文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理33热学练习题(含答案)(2020年九月整理).doc

高中物理33热学练习题(含答案)(2020年九月整理).doc

高中物理33热学练习题(含答案)(2020年九月整理).doc
高中物理33热学练习题(含答案)(2020年九月整理).doc

高中物理选修3-3热学(复习)试题

一、单项选择题

1、在测定分子大小的油膜实验中,下面的假设与该实验无关的是()

A.油膜的体积等于总的分子体积之和

B.油膜为单层分子且都是球形

C.分子是一个挨一个排列,它们间的间隙可忽略

D.油膜中分子沿直线排列

2、关于分子的热运动,下述正确的是()

A.分子的热运动就是布朗运动

B.布朗运动是悬浮在液体中微粒的分子的无规则运动,它反映微粒分子的无规则运动

C.温度越高,悬浮微粒越小,布朗运动越激烈

D.物体的速度越大,内部分子的热运动越激烈

3、右图为两分子系统的势能E p与两分子间距离r的关系曲线。

下列说法正确的是()

A.当r大于r1时,分子间的作用力表现为引力

B.当r小于r1时,分子间的作用力表现为斥力

C.当r等于r1时,分子间的作用力为零

D.在r由r1变到r2的过程中,分子间的作用力做负功

4、气体的温度升高了30℃,在热力学温标中,温度升高了()

A. 30K

B. 273+30K

C. 243K

D. 303K

5、下列关于内能的说法中,正确的是()

A.不同的物体,若温度相等,则内能也相等

B.物体速度增大,则分子动能增大,内能也增大

C.对物体做功或向物体传热,都可能改变物体的内能

D.冰熔解成水,温度不变,则内能也不变

6、某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和

活塞组成。开箱时,密闭于气缸内的压缩气体膨胀,将箱

盖顶起,如图所示。在此过程中,若缸内气体与外界无热

交换,忽略气体分子间相互作用,则缸内气体()

A.对外做正功,内能增大

B.对外做正功,分子的平均动能减小

C.对外做负功,分子的平均动能增大

D.对外做负功,内能减小

7、一定质量的气体,在体积不变时,温度每升高1℃,它的压强增加量()

A. 相同

B. 逐渐增大

C. 逐渐减小

D. 成正比例增大

8、已知理想气体的内能与温度成正比。如图,实线是汽缸内一定质量的理想气体

由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()

A、先增大后减小

B、先减小后增大

氧气氢气

O

A B

C

D

V

T

C、单调变化

D、保持不变

9、两个容器A、B用截面均匀的水平玻璃管相通,如图所示,A、B中所装气

体温度分别为100oC和200oC,水银柱在管中央平衡,如果两边温度都升高100oC,则水银将()

A.向左移动 B.向右移动

C.不动 D.无法确定

10、在密闭的四壁绝热的房间里,使房里长期没工作的电冰箱开始工作,并打开

电冰箱的门,经过一段较长时间之后()

A.房间内的温度将降低 B.房间内的温度将不变

C.房间内的温度将升高 D.无法判断房间内温度的变化

13、已知阿伏伽德罗常数为N

A

,铝的摩尔质量为M,铝的密度为ρ,则下列说法正确的是( )

A.1kg铝所含原子数为ρN A B.1个铝原予的质量为M/N A

C.1m3铝所含原子数为N

A

/(ρM) D.1个铝原子所占的体积为M/(ρN A) 14、一个物体沿粗糙斜面匀速滑下,则下列说法正确的是()

A.物体机械能减小,内能增大

B.物体机械能减小,内能不变

C.机械能与内能总量减小

D.机械能与内能总量不变

15、下列说法正确的是()

