文档视界 最新最全的文档下载
当前位置:文档视界 › 燃煤电厂节能减排技术

燃煤电厂节能减排技术

燃煤电厂节能减排技术
燃煤电厂节能减排技术

燃煤电厂节能减排技术

《 * 节约能源法》指出“节约资源是我国的基本国策。国家实施节约与开发并举、把节约放在首位的能源发展战略”。下面由为大家分享燃煤电厂节能减排技术,欢迎大家阅读浏览。

1、提高蒸汽参数

常规超临界机组汽轮机典型参数为24.2MPa/566℃/566℃,常

规超超临界机组典型参数为25-26.25MPa/600℃/600℃。提高汽轮机进汽参数可直接提高机组效率,综合经济性、安全性与工程实际应用情况,主蒸汽压力提高至27-28MPa,主蒸汽温度受主蒸汽压力提高

与材料制约一般维持在600℃,热再热蒸汽温度提高至610℃或620℃,可进一步提高机组效率。主蒸汽压力大于27MPa时,每提高1MPa进

汽压力,降低汽机热耗0.1%左右。热再热蒸汽温度每提高10℃,可

降低热耗0.15%。预计相比常规超超临界机组可降低供电煤耗1.5~2.5克/千瓦时。技术较成熟。

适用于66、100万千瓦超超临界机组设计优化。

2、二次再热

在常规一次再热的基础上,汽轮机排汽二次进入锅炉进行再热。汽轮机增加超高压缸,超高压缸排汽为冷一次再热,其经过锅炉一次再热器加热后进入高压缸,高压缸排汽为冷二次再热,其经过锅炉二次再热器加热后进入中压缸。比一次再热机组热效率高出2%~3%,可降低供电煤耗8~10克/千瓦时技术较成熟。

美国、德国、日本、丹麦等国家部分30万千瓦以上机组已有应用。国内有100万千瓦二次再热技术示范工程。

3、管道系统优化

通过适当增大管径、减少弯头、尽量采用弯管和斜三通等低阻力连接件等措施,降低主蒸汽、再热、给水等管道阻力。机组热效率提高0.1%~0.2%,可降低供电煤耗0.3~0.6克/千瓦时。技术成熟。

适于各级容量机组。

4、外置蒸汽冷却器

超超临界机组高加抽汽由于抽汽温度高,往往具有较大过热度,通过设置独立外置蒸汽冷却器,充分利用抽汽过热焓,提高回热系统热效率。预计可降低供电煤耗约0.5克/千瓦时。技术较成熟。

适用于66、100万千瓦超超临界机组。

5、低温省煤器

在除尘器入口或脱硫塔入口设置1级或2级串联低温省煤器,采用温度范围合适的部分凝结水回收烟气余热,降低烟气温度从而降低体积流量,提高机组热效率,降低引风机电耗。预计可降低供电煤耗1.4~1.8克/千瓦时技术成熟。

适用于30~100万千瓦各类型机组。

6、700℃超超临界

在新的镍基耐高温材料研发成功后,蒸汽参数可提高至700℃,大幅提高机组热效率供电煤耗预计可达到246克/千瓦时。技术研发阶段。

7、汽轮机通流部分改造

对于13.5、20万千瓦汽轮机和2000年前投运的30和60万千瓦亚临界汽轮机,通流效率低,热耗高。采用全三维技术优化设计汽

轮机通流部分,采用新型高效叶片和新型汽封技术改造汽轮机,节能提效效果明显。预计可降低供电煤耗10~20g/kWh。技术成熟。

适用于13.5~60万千瓦各类型机组。

8、汽轮机间隙调整及汽封改造

部分汽轮机普遍存在汽缸运行效率较低、高压缸效率随运行时间增加不断下降的问题,主要原因是汽轮机通流部分不完善、汽封间隙大、汽轮机内缸接合面漏汽严重、存在级间漏汽和蒸汽短路现象。通过汽轮机本体技术改造,提高运行缸效率,节能提效效果显著。预计可降低供电煤耗2~4g/kWh。技术成熟。

适用于30~60万千瓦各类型机组。

9、汽机主汽滤网结构型式优化研究

为减少主再热蒸汽固体颗粒和异物对汽轮机通流部分的损伤,主再热蒸汽阀门均装有滤网。常见滤网孔径均为φ7,已开有倒角。但滤网结构及孔径大小需进一步研究。可减少蒸汽压降和热耗,暂无降低供电煤耗估算值。技术成熟。

适于各级容量机组。

10、锅炉排烟余热回收利用

在空预器之后、脱硫塔之前烟道的合适位置通过加装烟气冷却器,用来加热凝结水、锅炉送风或城市热网低温回水,回收部分热量,从而达到节能提效、节水效果。采用低压省煤器技术,若排烟温度降低30℃,机组供电煤耗可降低1.8g/kWh,脱硫系统耗水量减少70%。技术成熟。

适用于排烟温度比设计值偏高20℃以上的机组。

11、锅炉本体受热面及风机改造

锅炉普遍存在排烟温度高、风机耗电高,通过改造,可降低排烟温度和风机电耗。具体措施包括:一次风机、引风机、增压风机叶轮改造或变频改造;锅炉受热面或省煤器改造。预计可降低煤耗1.0~2.0g/kWh。技术成熟。

适用于30万千瓦亚临界机组、60万千瓦亚临界机组和超临界机组。

12、锅炉运行优化调整

电厂实际燃用煤种与设计煤种差异较大时,对锅炉燃烧造成很大影响。开展锅炉燃烧及制粉系统优化试验,确定合理的风量、风粉比、煤粉细度等,有利于电厂优化运行。预计可降低供电煤耗0.5~1.5g/kWh。技术成熟。

现役各级容量机组可普遍采用。

13、电除尘器改造及运行优化

根据典型煤种,选取不同负荷,结合吹灰情况等,在保证烟尘排放浓度达标的情况下,试验确定最佳的供电控制方式(除尘器耗电率最小)及相应的控制参数。通过电除尘器节电改造及运行优化调整,节电效果明显。预计可降低供电煤耗约2~3g/kWh。技术成熟。

