文档视界 最新最全的文档下载
当前位置:文档视界 › 历年初三数学中考代数几何综合试题及答案

历年初三数学中考代数几何综合试题及答案

历年初三数学中考代数几何综合试题及答案
历年初三数学中考代数几何综合试题及答案

代数几何综合题

代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、(北京丰台)如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)

()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y )

(1)求y 与x 之间的函数关系式;

(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1)ΘPC PB BO PO ⊥⊥,

∴∠+∠=?∠+∠=?∴∠=∠CPA OPB PBO OPB CPA PBO 9090,ΘA (2,0),C (2,y )在直线a 上 ∴∠=∠=?BOP PAC 90

∴??BOP PAC ~

=

PO AC BO

PA

,∴=+||||||x y x 22, Θx y x y x

<<∴

=

-002

2,,∴=-+y x x 1

2

2

(2)Θx <0,∴x 的最大整数值为-1 ,

当x =-1时,y =-32,∴=CA 3

2

ΘBO a BOQ CAQ OQ AQ BO

CA

//~,,∴∴

=?? 设Q 点坐标为()m ,0,则AQ m =-2

-=∴=m m m 2232

8

7

Q 点坐标为()8

7

0,

说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。

练习

1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.

(1)求证:CD ∥AO ;(3分)

(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分)

B

2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0

(1)求m的取值范围;

(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;

(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.

3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

① 如图,将纸片沿CE 对折,点B 落在x 轴上的点D 处,求点D 的坐标;

② 在①中,设BD 与CE 的交点为P ,若点P ,B 在抛物线2

y x bx c =++上,求b ,c 的值; ③ 若将纸片沿直线l 对折,点B 落在坐标轴上的点F 处,l 与BF 的交点为Q ,

若点Q 在②的抛物线上,求l 的解析式。

4、一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。 ①求直线AC 的解析式;

②若M 为AC 与BO 的交点,点M 在抛物线2

85

y x kx =-

+上,求k 的值; ③将纸片沿CE 对折,点B 落在x 轴上的点D 处,试判断点D 是否在②的抛物线上,并说明理由。

5.已知:在矩形ABCD 中,AB=2,E 为BC 边上的一点,沿直线DE 将矩形折叠,使C 点落在AB 边上的C 点处。过C ′作C ′H ⊥DC ,C ′H 分别交DE 、DC 于点G 、H ,连结CG 、CC ′,CC ′交GE 于点F 。

(1) 求证:四边形CGC ′’E 为菱形; (2)

设x CDE =∠sin ,并设DE

DG

E C y +=',试将y 表示成x 的函数;

(3) 当(2)中所求得的函数的图象达到最高点时,求BC 的长

能力训练

1、已知抛物线)0(22

>--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。

(1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示);

(2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

人教版九年级数学旋转知识点总结与练习

旋转知识点总结与练习 知识点1 旋转的定义 把一个平面图形绕着平面内某一点O 转动一个角度的图形变换叫做_____,点O 叫做旋转中心, ________叫做旋转角. 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 1. 如图,将正方形图案绕中心O 旋转180°后,得到的图案是 ( ) 2. 如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自 身重合的是( ) A. B. C. D. 旋转的性质 (1)对应点到旋转中心的距离________; (2)对应点与旋转中心所连的线段的夹角等于________; (3)旋转前后的两个图形______. 要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 3. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B′位置,A 点落在A′ 位置,若AC⊥A′B′,则∠BAC 的度数是( ) A .50° B .60° C .70° D .80° 4.如图,直线与轴、轴分别交于、两点,把△绕点顺 时针旋转90°后得到△,则点的坐标是 A. (3,4) B. (4,5) C. (7,4) D. (7,3) 旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键,沿指定的方 72o 108o 144o 216o 443 y x =-+x y A B AOB A AO B ''B '

向旋转指定的角度,然后连接对应的部分,形成相应的图形. 5.在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其 旋转中心可能是() A.点A B.点B C.点C D.点D 知识点2 中心对称 把一个图形绕着某一点旋转_____,如果它能够与另一个图形____,那么就说这两个图形关于这个点对 称或______,这个点叫做______,旋转后能够重合的对应点叫做关于对称中心的_______. 要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同; (2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) 6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有_______. 中心对称的性质: 中心对称的两个图形,对称点所连线段经过_____,并且被对称中心所_____.中心对称的两个图形是____. 7.如图,已知△ABC和点O.在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点成中心对称. 知识点3 中心对称图形 把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形____,那么这个图形叫做_________,这个点叫它的_______.