A.第二类永动机与第一类永动机一样违背了能量守恒定律

B.自然界中的能量是守恒的,所以能量永不枯竭,不必节约能源

C.热力学第二定律反映了自然界中任何宏观过程都具有方向性

D.不可能让热量由低温物体传递给高温物体而不引起其它任何变化

16、如图所示,绝热气缸中间用固定栓将可无摩擦移动的导热隔板固定,隔板质

量不计,左右两室分别充有一定量的氢气和氧气(视为理想气体)。初始时,两室气体的温度相等,氢气的压强大于氧气的压强,松开固定栓

直至系统重新达到平衡,下列说法中正确的是

A.初始时氢分子的平均动能大于氧分子的平均动能

B.系统重新达到平衡时,氢气的内能比初始时的小

C.松开固定栓直至系统重新达到平衡的过程中有热量从氧气传递到氢气

D.松开固定栓直至系统重新达到平衡的过程中,氧气的内能先增大后减小17、封闭在气缸内一定质量的理想气体由状态A变到状态D,其体积V 与热力学

温度关T系如图所示, O、A、D三点在同一直线上,由状态A变到状态D过程中()

A.气体从外界吸收热量,内能增加

B.气体体积增大,单位时间内与器壁单位面积碰撞的分子减少

C.气体温度升高,每个气体分子的动能都会增大

D.气体的密度不变

19、如图所示,一定质量的理想气体,从状态A经绝热过程A→B、等容过程B→C、

等温过程C→A又回到了状态A,则( )

A.A→B过程气体降温

B.B→C过程气体内能增加,可能外界对气体做了功C.C→A过程气体放热

D.全部过程气体做功为零

重点高中物理33知识点总结

重点高中物理33知识点总结

————————————————————————————————作者:————————————————————————————————日期: 2

高中物理3-3复习指南 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023mol - 1) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ== =(对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○ 1球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○ 2立方体模型.3 0=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接..说明了液体分子在永不停息地做无规则运动.

高中物理选修33知识点

选修3—3考点汇编 一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同231 6.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) Ⅰ.球体模型直径d = 36V 0 π. Ⅱ.立方体模型边长d = 3V 0. ◆ (2013考试说明新要求): ②利用阿伏伽德罗常数联系宏观量与微观量 Ⅰ.微观量:分子体积V 0、分子直径d 、分子质量m 0. Ⅱ.宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. a.分子质量:A mol N M m = 0=A mol N V ρ b.分子体积:A mol N V v = 0=M ρN A (气体分子除外) c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V 0=V m N A ,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。 2、对于气体分子,d =3 V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离. 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间 ◆ (2013考试说明新考点): (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒......各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈

高考物理真题热学

高考物理真题——选修3-3 热学 2016年 (全国新课标I 卷,33)(15分) (1)(5分)关于热力学定律,下列说确的是__________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分) A .气体吸热后温度一定升高 B .对气体做功可以改变其能 C .理想气体等压膨胀过程一定放热 D .热量不可能自发地从低温物体传到高温物体 E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 (2)(10分)在水下气泡空气的压强大于气泡表面外侧水的压强,两压强差p ?与气泡半径r 之间的关系为2p r σ?=,其中0.070N/m σ=。现让水下10m 处一半径为0.50cm 的气泡缓慢上升。已知大气压强50 1.010Pa p =?,水的密度 331.010kg /m ρ=?,重力加速度大小210m/s g =。 (i)求在水下10m 处气泡外的压强差; (ii)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值。 (全国新课标II 卷,33)(15分) ⑴(5分)一定量的理想气体从状态a 开始,经历等温或 等压过程ab 、bc 、cd 、da 回到原状态,其p -T 图像如图 所示.其中对角线ac 的延长线过原点O .下列判断正确 的是 . A .气体在a 、c 两状态的体积相等 B .气体在状态a 时的能大于它在状态c 时的能 C .在过程cd 中气体向外界放出的热量大于外界对气体做的功 D .在过程da 中气体从外界吸收的热量小于气体对外界做的功 E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功 ⑵(10分)一氧气瓶的容积为30.08m ,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气30.36m .当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实

