收率。(2. 97,92.8%) 第二章沉淀法 1.兔肌醛缩酶的p常数与盐析常数(在离子强度为摩尔浓度时)分别为6.30和2. 84。试求硫酸铵浓度分别为2mol/L、3mol/L时的溶解度。(4.2mg/ml,6.03 X10-3 mg/ml) 2.含25%硫酸铵饱和度的细胞色素c溶液150ml,需加多少克硫酸铵或多少毫升饱和硫酸铵溶液,才能使其达55%饱和度? (28. 95g, 100ml) .10.某一蛋白质的盐析范围为饱和硫酸铵30%-60%,试简述具体操作(若有500ml盐析液)。 第三章吸附层析 7. 利用薄层层析如何确定蛋白质的纯度? 第四章疏水层析 1.疏水作用层析的固定相和流动相与普通吸附层析有何区别?为什么?(P63 , T1) 第五章离子交换层析 1.离子交换剂由哪几部分组成?何为阳离子和阴离子交换剂? 2.弱酸性和弱碱性的纤维素离子交换剂分别适宜在哪些pH范围内应用?为什么? 7.影响离子交换剂膨胀度的因子有哪些?其中哪个为关键因子?为什么? 8.在层析柱中污染杂质后应如何处理?为什么某些亲水性离子交换剂在含乙醇的乙酸盐溶液中可以防止微生物污染? 9.试设计利用离子交换剂分离一种含等电点分别为4.0、6.0、7.5和9.0的蛋白质合液的方案,并简述理由。并绘制洗脱曲线。 10.梯度溶液的变化速率、交换剂的膨胀程度、装柱的均匀度等因子,对样品的分辨率有何影响?11.梯度溶液的变化速率是受哪些因素控制的?试举例说明如何借助速率变化来提高分离效果?13.用离子交换剂测定蛋白质的等电点时,为什么一定要用强性离子交换剂?

生化方法学及仪器应用

生化方法学及仪器应用

生化检测方法及仪器应用 两点法:测定酶反应开始后某一时间内(t1到t2)产物或底物浓度的总变化量以求取酶反应初速度的方法。 终点法:通过测定酶反应开始到反应达到平衡时产物或底物浓度总变化量,以求出酶活力的方法,亦称平衡法。速率法:是指连续测定(每15秒~1分钟监测一次)酶反应过程中某一反应产物或底物的浓度随时间的变化来求出酶反应的初速度的方法,即连续监测法。 一、常用生化检测项目分析方法举例 1.终点法检测常用的有总胆红素(氧化法或重氮法)、结合胆红素(氧化法或重氮法)、血清总蛋白(双缩脲法)、血清白蛋白(溴甲酚氯法)、总胆汁酸(酶法)、葡萄糖(葡萄糖氧化酶法)、尿酸(尿酸酶法)、总胆固醇(胆固醇氧化酶法)、甘油三酯(磷酸甘油氧化酶酶法)、高密度脂蛋白胆固醇(直接测定法)、钙(偶氮砷Ⅲ法)、磷(紫外法)、镁(二甲苯胺蓝法)等。以上项目中,除钙、磷和镁基本上还使用单试剂方式分析因而采用一点终点法外,其它测定项目都可使用双试剂故能选用两点终点法,包括总蛋白、白蛋白测定均已有双试剂可用。2.固定时间法苦味酸法测定肌酐采用此法。(两点法) 3.连续监测法(速率法)对于酶活性测定一般应选用连