适用于现役30万千瓦亚临界机组、60万千瓦亚临界机组和超临界机组。

14、热力及疏水系统改进

改进热力及疏水系统,可简化热力系统,减少阀门数量,治理阀门泄漏,取得良好节能提效效果。预计可降低供电煤耗2~3g/kWh。技术成熟。

适用于各级容量机组。

15、汽轮机阀门管理优化

通过对汽轮机不同顺序开启规律下配汽不平衡汽流力的计算,以及机组轴承承载情况的综合分析,采用阀门开启顺序重组及优化技术,解决机组在投入顺序阀运行时的瓦温升高、振动异常问题,使机组能顺利投入顺序阀运行,从而提高机组的运行效率。预计可降低供电煤耗2~3g/kWh。技术成熟

适用于20万千瓦以上机组。

16、汽轮机冷端系统改进及运行优化

汽轮机冷端性能差,表现为机组真空低。通过采取技术改造措施,提高机组运行真空,可取得很好的节能提效效果。预计可降低供电煤耗0.5~1.0g/kWh。技术成熟。

适用于30万千瓦亚临界机组、60万千瓦亚临界机组和超临界

机组。

17、高压除氧器乏汽回收

将高压除氧器排氧阀排出的乏汽通过表面式换热器提高化学除

盐水温度,温度升高后的化学除盐水补入凝汽器,可以降低过冷度,一定程度提高热效率。预计可降低供电煤耗约0.5~1g/kWh技术成熟。

适用于10~30万千瓦机组

18、取较深海水作为电厂冷却水

直流供水系统取、排水口的位置和型式应考虑水源特点、利于

吸取冷水、温排水对环境 * 、泥沙冲淤和工程施工等因素。有条件时,宜取较深处水温较低的水。但取水水深和取排水口布置受航道、码头等因素影响较大。采用直流供水系统时,循环水温每降低1℃,供电煤耗降低约1g/kWh。技术成熟。

适于沿海电厂。

19、脱硫系统运行优化

具体措施包括:1)吸收系统(浆液循环泵、pH值运行优化、氧化风量、吸收塔液位、石灰石粒径等)运行优化;2)烟气系统运行优化;3)公用系统(制浆、脱水等)运行优化;4)采用脱硫添加剂。可提高脱硫效率、减少系统故障、降低系统能耗和运行成本、提高对煤种硫份的适应性。预计可降低供电煤耗约0.5g/kWh。技术成熟。

适用于30万千瓦亚临界机组、60万千瓦亚临界机组和超临界机组。

20、凝结水泵变频改造

高压凝结水泵电机采用变频装置,在机组调峰运行可降低节流损失,达到提效节能效果。预计可降低供电煤耗约0.5g/kWh。技术成熟。

在大量30~60万千瓦机组上得到推广应用。

21、空气预热器密封改造

回转式空气预热器通常存在密封不良、低温腐蚀、积灰堵塞等问题,造成漏风率与烟风阻力增大,风机耗电增加。可采用先进的密

封技术进行改造,使空气预热器漏风率控制在6%以内。预计可降低供电煤耗0.2~0.5g/kWh。技术成熟。

各级容量机组。

22、电除尘器高频电源改造

将电除尘器工频电源改造为高频电源。由于高频电源在纯直流供电方式时,电压波动小,电晕电压高,电晕电流大,从而增加了电晕功率。同时,在烟尘带有足够电荷的前提下,大幅度减小了电除尘器电场供电能耗,达到了提效节能的目的。可降低电除尘器电耗。技术成熟。

适用于30~100万千瓦机组。

23、加强管道和阀门保温

管道及阀门保温技术直接影响电厂能效,降低保温外表面温度设计值有利于降低蒸汽损耗。但会对保温材料厚度、管道布置、支吊架结构产生影响。暂无降低供电煤耗估算值。技术成熟。

适于各级容量机组。

24、电厂照明节能方法

从光源、镇流器、灯具等方面综合考虑电厂照明,选用节能、安全、耐用的照明器具。可以一定程度减少电厂自用电量,对降低煤耗影响较小。技术成熟。

适用于各类电厂。

25、凝汽式汽轮机供热改造

对纯凝汽式汽轮机组蒸汽系统适当环节进行改造,接出抽汽管道和阀门,分流部分蒸汽,使纯凝汽式汽轮机组具备纯凝发电和热电联产两用功能。大幅度降低供电煤耗,一般可达到10g/kWh以上。技术成熟。

适用于12.5~60万千瓦纯凝汽式汽轮机组。

26、亚临界机组改造

为超(超)临界机组将亚临界老机组改造为超(超)临界机组,对汽轮机、锅炉和主辅机设备做相应改造。大幅提升机组热力循环效率。技术研发阶段。

27、低(低)温静电除尘

在静电除尘器前设置换热装置,将烟气温度降低到接近或低于酸露点温度,降低飞灰比电阻,减小烟气量,有效防止电除尘器发生反电晕,提高除尘效率。除尘效率最高可达99.9%。低温静电除尘技术较成熟,国内已有较多运行业绩。低低温静电除尘技术在日本有运行业绩,国内正在试点应用,防腐问题国内尚未有实例验证。

28、布袋除尘

含尘烟气通过滤袋,烟尘被粘附在滤袋表面,当烟尘在滤袋表面粘附到一定程度时,清灰系统抖落附在滤袋表面的积灰,积灰落入储灰斗,以达到过滤烟气的目的。烟尘排放浓度可以长期稳定在

20mg/Nm3以下,基本不受灰分含量高低和成分影响。技术较成熟。

适于各级容量机组。

29、电袋除尘

综合静电除尘和布袋除尘优势,前级采用静电除尘收集80~90%粉尘,后级采用布袋除尘收集细粒粉尘。除尘器出口排放浓度可以长期稳定在20mg/Nm3以下,甚至可达到5 mg/Nm3,基本不受灰分含量高低和成分影响。技术较成熟。

适于各级容量机组。

30、旋转电极除尘

将静电除尘器末级电场的阳极板分割成若干长方形极板,用链条连接并旋转移动,利用旋转刷连续清除阳极板上粉尘,可消除二次扬尘,防止反电晕现象,提高除尘效率。烟尘排放浓度可以稳定在30mg/Nm3以下,节省电耗。技术较成熟。