高中物理-热力学第一定律

高中物理-热力学第一定律 如图,一个质量为m 的T 形活塞在气缸内封闭一定量的理想气体,活塞体积可忽略不计,距气缸底部h 0处连接一U 形细管(管内气体的体积可忽略)。初始时,封闭气体温度为T 0,活塞距离气缸底部1.5h 0,两边水银柱存在高度差。已知水银密度为ρ,大气压强为p 0,气缸横截面积为S ,活塞竖直部分高为1.2h 0,重力加速度为g 。 (1)通过制冷装置缓慢降低气体温度,当温度为多少时两边水银面恰好相平? (2)从开始至两水银面恰好相平的过程,若气体放出的热量为Q ,求气体内能的变化。 【参考答案】(1) (2)0.3h 0(p 0S +mg )–Q 【试题解析】(1)初态时,气体压强,体积V 1=1.5h 0S ,温度为T 0 要使两边水银面相平,气缸内气体的压强p 2=p 0,此时活塞下端一定与气缸底接触,V 2=1.2h 0 设此时温度为T ,由理想气体状态方程有 解得 (2)从开始至活塞竖直部分恰与气缸底接触,体积变小,气体压强不变,外界对气体做功,其后体积不变,外界对气体不做功,故外界对气体做的功W =p 1ΔV =()×0.3h 0S 由热力学第一定律有ΔU =W –Q =0.3h 0(p 0S +mg )–Q 【知识补给】 状态变化与内能变化 中学常见的状态变化主要有等温变化、等容变化、等压变化和绝热变化。 000455p ST p S mg +10mg p p S =+11220p V p V T T =000455p ST T p S mg =+0mg p S +

(1)等温变化:理想气体的内能等于分子动能,不变;一般气体的分子间距较大,分子间作用力为引力,体积增大,则分子势能增大,内能增大。 (2)等容变化:理想气体的内能随温度升高而增大;一般气体分子势能不变,温度升高时分子动能增大,内能增大;体积不变则外界对气体不做功,内能变化只与热传递有关。 (3)等压变化:理想气体的内能随温度升高而增大;一般气体温度升高时,分子平均速率增大,压强不变,则分子数密度应减小,即体积增大,分子势能和分子动能都增大,内能增大。(4)绝热变化:与外界无热交换,内能变化只与体积变化,即外界对气体做的功有关;理想气体的体积增大时,内能减小,温度降低,压强减小;一般气体的体积增大时,内能减小,分子势能增大,分子动能减小,温度降低,压强减小。 下列说法正确的是 A.物体的温度升高,物体内所有分子热运动的速率都增大 B.物体的温度升高,物体内分子的平均动能增大 C.物体吸收热量,其内能一定增加 D.物体放出热量,其内能一定减少 如图所示为密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的 A.温度升高,内能增加600 J B.温度升高,内能减少200 J C.温度降低,内能增加600 J D.温度降低,内能减少200 J 如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A,其中A→B和C→D为等温过程,B→C为等压过程,D→A为等容过程。

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

(word完整版)高中物理热学试题及答案

热学试题 一选择题: 1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离 A.阿伏加徳罗常数,该气体的摩尔质量和质量 B.阿伏加徳罗常数,该气体的摩尔质量和密度 C.阿伏加徳罗常数,该气体的质量和体积 D.该气体的质量、体积、和摩尔质量 2.关于布朗运动下列说法正确的是 A.布朗运动是液体分子的运动 B.布朗运动是悬浮微粒分子的运动 C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果 D.温度越高,布朗运动越显著 3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误 ..的 A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN A C.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是 A.固体分子间的引力总是大于斥力 B.气体能充满任何仪器是因为分子间的斥力大于引力 C.分子间的引力和斥力都随着分子间的距离增大而减小 D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小 5.关于物体内能,下列说法正确的是 A.相同质量的两种物体,升高相同温度,内能增量相同 B.一定量0℃的水结成0℃的冰,内能一定减少 C.一定质量的气体体积增大,既不吸热也不放热,内能减少 D.一定质量的气体吸热,而保持体积不变,内能一定减少 6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同 B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大 C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大 D.它们的分子数目不相同,分子的平均动能相同 7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则 A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量 C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量 8.关于气体压强,以下理解不正确的是 A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小 B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的 C.容器内气体的压强是由气体的重力所产生的 D.压强的国际单位是帕,1Pa=1N/m2