点法、两点法、连续监测法等,根据被检物质的检测方法原理选择其中一种反应类型。 3.反应温度一般有30℃、37℃可供选择,通常固定为37℃。 4.主波长主波长(primary wavelength)是指定一个与被测物质反应产物的光吸收有关的波长。 5.次波长次波长(secondary wavelength)是在使用双波长时,要指定一个与主波长、干扰物质光吸收有关的波长。 6.反应方向反应方向(response direction)有正向反应和负向反应两种,吸光度增加为正向反应,吸光度下降为负向反应。 7.样品量样品量(sampling volum)一般是2μl~35μl,以0.1μl步进,个别分析仪最少能达到1.6μl。可设置常量、减量和增量。 8.第一试剂量第一试剂量(first regengt volum)一般是20~300μl,以1μl步进。 9.第二试剂量第二试剂量(second regengt volum)一般也是20~300μl,以1μl步进。 10.总反应容量总反应容量(total reacting volum)在不同的分析仪有一个不同的规定范围,一般是180~350μl,个别仪器能减少至120μl。总反应容量太少无法进行吸光度

生化分离技术原理及应用复习提纲

《生物分离工程》 复习题 1、什么是等电点沉淀? 调节溶液的 pH至溶质的等电点,溶质所带净电荷为零时,其分子间的吸引力增加,分子相互吸引,把该溶质从溶液中沉淀出来,即等电点沉淀 2、什么是微滤? 微滤(micfiltation,MF)是以多孔细小薄膜为过滤介质,靠膜两侧的压力差来对物质进行选择性透过,达到膜分离的目的。微滤膜的孔径分布范围在0.05? 10um之间;采用的压力一般在0.05?0.5MPa范围内。 3、什么是超滤? 超滤(ultafiltationUF)是利用膜两侧的压力差为动力将分子有选择地透过膜的过程,透过膜的分子除溶剂水外,还可以将溶质中的小分子(如无机盐等)通过膜,因此它属于一种“膜分离”过程。超滤的分离介质与微滤膜类似,但孔径更小,为0 001?0.05um,采用的压力常为0.1?1.0MPa。 4、什么是反萃取? 反萃取(backextraction):将萃取液和反萃取剂(含无机酸或碱的水溶液、水等)相接触,使某种被萃取到有机相的溶质转人水相,可看作是萃取的逆过程。 5、什么是溶剂萃取 溶剂萃取:利用物质在互不相溶的两相溶剂中溶解度的不同,将物质从一相溶剂转移到另一相溶剂中,从而进行分离、浓缩和提纯目的产物的方法. 6、什么是色谱技术? 色谱技术是一组相关分离方法的总称,色谱柱的一般结构含有固定相和流动相,根据物质在两相间的分配行为不同,经过多次分配(吸附-解吸-吸附-解吸…),达到分离的目的。 7、什么是膜分离技术? 膜分离技术利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

2020年秋冬智慧树知道网课《生物化学技术原理及应用(中国海洋大学)》课后章节测试答案

第一章测试 1 【判断题】(10分) 在用适当的溶液对某蛋白质进行抽提时,选择抽提液的pH最好是蛋白质的等电点 A. 对 B. 错 2 【判断题】(10分) 蛋白质等生物大分子物质的结构复杂,来源广泛,因此蛋白质的分离纯化方案的通用性差 A. 对 B. 错 3 【多选题】(10分) 生命大分子物质制备的特点有哪些?() A. 生命大分子物质容易失活 B. 待分离生命大分子物质的含量较低 C.

生物制品的质量要求较高 D. 原材料中成分复杂 4 【判断题】(10分) 动物细胞比植物细胞和微生物细胞相对容易破碎 A. 错 B. 对 5 【判断题】(10分) 各种细胞破碎方法可以组合使用,以更好的破碎细胞 A. 错 B. 对 6 【单选题】(10分) 有关抽提溶液说法不正确的是()

A. 抽提液最好是来源广泛 B. 抽提液可以是缓冲液、稀酸、稀碱溶液,也可以使用有机溶剂 C. 抽提指的是用适当的溶剂和方法,把原材料中的杂质溶解出来 D. 抽提液不应该破坏有效成分的结构 7 【判断题】(10分) 抽提液中可以加入适当酶抑制剂,以抑制蛋白质或核酸的降解 A. 对 B. 错 8 【单选题】(10分) 下列分离纯化技术依据的原理与物质的溶解度无关的是() A. 盐析 B. 超滤 C.