初中数学用几何图示法解代数问题 学法指导

初中数学用几何图示法解代数问题 很多代数问题用纯代数知识来解答很繁琐,也很难解决。因此,许多代数问题用几何图示法来解决非常容易,下面列举几例进行探讨。 一. 线段图示法 例1. 甲、乙两车分别从A 、B 两地同时出发,相向而行,相遇时,甲车在已过中点15千米处,相遇后甲车再行8 9时到达B 地,乙车又行了2时到达A 地,求甲、乙两车每时各行多少千米? 分析:行程问题有三个基本量:路程、速度、时间,且有基本关系:路程=速度×时间。本题设甲车的速度为x 千米/小时,乙车的速度为y 千米/小时,由于同时出发到相遇时,甲车在已过(如图1)所示的线段AB 中点M 的15千米处C 点,继续前进后,甲车行的距离为x 89CB = 千米,乙车行的距离为CA=2y 千米。因此,甲车开始行驶的距离AC 的时间为x y 2时与乙车开始行驶的距离BC 的时间为y x 89时所用时间相同,而M 是AB 的中点, 即AM=BM ,MC=15千米, 则15x 8 9BM ,15y 2AM +=-=,由图所示易知: ???????=+=-y x 89x y 215x 8915y 2 解这个方程组,得??? ????=-=???==760y 780x ,60y 80x 2211 经检验,???????=-=???==760y 780x ,60y 80x 2211都是原方程组的解,但??? ????=-=760y 780x 22,不合题意,舍去。 所以,甲车的速度为80千米/小时,乙车的速度为60千米/小时。 图1 二. 三角形图示法 例2. 已知正数,x ,y 满足条件x+y=4,求1y 1x 22++的最小值。

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

人教版初三数学旋转模型(含详细解析)

旋转模型 授课日期时间 主题 教学内容 1.巩固并掌握旋转的性质; 2.结合辅助线的构造,更深刻的认识旋转的性质; 知识结构 1、在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转 2、?旋转具有以下特征: (1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等;(3)对应角、对应线段相等;(4)图形的形状和大小都不变。 3、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。 4、旋转不同类型 (一)正三角形类型 在正中,为内一点,将绕点按逆时针方向旋转,使得与 重合。 经过这样旋转变化,将图(1-1-a)中的、、三条线段集中于图(1-1-b)中的一个 中,此时也为正三角形。 【例题】如图:(1-1):设是等边内的一点,PA=3, PB=4,PC=5,的度数是________.

(二)正方形类型 在正方形中,P为正方形内一点,将绕点按顺时针方向旋转,使得与重合。 经过旋转变化,将图(2-1-a)中的、、三条线段集中于图(2-1-b)中的中,此时为等腰直角三角形。 【例题】 如图(2-1):是正方形内一点,点到正方形的三个顶点、、的距离分别为P A=1,PB=2,PC=3。求此正方形ABCD。

面. (三)等腰直角三角形类型 在等腰直角三角形中,,为内一点,将绕点按逆时针方向旋转,使得与重合。 经过这样旋转变化,在图(3-1-b)中的一个为等腰直角三角形。 【例题】如图,在中,∠ACB =900,BC=AC,P为内一点,且PA=3,PB=1,PC=2。求的度数。 典型例题

方程解问题的代数解法与几何解法(含练习题)

方程解问题的代数解法与几何解法 一般地,讨论方程的解可以有两种解法,一是利用代数方法,最终把比较复杂的 方程化为比较简单的一元一次方程或一元二次方程或其他基本方程(如简单的三角方程),二是转化为函数或方程的曲线,利用图形进行分析,即几何解法.要根据具体问题灵活选用这两种解法,而且两种解法要相互补充,灵活运用.下面举例说明这两种解法的具体应用. 例题1:设方程340x x +-=的根为1x ,方程3log 40x x +-=的根为2x , 求12x x +. 代数解法:因为13140+-=,所以1x =方程340x x +-=的一个根, ()34x f x x =+-在R 上为增函数,所以()34x f x x =+-在R 上最多只有一个零 点,所以1 1.x =因为3log 3340+-=,所以3x =方程3log 40x x +-=的一个根,3 ()log 4 f x x x =+-在(0,)+ 上为增函数,所以3()lo g 4f x x x =+-在(0,)+ 上最多只有一个零点,所以2 3.x = 所以12 4.x x += 显然上面提供的代数解法仅仅局限于能够用观察法求出方程根的情况,对于含有指数式、对数式及整式的方程,一般无法用初等方法求出方程的根,因此可以考虑从整体上求出12x x +. 此题的特殊性决定了题目的确具有更有一般性的代数方法,但是要用到指数与对数的互化,很难想到,下面提供给同学们仅供参考: 11340x x +-= ① 322log 40x x +-= ② ①式可以变形为1 13 4x x =-+,即为 311log (4)x x -+=,若设14x t -+=, 则14x t =-,于是3log 4t t =-, ②式变为322log 4x x =-,t 与2x 都是方程3log 4x x =-的根,而这个方程即3log 40 x x -+=,又函数3()log 4f x x x =+-在(0,)+ 上为增函数,最多只有一个实数根,因此必有214x x =-+,所以12 4.x x += 几何解法:将方程340x x +-=变形为34x x =-+,将方程