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理33知识点总结

高中物理3-3 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积m ol V 、物体质量m 、摩尔质量mol M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) mol mol V M V m ==ρ (1)分子质量:A mol mol 0N V N M N m m A ρ=== (2)分子体积:A mol A mol 0N M N V N V V ρ== =(对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10 m) ○ 1球体模型.3mol mol 0)2 (34d N M N V V A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S ----单分子油膜的面积,V----滴到水中的纯油酸的体积 ○ 2立方体模型.3 0=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A A N V N M N V N M m nN N mol A mol mol A mol m v v ρρ==== = 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接.. 说明了液体分子

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

高中物理选修3-3知识点总结

第1课时分子动理论 一、要点分析 1.命题趋势 本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点,试题多为低档题,中档题基本没有。分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。分子的动能和势能、物体的内能是高考的热点。2.题型归纳 随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。 3.方法总结 (1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。 (2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。 (3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。 4.易错点分析 (1)对布朗运动的实质认识不清 布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。布朗运动的剧烈程度与颗粒大小、液体的温度有关。布朗运动永远不会停止。 (2)对影响物体内能大小的因素理解不透彻 内能是指物体里所有的分子做无规则热运动的动能和分子势能的总和。分子动能取决于分子个数和温度;分子势能微观上由分子间相对位置决定,宏观上取决于物体的体积。同时注意内能与机械能的区别和联系。 二、典型例题 例1、铜的摩尔质量是6.35×10-2kg,密度是8.9×103kg/m3 。求(1)铜原子的质量和体积; (2)铜1m3所含的原子数目;(3)估算铜原子的直径。 例2、下面两种关于布朗运动的说法都是错误的,试分析它们各错在哪里。 (1) 大风天常常看到风沙弥漫、尘土飞扬,有时在室内也能看到飘浮在空气中的尘埃的运动,这些都是布朗运动。 (2)布朗运动是由于液体分子对固体小颗粒的撞击引起的,固体小颗粒的体积越大,液体分子对它的撞击越多,布朗运动就越明显。 (3)例3、如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的 F

高中物理热学试题及答案

热学试题 一选择题: 1只知道下列那一组物理量,就可以估算出气体中分子间的平均距离 A. 阿伏加徳罗常数,该气体的摩尔质量和质量 B. 阿伏加徳罗常数,该气体的摩尔质量和密度 C. 阿伏加徳罗常数,该气体的质量和体积 D .该气体的质量、体积、和摩尔质量 2. 关于布朗运动下列说法正确的是 A. 布朗运动是液体分子的运动 B. 布朗运动是悬浮微粒分子的运动 C. 布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果 D. 温度越高,布朗运动越显著 3. 铜的摩尔质量为口(kg/ mol ),密度为p (kg/m3),若阿伏加徳罗常数为NA,则下列 说法中哪个是错毘.的 A. Im3铜所含的原子数目是p NA/ 口 B . 1kg铜所含的原子数目是p NA C. 一个铜原子的质量是(口/ N A) kg D .一个铜原子占有的体积是(口/ p NA) m 4. 分子间同时存在引力和斥力,下列说法正确的是 A. 固体分子间的引力总是大于斥力 B. 气体能充满任何仪器是因为分子间的斥力大于引力 C. 分子间的引力和斥力都随着分子间的距离增大而减小 D. 分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小 5. 关于物体内能,下列说法正确的是 A. 相同质量的两种物体,升高相同温度,内能增量相同 B. —定量0C的水结成0C的冰,内能一定减少

C. 一定质量的气体体积增大,既不吸热也不放热,内能减少

D. —定质量的气体吸热,而保持体积不变,内能一定减少 6. 质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100 C时 A. 它们的分子数目相同,分子的平均动能相同 B. 它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大 C. 它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大 D. 它们的分子数目不相同,分子的平均动能相同 7. 有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐 渐变大,若不计气泡中空气分子的势能变化,则 A. 气泡中的空气对外做功,吸收热量B .气泡中的空气对外做功,放出热量 C.气泡中的空气内能增加,吸收热量 D .气泡中的空气内能不变,放出热量 &关于气体压强,以下理解不正确的是 A. 从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小 B. 从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的 C. 容器内气体的压强是由气体的重力所产生的 D ?压强的国际单位是帕,1Pa= 1N/mf 9. 一定质量的理想气体处于平衡状态I ,现设法使其温度降低而压强升高,达到平衡状态n 则() A. 状态I时气体的密度比状态n时的大 B. 状态I时分子的平均动能比状态n时的大 C. 状态I时分子的平均距离比状态n时的大 D. 状态I时每个分子的动能都比状态n时分子平均动能大 10. 如图所示,气缸内装有一定质量的气体,气缸的截面积为s,其活塞为梯形,它的一个 面与气缸成0角,活塞与器壁间的摩擦忽略不计,现用一水平力F推活塞,汽缸不动, 此时大气压强为P。,则气缸内气体的压强P为