选择性沉淀 D. 结晶 9 【判断题】(10分) 评价纯化方案是否合理,可以考察纯化倍数是否增加,纯化倍数越高,说明纯化方案越合理。 A. 对 B. 错 第二章测试 1 【多选题】(10分) 影响蛋白质溶解度的外界因素包括() A. 溶液介电常数的大小 B. 溶液的pH C. 溶液的离子强度 D.

自动生化分析仪的原理构成及使用

一、自动生化分析仪的功能及特点 自动生化分析仪是将生化分析中的取样、加试剂、混合、保温、比色、结果计算、书写报告等步骤的部分或全部由模仿手工操作的仪器来完成。它可进行定时法、连续监测法等各种反应类型的分析测定。除了一般的生化项目测定外,有的还可进行激素、免疫球蛋白、血药浓度等特殊化合物的测定以及酶免疫、荧光免疫等分析方法的应用。它具有快速、简便、灵敏、准确、标准化、微量等特点。 二、自动生化分析仪的分类 自动生化分析仪有多种分类方法,最常用的是按其反应装置的结构进行分类。按此法可将自动生化分析仪分为流动式和分立式两大类。 所谓流动式自动生化分析仪是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。过去说得多少通道的生化分析仪指的就是这一类。存在较严重的交叉污染,结果不太准确,现已淘汰。 分立式自动生化分析仪与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的,不易出现较差污染,结果可靠。 三、自动生化分析仪的构成 因为自动生化分析仪是模仿手工操作的过程,所以无论哪一类的自动生化分析仪,其结构组成均与手工操作的一些器械设备相似,一般可有以下几个部分组成: 1、样品器:放置待测样本、标准品、质控液、空白液和对照液等。 2、取样装置:包括稀释器、取样探针和输送样品和试剂的管道等。 3、反应池或反应管道:一般起比色皿(管)的作用。 4、保温器:为化学反应提供恒定的温度。 5、检测器:如比色计、分光光度计、荧光分光光度计、火焰光度计、电化学测定仪等。不同仪器配置不同。 6、微处理器:是分析仪的电脑部分,又叫程序控制器。控制仪器所有的动作和功能,使用者可通过键盘与仪器“对话”,同时电脑还能接受从各部件反馈来的信号,并作出相应的反应,对异常情况发出一定的指示信号。分析软件和分析结果一般贮存在磁盘中,可共查询。 7、打印机:可绘制反应动态曲线和打印检验报告单等。 8、功能监测器:显示屏就是其中一部分,可查看反应状态、人机“对话”的情况、当前仪器工作状态、分析结果等。

全自动生化分析仪工作原理(1)

一、基本结构 (一)按照反应装置的结构,自动生化分析仪主要分为流动式(Flow system)、分立式(Discrete system)两大类。 1.流动式指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。 2.分立式指各待测样品与试剂混合后的化学反应都是在各自的反应杯中完成。其中有几类分支。 (1)典型分立式自动生化分析仪。此型仪器应用最广。 (2)离心式自动生化分析仪,每个待测样品都是在离心力的作用下,在各自的反应槽内与试剂混合,完成化学反应并测定。由于混合,反应和检测几乎同时完成,它的分析效率较高。 3.袋式自动生化分析仪是以试剂袋来代替反应杯和比色杯,每个待测样品在各自的试剂袋内反应并测定。 4.固相试剂自定生化分析仪(亦称干化学式自动分析仪) 是将试剂固相于胶片或滤纸片等载体上,每个待测样品滴加在相应试纸条上进行反应及测定。操作快捷、便于携带是它的优点。 (二)典型分立式自动生化分析仪基本结构 1.样品(Sample)系统 样品包括校准品、质控品和病人样品。系统一般由样品装载、输送和分配等装置组成。 样品装载和输送装置常见的类型有: (1)样品盘(Sample disk),即放置样品的转盘有单圈或内外多圈,单独安置或与试剂转盘或反应转盘相套合,运行中与样品分配臂配合转动。有的采用更换式样品盘,分工作和待命区,其中放置多个弧形样品架(Sector)作转载台,仪器在测定中自动放置更换,均对样品盘上放置的样品杯或试管的高度、直径和深度有一定要求,有的需专用样品杯,有的可直接用采血试管。样品盘的装载数,以及校准品、质控品、常规样品和急诊样品的装载数,一般都是固定的。这些应根据工作需要选择。 (2)传动带式或轨道式进样即试管架(Rack)不连续,常为10个一架,靠步进马达驱动传送带,将试管架依次前移,再单架逐管横移至固定位置,由样品分配臂采样。 (3)链式进样试管固定排列在循环的传动链条上,水平移动到采样位置,有的仪器随后可清洗试管。 分配加样装置大都由注射器、步进马达或传动泵、加样臂和样品探针等组成,①注射器(syrine unit)。根据注射器直径和活塞移动距离的多少,定量吸取样品或试剂。它的精度决定加样的