适用于30~100万千瓦机组。

31、湿式静电除尘

将粉尘颗粒通过电场力作用吸附到集尘极上,通过喷水将极板上的粉尘冲刷到灰斗中排出。同时,喷到烟道中的水雾既能捕获微小烟尘又能降电阻率,利于微尘向极板移动。通常设置在脱硫系统后端,

除尘效率可达到70%~80%,可有效除去PM2.5细颗粒物和石膏雨微液滴。技术较成熟。

国内有多种湿式静电除尘技术,正在试点应用。

32、双循环脱硫

与常规单循环脱硫原理基本相同,不同在于将吸收塔循环浆液分为两个独立的反应罐和形成两个循环回路,每条循环回路在不同PH值下运行,使脱硫反应在较为理想的条件下进行。可采用单塔双循环或双塔双循环。双循环脱硫效率可达98.5%或更高。技术较成熟。

适于各级容量机组。

33、低氮燃烧

采用先进的低氮燃烧器技术,大幅降低氮氧化物生成浓度。炉膛出口氮氧化物浓度可控制在200mg/Nm3以下。技术较成熟。

适于各类烟煤锅炉。

内容仅供参考

火电厂主要节能减排技术措施建议(正式版)

文件编号:TP-AR-L6464 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 火电厂主要节能减排技 术措施建议(正式版)

火电厂主要节能减排技术措施建议 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 煤作为主要能源,在我国能源体系中占主导地 位。长期以来,煤炭在我国能源生产结构、消费结构 中一直占有绝对主导地位,占约65%以上,其中火力 发电用煤约占煤炭消费的50%左右。按现在的消耗水 平,我国煤炭资源也仅能维持70~80年。同时,煤 炭又是各种能源中污染环境最严重的能源。在火电行 业中提高煤炭利用效率,节约能源,无论是从降低煤 炭资源的消耗还是减少环境污染,都是具有深远意 义。 火电厂的节能要从项目的前期工作开始,应始终

贯穿设计、施工和运行的全过程。火电厂所采取的节能技术措施主要涉及厂址及总平面,主机设备的选型、各主要生产系统和辅助生产系统工艺方案的选择,涉及主要用能设备选型、主要和附属建筑节能、节约用地、节水以及采取的环保措施等。项目的主辅机选型和主要工艺应符合国家的产业政策,节能设计应积极采用国家重点节能技术推广目录中的工艺和设备,禁止采用国家明令禁止和淘汰的用能产品和设备。本文提出的主要节能技术措施主要政策依据有:1)产业结构调整指导目录(2011 年本) 2)“十二五”节能环保产业发展规划; 3)国家重点节能技术推广目录; 4)“节能惠民工程”高效电机推广目录; 5)高耗能落后机电设备(产品)淘汰目录; 6)火力发电厂厂用高压电动机调速节能导则;

探讨火力发电厂运行的几个节能减排措施

探讨火力发电厂运行的几个节能减排措施 摘要 随着工业技术的不断发展和人民生活水平的不断提高 人类对能源的需求量也在逐年增加。火力发电厂在运行时要消耗大量的煤 一般一台12 5万k W的机组 标准煤耗量为380g kWh。为了保持资源永续和提高生活质量 促进经济发展 各个火电厂都把降低煤耗量作为降低发电成本、提高经济效益的重要任务来抓。本文就针对火力发电厂中的节能减排工作进行一番探析 希望可以产生一定的效益。 关键词 火力发电厂节能减排应用 1前言 信息、通讯、计算机、智能控制、变频技术的发展 为火力发电厂的高效、节约运作、科学管理 以及过程优化提供了前所未有的手段 进而促进火力发电厂的科学管理和自动化水平的提高。针对节能工程必须追求合理的投资回报率 电厂企业节能工程不可能大而全 盲目求新的实际情况 电厂节能工程的指导原则如下 “效益为主”、“分项实施”、“技术更新”与“重点突破”等相互结合。怎样在火力发电厂来落实和贯彻这些方针政策 来大力促进火力发电厂节能是一个值得探讨的问题 而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。 2做好火力发电厂的生产环节控制 2.1提高火力发电厂的燃烧煤质。从而降低能耗 节约成本。煤炭的质量对火力发电厂的经济效益影响很大。通常来说 在广泛应用煤粉锅炉的火力发电厂中 燃煤的成本能够占到发电成本的百分之七十五左右 而占上网电价成本的百分之三十左右。如果不提高煤质 使用的煤质较次 则会导致火力发电厂的煤炭消耗量和电力使用率增加 也会造成锅炉和辅助设备的严重损耗。因此。在实际应用中 提高燃煤质量 做好人厂和人炉燃煤质量的控制 能够有效减少燃煤的消耗量 节约火力发电厂的发电成本 实现火力发电厂的节能减排。 2.2优化锅炉燃烧率 减少燃煤能量损失 做好节能减排管理工作。火力发电厂中最大的燃煤消耗设备就是锅炉设备 通过优化锅炉燃烧效率来实现火力发电厂节能减排管理工作的潜力很大。煤炭等燃料在锅炉内的燃烧过程中 往往会造成一定程度的能量损失 这些损失主要包括 可燃气体或固体未完全燃烧造成的热损失、锅炉自身散热造成的热损失、锅炉排渣和整理烟尘排放中所携带的热损失等。因此 提高锅炉燃料燃烧率 减少能量损失 是做好火力发电厂节能减排管理工作的重要举措。在实际应用中。我们可以使用的主要措施有 2.2.1通过提高入炉的空气温度、控制过量空气系数、充分混合空气与煤炭(煤粉)、合理降低煤粉细度、调整锅炉的燃烧程度和保障锅炉内一、二次风的混合时间等来减少可燃气体和固体中因未完全燃烧所造成的热损失 2.2.2可以通过严密水冷壁和锅炉炉墙结构、采用先进的保温材料保障炉墙与管道的保温性能以及增加锅炉周围空气的温度来实现对锅炉自身散热导致热损失的控制