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

高中物理专题-热力学定律

高中物理专题-热力学定律 在绝热气缸中封闭着两部分同种类的气体A和B,中间用绝热活塞隔开,活塞用销钉固定着。开始时两部分气体的体积和温度都相同,气体A的质量大于气体B的质量。撤去销钉后活塞可以自由移动,最后达到平衡。关于B部分气体的内能和压强的大小 A.内能增加,压强不变B.内能不变,压强不变 C.内能增加,压强增大D.内能不变,压强增大 【参考答案】C 【试题解析】因为气体A的质量大于气体B的质量,故开始时气体A的压强大于气体B的压强,撤去销钉后,A气体膨胀对B气体做功,故B气体内能增加,压强增大,选C。 【知识补给】 功和内能 (1)气体做功的特征是气体体积的变化,若气体只有压强的变化而无体积的变化,气体不做功。 (2)做功的对象是实物,故气体向真空膨胀不做功。 (3)理想气体被绝热压缩,则内能增加,温度升高,体积减小,压强一定增大;理想气体绝热膨胀,则内能减少,温度降低,压强一定增大。 如图所示,内壁光滑的绝热气缸竖直立于地面上,绝热活塞将一定质量的理想气体封闭在气缸中,活塞静止时处于A位置。现将一重物轻轻地放在活塞上,活塞最终静止在B位置。则活塞在B位置时与活塞在A位置时相比较

A.气体的内能可能相同 B.气体的温度一定不同 C.单位体积内的气体分子数不变 D.单位时间内气体分子撞击单位面积气缸壁的次数一定增多 如图所示,绝热气缸固定在水平地面上,气缸内用绝热活塞封闭着一定质量的理想气体。开始时活塞静止在图示位置现用力使活塞缓慢向右移动一段距离,则在此过程中 A.外界对缸内气体做正功 B.缸内气体的内能不变 C.缸内气体在单位时间内作用于活塞单位面积的冲量增大 D.在单位时间内缸内气体分子与活塞碰撞的次数减少 如图所示,用绝热活塞把绝热容器隔成容积相同的两部分,先把活塞锁住,将质量和温度都相同的理想气体氢气和氧气分别充入容器的两部分,然后提起销子,使活塞可以无摩擦地滑动,当活塞平衡时 A.氢气的温度不变B.氢气的压强减小 C.氢气的体积减小D.氧气的温度升高 绝热气缸的质量为M,绝热活塞的质量为m,活塞与气缸壁之间无摩擦且不漏气,气缸中密封一部分理想气体,最初气缸被销钉固定在足够长的光滑固定斜面上。如图所示,现拔去销钉,让气缸在斜面上自由下滑,当活塞与气缸相对静止时,被封气体与原来气缸静止在斜面上时相比较,下列说法中正确的是 A.气体的压强不变B.气体的内能减小