生物化学技术与原理 (2)

第一章生物化学基本操作与要求 1.洗涤剂的种类配置与应用 (1)铬酸洗液 由重铬酸钾与浓硫酸组成,具强酸性、强氧化性,适合用于玻璃器皿的洗涤。棕褐色,用久了之后颜色变绿,失效 (2)30%硝酸洗涤CO2测定仪器及微量滴管 (3)45%尿素洗涤蛋白制剂、血样 (4)有机溶剂 (5)去污粉 2.化学试剂的分级 3.什么是准确度、精密度? 1. 准确度与误差 准确度的高低可用误差衡量 绝对误差=测定值-真实值 相对误差=绝对误差/真实值×100% 2. 精密度与偏差 精密度指多次测量结果相互吻合的程度,表示测定的再现性。 精密度的高低用偏差衡量。 绝对偏差=测定值-算术平均值 相对偏差=绝对偏差/算术平均值×100% 4.如何提高实验的准确度、精密度? 准确度——系统误差 (1)仪器校正 (2)空白实验 (3)对照实验 精密度——偶然误差 (1)平均取样 (2)多次取样 第二章层析技术 1.层析技术及其原理 层析(色谱)技术是一种基于被分离物质的物理、化学及生物学特性的不同,使它们在某种基质中移动速度不同而进行分离和分析的方法。 层析都是由互不相溶的两个相组成:一是固定相,一是流动相。层析时,利用混合物中各组分理化性质的差异,使其在流动相与固定相之间的分配系数(Kd)不同,随着流动相从

固定相上流过,不同组分以不同速度移动而最终被分离。 2.名词 固定相:固定相是层析的基质。它可以是固体物质(如吸附剂等),也可以是液体物质(如固定在硅胶或纤维素上的溶液),这些基质能与待分离的化合物进行可逆的吸附,溶解,交换等作用。 流动相:在层析过程中,推动固定相上待分离的物质朝着一个方向移动的液体、气体等,都称为流动相。 分配系数:分配系数是指在一定的条件下,某种组分在固定相和流动相中含量(浓度)的比值,常用Kd来表示。混合物各组分的分配系数差异越大,越容易分离开。 Kd =固定相中的总量/流动相中的总量 3.层析法的分类 (一)根据流动相的形式分类 气相色谱法:气固色谱法和气液色谱法 液相色谱法:液固色谱法和液液色谱法 (二)按固定相的形式分类 柱层析法:柱层析法是将固定相装在一金属或玻璃柱中做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法。 纸层析法:纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,根据滤纸上斑点位置及大小进行定性和定量分析。 薄层层析法:薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理分类 1.吸附层析 2.分配层析(正相色谱、反相色谱) 3.凝胶排阻层析 4.离子交换层析 5.亲和层析法 4.几种主要凝胶的名称、型号、及型号数字代表的含义 1)交联葡聚糖凝胶,Sephadex 的主要型号G-10 ~ G-200,后面的数字是凝胶的吸水率(单位是ml/g干胶)乘以10。如Sephadex G-50,表示吸水率是5ml/g干胶。 2)聚丙烯酰凝胶,Bio-gel P,p值表示不同的交联度,p越大,孔径越大。P后的数字乘1000相当于凝胶排阻极限。 3)琼脂糖凝胶,常见的主要有Amersham(Pharmacia)(GE) 生产的Sepharose(2B ~6B)和Bio-Rad 生产的Bio-gel A 4) Ultragel 聚丙烯酰胺和琼脂糖交联凝胶 5)Sephacryl凝胶 6) Superdex凝胶、Superrose凝胶 7)聚乙烯醇凝胶toyopearl 8)聚苯乙烯凝胶商品为Styrogel 5.凝胶层析及其基本原理、操作过程和主要应用 凝胶色谱也称为凝胶排阻层析、凝胶过滤和分子筛层析。它是60 年代发展起来的,利用凝胶把物质按分子大小不同进行分离的一种方法。 原理:由于被分离物质的分子大小不同,洗脱时,大分子物质由于直径大于凝胶网孔不能进入凝胶内部,只能沿着凝胶颗粒间的孔隙,随溶剂向下移动,因此流程短,首先流出层