柴油车、(CNG)天然气车辆CO2排放减排量计算

一、柴油车辆 CO2排放计算 柴油的CO2排放因子是:74100 kg/TJ柴油的净热值是:43 TJ/Gg 故单位质量柴油完全燃烧排放的CO2质量是:74.1*43/1000 = 3.1863 即1kg柴油排放CO2: 3.1863kg 每升柴油(10号)排放CO2: 3.1863kg*0.84=2.6765kg 每升柴油排放注:柴油含碳量:20.2 kg/GJ;氧化率:100%,碳到二氧化碳的转化系数:44/12,故此:柴油的CO2排放因子计算为: 20.2*100%*44/12*1000 = 74100 kg/TJ 二、天然气车辆 CO2排放计算 天然气的主要成分是甲烷,也有少许乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,由于天然气的成分并不是一个标准量,只能按照全部为甲烷来计算这样在充分燃烧后: CH4+2O2=CO2+2H20 正好生成一立方米的二氧化碳,质量约为1.964千克。 三、计划更新天然气车辆CO2减排量计算 以2013年为例,一年的燃料单耗天然气与柴油车相比,计算天然气车辆CO2减排量: 1、每升天然气充分燃烧后,产生1.964千克CO2,2013年天然气车辆燃料单耗为40.16立方米/百公里,那么每百公里排放CO2为: 1.964*40.16=78.8742千克/百公里 2、每升柴油(10号)排放CO2为2.6765kg,2013年柴油车辆燃

料单耗为31.63升/百公里,那么每百公里排放CO2为: 31.63*2.6765=84.6577千克/百公里 3、2013年天然气与柴油车型相比天然气车辆每百公里CO2减排量为: 84.6577-78.8742=5.7835千克/百公里 4、2013年平均每车每日行驶里程为135.4公里,即1.354百公里,那么每辆车每年CO2减排量为: 5.7835*1.354*365=2858.4千克 2015年1月1日至2017年12月31日,预投入运行400辆天然气车,400辆天然气车3年的CO2减排量为: 2858.4*3*400=3430.09吨

探讨火力发电厂运行的几个节能减排措施

编号:AQ-Lw-02730 ( 安全论文) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 探讨火力发电厂运行的几个节 能减排措施 Discussion on several energy saving and emission reduction measures for thermal power plant operation

探讨火力发电厂运行的几个节能减 排措施 备注:加强安全教育培训,是确保企业生产安全的重要举措,也是培育安全生产文化之路。安全事故的发生,除了员工安全意识淡薄是其根源外,还有一个重要的原因是员工的自觉安全行为规范缺失、自我防范能力不强。 摘要随着工业技术的不断发展和人民生活水平的不断提高人类对能源的需求量也在逐年增加。火力发电厂在运行时要消耗大量的煤一般一台125万kW的机组标准煤耗量为380g kWh。为了保持资源永续和提高生活质量促进经济发展各个火电厂都把降低煤耗量作为降低发电成本、提高经济效益的重要任务来抓。本文就针对火力发电厂中的节能减排工作进行一番探析希望可以产生一定的效益。 关键词火力发电厂节能减排应用 1前言 信息、通讯、计算机、智能控制、变频技术的发展为火力发电厂的高效、节约运作、科学管理以及过程优化提供了前所未有

的手段进而促进火力发电厂的科学管理和自动化水平的提高。针对节能工程必须追求合理的投资回报率电厂企业节能工程不可能大而全盲目求新的实际情况电厂节能工程的指导原则如下“效益为主”、“分项实施”、“技术更新”与“重点突破”等相互结合。怎样在火力发电厂来落实和贯彻这些方针政策来大力促进火力发电厂节能是一个值得探讨的问题而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。 2做好火力发电厂的生产环节控制 2.1提高火力发电厂的燃烧煤质。从而降低能耗节约成本。煤炭的质量对火力发电厂的经济效益影响很大。通常来说在广泛应用煤粉锅炉的火力发电厂中燃煤的成本能够占到发电成本的百分之七十五左右而占上网电价成本的百分之三十左右。如果不提高煤质使用的煤质较次则会导致火力发电厂的煤炭消耗量和电力使用率增加也会造成锅炉和辅助设备的严重损耗。因此。在实际应用中提高燃煤质量做好人厂和人炉燃煤质量的控制能够有效减少燃煤的消耗量节约火力发电厂的发电成本实现火力发电

节能减排主要参考技术

常规超临界机组汽轮机典型参数为 24.2MPa/566 C /566 C,常规超超临界机组典型参数为 25-26.25MPa/600 C /600 C 。提高汽轮机进汽参数可直接提高机组效率,综合经济性、安全 性与工程实际应用情况,主蒸汽压力提高至 27-28MPa ,主蒸汽温度受主蒸汽压力提高与材 料制约一般维持在 600 C,热再热蒸汽温度提高至 610 C 或620 C,可进一步提高机组效率。 主蒸汽压力大于27MPa 时,每提高1MPa 进汽压力,降低汽机热耗0.1%左右。热再热蒸汽 温度每提高10 C,可降低热耗 0.15%。预计相比常规超超临界机组可降低供电煤耗 1.5? 2.5克/千瓦时。技术较成熟。 适用于66、100万千瓦超超临界机组设计优化。 2、二次再热 在常规一次再热的基础上,汽轮机排汽二次进入锅炉进行再热。 汽轮机增加超高压缸,超高 压缸排汽为冷一次再热,其经过锅炉一次再热器加热后进入高压缸, 高压缸排汽为冷二次再 热,其经过锅炉二次再热器加热后进入中压缸。比一次再热机组热效率高出 2%?3%,可 降低供电煤耗8?10克/千瓦时技术较成熟。 美国、德国、日本、丹麦等国家部分 30万千瓦以上机组已有应用。国内有 100万千瓦二次 再热技术示范工程。 3、管道系统优化 减少弯头、尽量采用弯管和斜三通等低阻力连接件等措施, 0.1%?0.2%,可降低供电煤耗 0.3?0.6克/千瓦 时。技术成熟。 适于各级容量机组。 4、外置蒸汽冷却器 超超临界机组高加抽汽由于抽汽温度高, 往往具有较大过热度, 通过设置独立外置蒸汽冷却 器,充分利用抽汽过热焓,提高回热系统热效率。预计可降低供电煤耗约 0.5克/千瓦时。 技术较成熟。 适用于66、100万千瓦超超临界机组。 5、低温省煤器 在除尘器入口或脱硫塔入口设置 1级或2级串联低温省煤器,采用温度范围合适的部分凝 结水回收烟气余热,降低烟气温度从而降低体积流量,提高机组热效率,降低引风机电耗。 降低主蒸汽、 、给水等管道阻力。机组热效率提高