高中物理最新试题精选 热学部分

高中物理最新试题精选 热学部分 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.下列说法中正确的是[] A.物体的温度升高,物体所含的热量就增多 B.物体的温度不变,内能一定不变 C.热量和功的单位与内能的单位相同,所以热量和功都作为物体内能的量度 D.热量和功是由过程决定的,而内能是由物体的状态决定的 2.下列说法中正确的是[] A.布朗运动说明分子之间存在相互作用力 B.物体的温度越高,其分子的平均动能越大 C.水和酒精混合后总体积会减小,说明分子间有空隙 D.物体内能增加,一定是物体从外界吸收了热量 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一块,说明分子间存在斥力 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来二者的体积之和,说明分子间存在引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力,又有斥力 4.当两个分子间的距离r=r0时,分子处于平衡状态.设r1<r0<r2,则当两个分子间的距离由r1变到r2的过程中,分子势能[] A.一直减小B.一直增大 C.先减小后增大D.先增大后减小 5.对于一定质量的某种理想气体,如果与外界没有热交换,则[] A.若气体分子的平均动能增大,则气体的压强一定增大 B.若气体分子的平均动能增大,则气体的压强一定减小 C.若气体分子的平均距离增大,则气体分子的平均动能一定增大 D.若气体分子的平均距离增大,则气体分子的平均动能一定减小 6.已知某理想气体的内能E与该气体分子总数N和热力学温度T的乘积成正比,即E=kNT.现对一有孔的金属容器加热,加热前后容器内气体的质量分别为m1、m2,则加热前后容器内气体的内能E之比为[] A.m1/m2B.m2/m1C.1D.无法确定 7.一定质量的理想气体,从状态R出发,分别经历如图2-1所示的三种不同过程的状态变化到状态A、B、C.有关A、B、C三个状态的物理量的比较,下列说法中正确的是[] 图2-1 A.气体分子的平均速率vA>vB>vC

高中物理必考知识点总结(精华版)

高中物理必考知识点总结 高中物理磁场知识点:安培力 磁场对电流的作用力叫安培力 1. 安培力大小 2. 安培力的大小等于电流I 、导线长度L、磁感应强度 B 以及I 和 B间的夹角的正弦sin θ的乘积, 即 F=BIlsin θ。 注意:公式只适用于匀强磁场。 安培力的方向 3. 安培力的方向可利用左手定则判断。 左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手 掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸 开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力 方向。安培力方向一定垂直于B、I 所确定的平面,即 F 一定和B、I 垂直,但B、I 不一定垂直。 新高三暑期计划:物理要着重梳理解题方法 掌握基本概念,梳理解题方法 高三物理复习是在学完所有高中物理知识后进行的, 高一,结合xx 年的高考以及物理学习的特点来看,我们的暑期复习要把握好高 中物理整体知识结构和知识间的内在联系,确定知识的重点、难点, 理解典型的例题和习题,梳理并掌握解题中常用的解题方法,才能达到良好的复习效果。具体来讲主要从以下几个方面来着手: 紧扣教材内容

理清知识结构 高一、高二的学习我们是分章节学习的,同学们的头脑中堆积 了许多知识,但没有形成完整的知识体系,这种相互孤立的知识是难以理解和迁移的。因此在暑我们可以对照教材目录按照力学、热学、 电磁学、光学、原子物理等知识板块将知识梗概用框图的形式在笔记 本上出来,理解知识间的联系,做到“拎起来一条线,放下来一大片”。 对照考纲要求 掌握考点知识 高考的所有知识点虽然都在考试说明即考纲中一一列出,但平 时的学习都是在老师的引导下进行的,同学们自己并没有仔细研究考纲,在暑期我们可以找高三毕业的学生借来考纲,对照教材找到考纲上要求掌握的相应的物理概念、物理规律进行理解,考纲中的Ⅰ级和Ⅱ级要求是不同的,要按照考纲中的说明掌握。如果有实在暂时不能理解的要在笔记本上进行记录,以便在开学后的老师复习讲解中提高 自己的注意力。 精选参考书目 理解典型例题 教材上的概念、规律是否理解关键要看相对应的该部分典型问 题能否独立解决,因而同学们可以精选一本讲解详细的参考书目,自己思考并尝试解答参考书上的典型例题( 不是直接去看解题过程) ,然后再与参考书上的解题过程进行对比,从中加深对概念和规律的理解,并提高对概念和规律的迁移应用能力。在解题中千万要注意不仅要能

高考物理热力学综合题

1.根据热力学定律,下列说法正确的是() A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量 C.科技的进步可以使内燃机成为单一的热源热机 D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机” 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 2.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。 3.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍(B)8.5倍(C)3.1倍(D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。 4. 图6为某同学设计的喷水装置,内部装有2L水,上部密封1atm的空气0.5L,保持阀门关闭,再充入1atm的空气0.1L,设在所有过程中空可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 5.A.[选修3-3](12分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。

相关文档
相关文档 最新文档