生物化学原理——DNA复制

第十章DNA复制 1.DNA复制方式:半保留复制,双向复制。 半保留复制:DNA复制的一种方式。每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。 双向复制:在一个复制的起点处同时向两个方向进行复制。 引入术语:复制叉:Y字形结构,在复制叉处作为模板的双链DNA解旋,同时合成新的DNA 链。 Meselson-stahl 实验:以大肠杆菌(E.coli)作为实验对象,用15N标记亲代DNA,在14N(氯化铵)环境中进行两次复制,然后进行密度离心,分析得到的DNA带。 2.DNA聚合酶: 以DNA链为模板,催化核苷酸残基加到以存在的聚核苷酸的3’末端反映的酶。 DNA聚合酶催化条件:DNA模板和带有3’-OH的引物(RNA)。 反应特点:链的延伸由5’末端到3’末端,称为5’-3’方向生长。 其他功能:修复功能(5’-3’外切酶活性和3’ -5’外切酶活性:可将经聚合酶催化错配的核苷酸切去) DNA聚合酶的种类和功能参见教材187页表10.1。 3.DNA 复制 大肠杆菌:起始。从单一的ori C起始点沿相反方向双向进行。先解旋,然后引发酶合成RNA 引物,由DNA聚合酶III催化开始新链的合成。 延伸。从一个复制起点开始复制,形成两个复制叉。 引入术语:与复制叉移动的方向一致,通过5’-3’方向可以连续合成的子链称为 前导链;与复制叉移动的方向相反,也是沿着5’-3’方向但不连续合成的子链称 为滞后链。 a.RNA引物的合成。以引发酶催化,DNA为模板合成一段与之互补的RNA片断。 b.前导链的合成。在RNA引物存在的条件下聚合酶III可以连续合成前导链。 c.滞后链的合成。 引入术语:冈崎片断:相对比较短的DNA链,在DNA滞后链的不连续合成期间 生成的片断。 实验表明滞后链的合成是先合成许多冈崎片断,然后连成大的DNA片断。每个 冈崎片断的生成需要一个RNA引物。最后要用DNA 聚合酶I的5’-3’外切酶活