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

九年级数学上册二十三章旋转教案新人教版

第二十三章旋转 单元要点分析 教学内容 1.主要内容: 图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计. 2.本单元在教材中的地位与作用: 学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用. 教学目标 1.知识与技能 了解图形的旋转的有关概念并理解它的基本性质. 了解中心对称的概念并理解它的基本性质. 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法. 2.过程与方法 (1)让学生感受生活中的几何,?通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题. (2)?通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

人教版初三数学上册旋转的概念和性质

23.1图形的旋转 第1课时旋转的概念和性质 教学目标 1.通过观察具体实例认识旋转,能够归纳概括出旋转的概念,能够用数学语言建立旋转模型. 2.在探索旋转的过程中,构建旋转模型,概括旋转的性质. 教学重点 旋转的概念. 教学难点 探索旋转的性质.教学设计一师一优课一课一名师(设计者:) 教学过程设计 一、创设情景明确目标 展示图片并提问: 钟表的指针在不停地转动,如图①,从3时到5时,时针转动了多少度? 如图②,风车风轮的每个叶片在风的吹动下转动到新的位置. 以上这些现象有什么共同特点呢? 学生思考回答: 归纳导入:从3时到5时,钟表时针转动60°;钟表指针转动,风车叶片转动都可以看做是一个平面图形绕着平面内一点转动一个角度,什么叫做图形的旋转?旋转有哪些基本性质? 二、自主学习指向目标 1.自学教材第59至60页. 2.学习至此:请完成学生用书“课前预习”部分. 三、合作探究达成目标 探究点一旋转的概念 活动一:将指针、叶片等看作平面图形,相互交流思考下面的问题: (1)什么样的图形变换叫做旋转? (2)什么叫做旋转中心?旋转角?

(3)何谓旋转的对应点? 【展示点评】把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点. 【小组讨论】如何找出旋转前后图形的对应元素? 【反思小结】上面左图中,表盘的中心是旋转中心,旋转角是60°,时针的端点在3时的位置P与在5时的位置P′是对应点.找对应元素的方法是先确定旋转中心和对应点,然后利用“局部带整体”的方法得到其他对应元素. 【针对训练】见学生用书“当堂练习”知识点一 探究点二旋转的性质 活动二:出示教材第60页“探究”内容,相互交流思考下面的问题: (1)在这次旋转变换中,△ABC与△A′B′C′的对应点有哪些?旋转角有哪些?它们之间有何关系? (2)△ABC与△A′B′C′的形状和大小有什么关系? (3)△ABC和△A′B′C′的对应点之间有何数量关系和位置上的特征?所有旋转变换是否都满足你所发现的规律? 【展示点评】A与A′对应,B与B′对应,C与C′对应,∠AOA′、∠BOB′、∠COC′都是旋转角,∠AOA′=∠BOB′=∠COC′;旋转后△ABC与△A′B′C′的形状和大小不变,所有的旋转变换都满足以上规律. 【小组讨论】旋转具有哪些性质? 【反思小结】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等. 【针对训练】见学生用书“当堂练习”知识点二 四、总结梳理内化目标 1.旋转的定义:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转;旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等. 2.方法:(1)给出旋转图形,对应点到旋转中心所连线段的夹角就是旋转角.注意旋转方向;(2)根据旋转方向、旋转角找到对应点. 五、达标检测反思目标 1.下列物体的运动不是旋转的是( C )

试卷分类汇编_ 代数几何综合

代数几何综合 1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2 关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点?? ? ??232,D 在抛物线上,直线是一次函数 ()02≠-=k kx y 的图象,点O 是坐标原点. (1)求抛物线的解析式; (2)若直线平分四边形OBDC 的面积,求k 的值. (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由. 答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以? ??=++=+-5.1240 c b a c b a ,所以3a+3b=1.5,即a+b=0.5, 又12=- a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以2 3 212++-=x x y . (2)由(1)知2 3 212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB, 令kx -2=1.5,得l 与CD 的交点F(23 ,27k ), 令kx -2=0,得l 与x 轴的交点E(0,2 k ), 根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE, 即: ,5 11),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(2 1 232122+--=++-=x x x y 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为2 2 1x y - = 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,