我国火力发电厂节能措施汇总

中国火力发电厂 节能降耗措施汇总 一、火力发电厂整体节能评价 1.火力发电厂节能评价体系中的54个指标 煤耗及相关指标42个 水耗及相关指标6个 材料消耗指标3个 能源计量指标3个 2.按相互影响的层面划分,火力发电厂节能评价指标构成如下图所示:

1.火力发电厂燃煤锅炉畅通节能技术 由于锅炉所燃烧的燃料中含有越来越多的炉渣,因此SO3含量是始终变化的。水冷壁、过热器后屏、再热器后屏及后端表面上的炉渣含量加大,因此导致SO3的生成量增加,导致受热面换热效率降低。 畅通节能法?工艺被设计为一个炉渣和结垢控制计划,它特别针对锅炉的辐射和对流区域。由于该技术针对锅炉的问题区域,而不是简单地将化学物质运用于燃料,因此采用该技术所达到的效果和成本效益都超过了相对不够完善的方法。 化学处理剂与空气和水混和,然后被喷射到烟气之中。“标靶性”区域是依据计算流体动力学(CFD)确定的,由此在已知存在问题区域的情况下确保达到最大的覆盖率。化学制品被添加到烟气中,并针对传热问题区域或者对形成SO3的化学反应有利的区域。这样即可保证:被喷射的物质能够到达问题区域,并得到有效的利用。然后,添加剂在炉渣形成的时候与炉渣发生反应,并能够渗透已有的沉积物,从而影响它们的晶体物理特性。 通过采用这种方法,飞灰更易碎,而且更容易从表面清除。将这些结果融合在一起即可提高锅炉的效率。因此,除了提供解决排放问题的解决方案之外,该方法还能够实现相当可观的经济效益。 畅通节能法?技术改进了设备性能,并通过增强燃料的灵活性得到额外的节约,投资回报率一般在4比1以上(ROI)。 2.飞灰含碳量在线监测—节能优化 锅炉飞灰含碳量在线监测装置是为电站锅炉烟气飞灰含 碳量实时连续监测而设计的专用设备。它由飞灰含碳量现场检测

热电厂节能技术及管理

热电厂节能技术及管理能源是经济建设和人民生活不可缺少的重要资源,是国民经济持续、快速、健康发展的重要保证。热电厂是能源消耗大户,努力降低能耗、提高企业经济效益意义深远。 一、热力系统节能途径 1、对热力实验或热平衡及设备设计查定数据与运行数据进行全面诊断和优化分析,发掘热力系统处理提升的潜能,发现热力系统及设备缺陷,分析能损分布情况,优选节能管理及改造方案,使得整个热力系统达到最佳的运行状态。 2、煤耗 对煤耗影响较大的因素具体分析如下: ⑴负荷率和机组启停的因素。锅炉及机组的启停次数对热耗及发电煤耗影响很大,每次启停消耗为本机组在满负荷下2~3h消耗的燃料,因此降低煤耗,一方面要增加负荷率,在用汽量一定的前提下保持长期较高负荷下稳定运行,使蒸汽总量最大限度流经汽轮机做功,提高发电量,降低新蒸汽直接并入减温减压器的热损失;另一方面,必须提高检修质量,减少热力设备计划外启停次数。重要设备逐步实施运行状态检测改造,逐步实施状态检修。 ⑵热力系统主要参数的影响。主蒸汽温度每升高1℃,煤耗减少 0.8g/(Kw?h)。但主蒸汽温度超过允许范围,将引起调节级叶片过负荷,造成机组主汽阀、轴封、锅炉过热器等设备机械强度降低或变

形损坏,如果主蒸汽温度过低,不但引起煤耗增加,而且使汽轮机的湿气损失增加,降低机组热效率;主蒸汽压力每升高0.1Mpa,煤耗减少0.015~0.02g/(Kw?h)。但主蒸汽压力过高将增加热力系统承压设备的应力,存在极大安全隐患并影响设备使用寿命。主蒸汽压力降低同样引起煤耗增加并使汽轮机输出轴功降低影响发电效率。通过对锅炉机组生产全过程参数的精细调整,提高汽轮机组的机械效率及运行稳定性。给水温度每升高1℃,煤耗减少0.145g/(Kw?h),补水率每增加1%,发电煤耗升高0.5g/(Kw?h)。调整给水温度上限运行,保证蒸汽及炉水的品质为前提减少锅炉定、连排水量。诸多措施贯穿指导运行人员的操作与维护,实现热力系统产能最大化。 ⑶原煤采购及混煤掺烧。实际燃烧与设计煤种偏差较大,有些煤种发热量很高但灰熔点低会造成流渣不畅或引发事故,而单纯燃烧符合设计煤种的原煤成本很高。动力用煤实行按发热量计价,优质优价、劣质低价,多煤种混烧不仅是客观形势所迫,更有利于降低燃料费用。混煤的特性比单一的煤种复杂,又因运行中无法同时满足不同性能煤种对配风的要求,有可能造成着火困难、燃烧不稳、损失较大、锅炉效率降低及流渣不畅等问题,避免燃烧混煤时可能发生的问题成为生产关键。 3、油耗 使用生物质添加剂不少于五分之一的生物质柴油未对生产造成负面影响同时降低柴油外购成本,目前柴油改型已经应用于生产实践。

二氧化碳减排措施和技术

二氧化碳减排措施和技术 二氧化碳减排措施和技术 摘要:本文主要阐述了关于二氧化碳减排的基本技术手段和基本原理。文章从提高能源利用效率和转化效率以及二氧化碳的捕集、分离和利用等方面介绍了中国二氧化碳减排的各种技术现状,并对二氧化碳减排技术的在国外的具体发展方向作了初步探讨,。许多国外的化工公司通过提供减排产品促进汽车应用绿色化。汽车的绿色化包括用生物基材料替代石油基材料、降低轮胎滚动阻力、发展塑料