生物化学原理复习题

一、名词解释 km值:Km值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度,是酶的特征常数之一。不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,Km值可近似的反应酶与底物的亲和力大小:Km 值大,表明亲和力小;Km值小,表明亲合力大。 肽键:一分子氨基酸的α-羧基和另一分子氨基酸的α-氨基脱水缩合形成的共价键,即-CO-NH-。氨基酸借肽键联结成多肽链。 结构域:分子较大的多肽常折叠成两个或多个球状簇,这种球状簇叫做结构域。在球形蛋白中,结构域具有自己特定的四级结构,其功能部依赖于蛋白质分子中的其余部分,但是同一种蛋白质中不同结构域间常可通过不具二级结构的短序列连接起来。蛋白质分子中不同的结构域常由基因的不同外显子所编码。Tm值:天然结构与变性结构转换的中点温度,Tm值取决于溶液的PH和离子强度。不同序列的DNA,Tm 值不同。DNA中G-C含量越高,Tm值越高,成正比关系。 生物氧化:在生物体内,从代谢物脱下的氢及电子﹐通过一系列酶促反应与氧化合成水﹐并释放能量的过程。主要为机体提供可利用的能量 脂肪酸β-氧化:脂肪酸氧化是从羧基端的β碳原子开始的,每次切下一个二碳单位,这种分解方式就称为脂肪酸β-氧化。 乙醛酸循环:植物(尤其是尚不能完成光合作用的幼苗)以及某些细菌和藻类能够利用乙酸作为他们唯一的碳源去合成它们自身的化合物,这是因为这些生物具有将乙酸或乙酰CoA转变成草酰乙酸的酶系统,这一酶系统称为乙醛酸途径或乙醛酸循环。 磷酸戊糖途径:当加入碘乙酸或氟化物后,糖酵解和三羧酸循环被抑制,但葡萄糖的消耗并无太大影响,同时观察到葡萄糖-6-磷酸可以转化为CO2和5-磷酸核酮糖。于是把这个转变途径叫做磷酸戊糖途径。核苷酸的从头合成:利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列复杂的酶促反应合成核苷酸。 顺反子(cistron):即结构基因,为决定一条多肽链合成的功能单位。 钙调蛋白:一种能与钙离子结合的蛋白质。钙离子被称为细胞内的第二信使,其浓度变化可调节细胞的功能,这种调节作用主要是通过钙调蛋白而实现的。

膜片钳实验技术入门---基本原理与操作

膜片钳实验技术入门------基本原理与操作 关兵才 李国华 刘理望 按:本文乃于2003年根据较旧型号的仪器写成,后被《机能实验科学》 (郑先科主编,北大医学版,2006)收入。因新旧仪器基本原理和操作步骤大同小异,现对原文略作修改和标注,供同学们参考。 【实验目的】 1. 了解膜片钳技术的基本原理和操作。 2. 初步学习电压依赖性离子通道电流的基本记录方法。 【实验原理】 一、膜片钳技术原理简介 膜片钳(patch clamp)是一种主要用于检测细胞膜离子通道活动的电生理技术,按工作方式可区分为电压钳(voltage clamp)和电流钳是最基本的工作方式,即对细胞膜电位进行人为控制,如将膜电位钳制于某一固定水平,或在此基础上再施以阶跃(step)式或斜坡式(ramp)电压刺激,同时记录跨膜电流,从而分析细胞膜通道的活动。电流钳即人为控制经微电极对细胞进行注射的电流(等于离子通道电流与细胞膜电容电流之和),同时记录膜电位及其变化。若注射电流为零即常用的零位钳流,用于测量细胞膜静息电位,若注射方波脉冲刺激电流,用于诱发、观测动作电位。另外,膜片钳技术还常用于观测细胞膜电容, 从而推测分泌细胞的活动情况。下面主要介绍其电压钳工作方式的基本原理。(注:在电生理资料中,因通常将细胞外液和记录系统的“地”点相连作为参考点即零电位点,所以电位和电压两个概念经常混用。) 根据膜片钳实验中受检细胞膜的型式(configuration)不同,又可将膜片钳分为全细胞式(whole-cell)、细胞贴附式(cell-attached 或on-cell)、内面朝外式(inside-out)、外面朝外式(outside-out)等四种模式。 (一)全细胞式 1.电压钳制和电流记录的实现 图9-9为全细胞式膜片钳工作原理示意图。 图9-9 全细胞膜片钳实验原理示意图 A1:运算放大器;A2:单倍增益差动放大器;R f:反馈电阻;V p:电极电位(A1反向输入端电位);

相关文档
相关文档 最新文档