九年级数学代数几何综合题解析提高班教师版

1 中考第一轮复习 代数与几何综合初步 本讲包括两个方面:数形结合思想、方程函数与几何的综合. 数形结合思想从解题方法上主要分为两类:一是用“形”来解决“数”的问题,体现在数列计算、公式证明等方面;二是用“数”来解决“形”的问题,体现在用方程、函数最值等来解决图形中的计算或最值问题. 方程函数与几何的综合这部分主要侧重在题型上,将代数式、方程、各种函数及各种几何图形综合在一起,不仅将第一轮复习的内容很好的综合,也能锻炼同学们灵活运用各种知识点、方法解决问题的能力. 一、数形结合思想 【例1】 (1)我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂 分家万事非”,如图,在边长为1 的正方形纸板上,依次贴上面积为 2 1 , 41,81 ,…,n 2 1的长方形彩色纸片(n 为大于1的整数),请你用“数 形结合”的思想,依数形变化的规律,计算+++81 4121…+n 2 1=___________. (2)利用图形可以计算正整数的乘法,请根据以下四个算图所示规律在右图中画出232312? 的算图(标出相应的数字和曲线) . (2009海淀初三期中) (3)数形结合思想是中学数学解题中常用的数学思想,利用这种思想,可以将代数 问题转化为几何问题,也可以将几何问题转化为代数问题.通过数形结合将代数与几何完美的结合在一起,可以大大降低解题的难度,提高效率和正确率,甚至还可以达到令人意想不到的效果.教科书中利用几何图形证明乘法公式 () 2 222a b a ab b +=++的做法,就是一个非常典型的例子: 如图,a 、b 分别表示一条线段的长度,则a+b 可以表示两条线段之和,那么()2 a b + 就可以表示正方形的面积.同样, a b b a b

用代数法解几何题

C D B A B C E A F D 第 18 讲 用代数法解几何题 【知识提要】 有的几何图形是由两个或两个以上的图形错综复杂地组合在一起,甚至已知条件是隐蔽的。我们可以根据图形的特征以及已知条件选择适当的未知量用x 来表示,然后找出相等关系列出方程(或代数式)求解。 【例题解析】 例1.把一个正方形的一边延长6cm,相邻的另一边缩短2cm,就变成一个长方形,这样面积比原来增加56cm 2,求原来正方形的面积。 思路点拨:设原正方形的边长为xcm,则列方程6(x -2)-2x =56求解。 例2.一块直角三角形的铁皮,两条直角边分别长40cm 和60cm 。要在里面剪一块最大的正方形,剪成的正方形边长是多少厘米? 思路点拨:设剪出最大正方形边长为xcm,则列方程40x ÷2+60x ÷2=40×60÷2求解。 例3.如图,梯形ABCD 是直角梯形,面积是54cm 2,下底是上底的2倍。求阴影部分的面积。 思路点拨:设梯形上底为xdm,则下底为2xdm,高也为xdm 。根据梯形面积公式列方程求解。 例4.如图长方形ABCD 中,长30cm,宽15cm,E 是AB 的中点,求图中阴影部分的面积。 思路点拨:设△CDF 的CD 边上的高为xcm 。根据“S △CDF +S △ADE -S △AEF =S △ACD ”列方程求解。

D B A E F E B A 例5.如图,大、小两个正方形的边长为10cm和6cm,求阴影部分的面积。 思路点拨:设DO=xcm。则根据“S 梯形DOFE +S △CDO =S △CEF ”求出DO的长,进而 求出阴影部分的面积。 【分层训练】 ★ 1.将一个长方形的宽增加5cm,长减少3cm,正好得到一个正方形,且正方形的面积比原来长方形的面积大45cm2,求原来长方形的面积。 2.如图梯形ABCD中,对角线AC与BD相交于E,且CE=2AE,若梯形ABCD的面积为540cm2,求△ADE的面积。 3.如图,已知梯形上、下底长度之比为5:8,面积为39cm2,求阴影部分的面积。 4.一个正方形,一边减少20%,另一边增加2cm,得到一个与正方形面积相等的长方形,求正方形的面积。 5.如图,△ABC中,D为BC的中点,E为CA的三等分点,AD与BE相交于F,若△ABC 的面积为60cm2,求△BDF的面积。

相关文档
相关文档 最新文档