汽车、开发更多汽车用绿色产品。另一些化工公司正在开发用二氧化碳作为低成本化工原材料的新技术,包括将CO2转化为燃料、利用合成生物学开发生物燃料。这些新技术均为中国二氧化碳减排及利用前景提供了一定的参考方向。 关键词:二氧化碳减排;捕获与分离;绿色化工;二氧化碳燃料 全球每年有250多亿吨二氧化碳排放,中国已达60多亿吨,位居世界第一。大量CO2的排放所带来的全球性的极端气候问题已经引起科学界、各国政府及公众的强烈关注。为此,如何减少CO2的排放问题已经被列入各国政府、联合国会议的首要议题,放在优先考虑的地位,成为全球诸多重大问题亟待解决的战略课题。 2009年12月7-18日召开的哥本哈根会议提出,面对气候变化的严峻挑战,我们必须采取更加强有力的政策措施与行动,努力控制温室气体排放,建设资源节约型和环境友好型社会。中国政府做出承诺,到2020年我国单位国生产总值二氧化碳排放比2005年下降40% ~45%,非化石能源占一次能源消费的比重达到15%左右。 当前,减排的主要路线首先是从源头上减排,即通过调整产业、经济、能源结构,鼓励低排放、低能耗企业的建设,对高能耗的企业实行技术改造;大力发展节能技术,提高能源利用率;寻找新能源;增强公民意识,改变生活方式等;其次,对迫不得已排放的CO2通过回收分离、捕获贮存、资源化利用等技术减少或消除其排放。 1. 二氧化碳减排的基本技术手段和原理 1.1捕获分离CO2技术 1.1.1吸收法 包括物理吸收和化学吸收。物理吸收是指利用那些对CO2具有较大溶解度的有机溶剂做 吸收剂,通过对CO2的加压让其溶解到该溶剂,再通过减压让CO2释放出来,通过这样的交替方式完成CO2的捕获分离。当然溶剂的选择非常重要,一般要求其具有无腐蚀性、无毒性和良好的化学稳定性。常见吸收剂有丙烯酸酯、甲醇、乙醇、聚乙二醇等等。化学吸收是指利用碱性溶液如碳酸钾等对CO2进行溶解捕获,再通过脱析作用完成对CO2的分离和溶剂的再生。该方法适用于大流量低浓度CO2的分离回收。 1.1.2吸附法 通过吸附剂在一定条件下对CO2进行选择性吸附,再将CO2解析分离的方法。常用的吸附剂有活性炭、沸石、硅胶、分子筛等。按照改变的条件,吸附法又可分为:变电吸附(ESA)、变压吸附(PSA)、变温吸附(TSA)等。其中以变压吸附法发展较为迅速,目前在化肥、化工工业中获得了广泛应用。 1.1.3富氧燃料 该技术是利用空分系统获得富氧甚至纯氧,再与纯的CO2以一定比例混合后送入炉膛与燃料混合燃烧。这样由于除去了氮,就可以在排放气体中产生高浓度的CO2,通过烟气再循环装置去稀释纯氧,重新回注燃烧炉。采用这种富氧燃烧方法,由于助燃气体中氧气浓度较高,燃烧比较完全,不但大大降低了烟气黑度,还因为氮气量的减少,而减少了热损失,节约了能源,故而被发达国家称之为“资源创造性技术”,有着良好的应用前景。目前的oxy-fuel技术又得到了进一步的

探讨火力发电厂运行的几个节能减排措施示范文本

探讨火力发电厂运行的几个节能减排措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

探讨火力发电厂运行的几个节能减排措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要随着工业技术的不断发展和人民生活水平的不 断提高人类对能源的需求量也在逐年增加。火力发电厂 在运行时要消耗大量的煤一般一台125万k W的机 组标准煤耗量为380g kWh。为了保持资源永续和提 高生活质量促进经济发展各个火电厂都把降低煤耗量 作为降低发电成本、提高经济效益的重要任务来抓。本文 就针对火力发电厂中的节能减排工作进行一番探析希望 可以产生一定的效益。 关键词火力发电厂节能减排应用 1前言 信息、通讯、计算机、智能控制、变频技术的发展

为火力发电厂的高效、节约运作、科学管理以及过程优化提供了前所未有的手段进而促进火力发电厂的科学管理和自动化水平的提高。针对节能工程必须追求合理的投资回报率电厂企业节能工程不可能大而全盲目求新的实际情况电厂节能工程的指导原则如下“效益为主”、“分项实施”、“技术更新”与“重点突破”等相互结合。怎样在火力发电厂来落实和贯彻这些方针政策 来大力促进火力发电厂节能是一个值得探讨的问题而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。 2做好火力发电厂的生产环节控制 2.1提高火力发电厂的燃烧煤质。从而降低能耗节约成本。煤炭的质量对火力发电厂的经济效益影响很大。通常来说在广泛应用煤粉锅炉的火力发电厂中燃煤的成本能够占到发电成本的百分之七十五左右而占上网电价

火电厂主要节能减排技术措施建议通用范本

内部编号:AN-QP-HT950 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 火电厂主要节能减排技术措施建议通 用范本

火电厂主要节能减排技术措施建议通用 范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 煤作为主要能源,在我国能源体系中占主导地位。长期以来,煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,占约65%以上,其中火力发电用煤约占煤炭消费的50%左右。按现在的消耗水平,我国煤炭资源也仅能维持70~80年。同时,煤炭又是各种能源中污染环境最严重的能源。在火电行业中提高煤炭利用效率,节约能源,无论是从降低煤炭资源的消耗还是减少环境污染,都是具有深远意义。 火电厂的节能要从项目的前期工作开始,

燃煤电厂汽轮机的节能降耗技术研究

燃煤电厂汽轮机的节能降耗技术研究 发表时间:2019-10-12T11:33:25.823Z 来源:《科技新时代》2019年8期作者:王桂秋[导读] 针对其问题的原因分别对汽轮本体改造、冷端和运行优化等节能降耗技术进行研究,以供参考。 华电龙口发电股份有限公司山东省龙口市 265700 摘要:文章在分析燃煤电厂中汽轮机的常见能源浪费问题之后,针对其问题的原因分别对汽轮本体改造、冷端和运行优化等节能降耗技术进行研究,以供参考。 关键词:燃煤电厂;汽轮机;节能降耗技术 1引言 在目前我国的发电企业中,燃煤电厂仍然占据重要地位,因此其运行状况直接决定整个电网的运行情况,而且其运行的经济性也对能源的利用以及发电成本有着直接影响,同时还会对发电企业的经济效益产生影响。在目前我国社会用电负荷在不断增加,但是针对发电企业尤其是燃煤电厂提出较高的节能减排要求的同时,对于燃煤电厂来说就需要探索提高盈利能力的有效途径。由于汽轮机是燃煤电厂中的三大主机之一,是将锅炉燃烧之后产生的蒸汽的内能向动能进行转换的重要设备,其转换效率也直接决定燃煤电厂的能源利用效率。因此针对燃煤电厂汽轮机开展节能降耗措施具有重要的意义。 2汽轮机常见的能源浪费问题在燃煤电厂的汽轮机运行中,首先就是在恶劣的作业环境下长时间高负荷运行,加之缺乏有效的检修维护管理措施,因此不可避免会出现各种类型的故障,这就会降低汽轮机的运行性能,甚至可能导致安全事故的发生。此外,汽轮机本身存在不合理的设计问题,也会直接降低汽轮对蒸汽内能的利用效率,导致出现能源浪费的问题。或者是在汽轮机运行过程中,没有做好对汽轮机设备的检修维护管理工作,造成其运行工况不正常或者没有处于最佳运行工况下,也会降低其运行效率。最后还有汽轮机冷端温度以及真空的控制问题,也容易由于控制不当而造成其运行效率的下降。这就需要针对其中存在的问题来进行相应的改造以及运行优化等节能降耗措施。 3汽轮机本体改造 针对汽轮机本身设计中的不合理之处而引起的能源利用率低的问题,需要采取对汽轮机本体进行改造的方式来实现其性能的提升,以达到节能降耗的目的。针对目前汽轮机设计中的问题可以分析如下:一是表现出机组的通流子午面设计的光滑度不足而导致出现蒸汽通流时能量损失的问题。二是采用直叶形叶片时由于其具有较差的空气动力学性能而造成叶型损失较大的问题。三是没有合理地进行汽轮机级间焓降的分配而造成级效率较低的问题,也同样会增加蒸汽能量的损失,从而使得机组的运行性能下降。针对上述问题,需要采取以下汽轮机本体改造的措施:一是在进行叶片设计时,采用全三维设计技术来优化分析流道,在此基础上选择叶形为目前比较先进的弯扭叶形。而且在对叶片进行加工时需要采用数控工艺和设备来进行高精度的加工和控制,保证叶形设计以及加工制作的合理性,并且其型线和启动性能等满足设计要求。二是对汽轮机本体中的高压汽缸法兰螺栓加热装置进行取消,通过加厚窄法兰来进行代替并实现对其结构的简化,在便于开展启动操作的同时,也满足调峰运行的要求。此外还可以对前轴承座定中心凸肩进行改进,将其从固定形式改为调整式结构。 4汽轮机冷端优化 针对汽轮机冷端优化方面,为了实现机组能耗的降低,就需要对整个热力系统的循环效率进行提升,这就需要在控制汽轮机凝汽器背压的同时来实现汽轮机末端排汽压力的提升,实现上述节能降耗的目的。针对此冷端优化措施主要有以下两个方面,一是针对真空系统来说。主要是应用智能制冷系统来实现凝汽器压力的降低和真空泵抽汽效率的提升,实现节能效果。此外还要加强对真空系统严密性的检查,以及对真空泵工作效率进行提升。还可以通过统一协调冷端系统的冷源来实现对凝汽器真空度的合理控制。最后还可以通过对废蒸汽以及低品位热水的合理利用,实现凝汽器真空效率的提升以及能源需求的降低。二是采用双背压式凝汽器的设计方式进行优化。而且针对具有较大容量的机组,可以将其低压缸设计为多排汽口,还可以实现折合压力的降低来实现循环热效率的提升,通常在应用多压凝汽器之后可以实现效率提升0.15~0.25%左右的效果。 5汽轮机运行优化 首先是针对汽轮机的阀门调节来说,主要采用的是单阀调节或者顺序阀调节的方式,对于前者来说容易造成调节过程中的节流损失和能量损失问题,后者则可以通过喷嘴来进行蒸汽阀门开关的控制,避免出现节流损失问题,实现机组在非额定工况下运行效率的提升。此外,针对目前所采用的复合型配汽方式,容易在负荷较高的情况下表现出较高的运行效率,但是在低负荷工况下则容易产生较大的节流损失问题。这就需要对其配汽方式进行优化来提高其运行的经济性。 针对其配汽方式来说,由于在低负荷工况下进行汽轮机启动时容易在采用节流调节方式时造成四个阀门同时启动的现象,而且在一定的负荷作用下还会导致其中部分阀门的关闭,从而转换为顺序阀调节方式。在此种调节方式下可以在90%以上负荷工况下保证其较高的运行效率。但是为了避免或者减少由于阀门调节方式转变而造成的损失,则需要控制其滑行参数,也就是在控制阀门开度不动的同时,在负荷改变时可以调节蒸汽压力,而此时也由于采用顺序阀调节方式而造成较大的损失。 最后就是针对上述问题来说,在优化上述配汽方式的过程中,就是将上述两阀式调节方式转换为单阀-顺序阀-单阀的三阀式调节方式,通过此种方式,不仅可以实现对调节级强度的优化,而且可以实现对滑压运行曲线的优化。这主要是由于针对前者来说,由于采用两阀式调节时,在具有较大的瞬间负荷的状态下会对其调节级强度具有较高的要求,这也增加了机械负担并造成了更高的能耗。而改变调节方式之后,可以针对汽轮机的负荷转变来进行适应性的调节,也就是针对负荷来采用三阀方式进行分担,具有较低的调节级强度和较小的能耗。而针对后者来说,由于三阀式调节方式的流通能力比较高,而且具有较强的调节能力,可以根据负荷的不同来实现圆滑的转变,这也显著降低了转变瞬间的能耗。 6结语 汽轮机作为燃煤电厂的重要设备,其在运行中也容易由于故障、运行维护管理、设计以及冷端温度和真空控制等运行因素而导致出现能源浪费的问题。因此针对上述问题,文章针对汽轮机本体、汽轮机的冷端以及汽轮机的运行提出了相应的改造和优化措施,以满足燃煤电厂的节能降耗的要求。

火电厂主要节能减排技术措施建议

编号:AQ-JS-04253 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 火电厂主要节能减排技术措施 建议 Technical measures for energy saving and emission reduction in thermal power plants

火电厂主要节能减排技术措施建议 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 煤作为主要能源,在我国能源体系中占主导地位。长期以来, 煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,占 约65%以上,其中火力发电用煤约占煤炭消费的50%左右。按现在 的消耗水平,我国煤炭资源也仅能维持70~80年。同时,煤炭又是 各种能源中污染环境最严重的能源。在火电行业中提高煤炭利用效 率,节约能源,无论是从降低煤炭资源的消耗还是减少环境污染, 都是具有深远意义。 火电厂的节能要从项目的前期工作开始,应始终贯穿设计、施 工和运行的全过程。火电厂所采取的节能技术措施主要涉及厂址及 总平面,主机设备的选型、各主要生产系统和辅助生产系统工艺方 案的选择,涉及主要用能设备选型、主要和附属建筑节能、节约用 地、节水以及采取的环保措施等。项目的主辅机选型和主要工艺应 符合国家的产业政策,节能设计应积极采用国家重点节能技术推广

二氧化碳减排量计算

1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约3.67吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=3.67)。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 因此,我们以燃烧煤炭的火力发电为参考,计算节电的减排效益。根据专家统计:每节约 1度(千瓦时)电,就相应节约了0.4千克标准煤,同时减少污染排放0.272千克碳粉尘、0.997千克二氧化碳(CO2)、0.03千克二氧化硫(SO2)、0.015千克氮氧化物(NOX)。 为此可以推算出以下公式计算: 节约1度电=减排0.997千克“二氧化碳”=减排0.272千克“碳” 节约1千克标准煤=减排2.493千克“二氧化碳”=减排0.68千克“碳” 节约1千克原煤=减排1.781千克“二氧化碳”=减排0.486千克“碳” (说明:以上电的折标煤按等价值,即系数为1度电=0.4千克标准煤,而1千克原煤=0.7143千克标准煤) 按折标煤系数1.229算: 节约1度电=节约0.1229千克标煤=减排0.3064千克“二氧化碳” 3、节约1升汽油或柴油减排了多少“二氧化碳”或“碳”? 根据BP中国碳排放计算器提供的资料: 节约1升汽油=减排2.3千克“二氧化碳”=减排0.627千克“碳” 节约1升柴油=减排2.63千克“二氧化碳”=减排0.717千克“碳”

火电厂主要节能减排技术措施建议(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火电厂主要节能减排技术措施 建议(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

火电厂主要节能减排技术措施建议(标准 版) 煤作为主要能源,在我国能源体系中占主导地位。长期以来,煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,占约65%以上,其中火力发电用煤约占煤炭消费的50%左右。按现在的消耗水平,我国煤炭资源也仅能维持70~80年。同时,煤炭又是各种能源中污染环境最严重的能源。在火电行业中提高煤炭利用效率,节约能源,无论是从降低煤炭资源的消耗还是减少环境污染,都是具有深远意义。 火电厂的节能要从项目的前期工作开始,应始终贯穿设计、施工和运行的全过程。火电厂所采取的节能技术措施主要涉及厂址及总平面,主机设备的选型、各主要生产系统和辅助生产系统工艺方案的选择,涉及主要用能设备选型、主要和附属建筑节能、节约用

地、节水以及采取的环保措施等。项目的主辅机选型和主要工艺应符合国家的产业政策,节能设计应积极采用国家重点节能技术推广目录中的工艺和设备,禁止采用国家明令禁止和淘汰的用能产品和设备。本文提出的主要节能技术措施主要政策依据有: 1)产业结构调整指导目录(2011年本) 2)“十二五”节能环保产业发展规划; 3)国家重点节能技术推广目录; 4)“节能惠民工程”高效电机推广目录; 5)高耗能落后机电设备(产品)淘汰目录; 6)火力发电厂厂用高压电动机调速节能导则; 7)公共建筑节能设计标准; 8)国家节能中心节能评审评价指标通告4号; 9)火电工程可行性研究报告“节能分析”的内容。 结合火电行业多年来的生产实践和上述政策为依据,本文重点提出了火电厂设计的主要节能技术措施建议,可供设计参考,对于工程实施的其它阶段,也可因地制宜予以研究采纳。

电厂节能减排有效措施有哪些

电厂节能减排有效措施有哪些 电厂节能减排有效措施有哪些 1.调整电源结构,加快清洁能源和可再生能源的开发步伐 受一次能源结构特点的影响,火电装机容量比重偏大,水电、核电、可再生能源发电比重偏小,特别是核电发展缓慢。因此加大水电、核电、可再生能源和新能源的比重,优先发展水电、风电等清 洁能源和可再生能源项目显得尤为重要。 2.关停小容量机组,推广大容量机组 根据蒸汽动力循环的基本原理及热力学第一定律和第二定律的分析,发展高参数、大容量的火电机组是我国电厂节机组供电标煤耗 少1/4~1/3,假设有两亿千瓦这样的替代机组,一年可以节约标煤 十亿多吨,同时三废的排放也大大减少。因此,关停小容量机组, 推广大容量机组对减少能耗、提高能源利用率具有重大意义。 3.推广热电联产 热电联产节能减排效果明显,发展热电联产集中供热具有节约能源、改善环境、提高供热质量、增加电力供应等综合效益,是改善 大气环境质量的有效手段之一,是提高人民生活质量的公益性基础 设施。 4.提高燃煤质量,实现节能减排 煤粉锅炉被广泛地应用于火力发电厂中。一般来讲,燃料的成本占发电成本75%左右,占上网电价成本30%左右。煤质对火电厂的经 济性影响很大,如果煤质很差,会限制电厂出力,使电厂煤耗和厂 用电率上升,且锅炉本体及其辅助设备损耗加大;如果燃煤质好价优,则锅炉燃烧稳定、效率高,机组带得起负荷,不仅能够减少燃料的 消耗量,更有利于节约发电成本,因此入厂和入炉燃料的控制是发 电厂节能工作的源头。

5.提高锅炉燃烧效率,实现节能减排 锅炉是最大的燃料消耗设备,燃料在锅炉内燃烧过程中的能量损失主要包括:排烟热损失,可燃气体未完全燃烧热损失,固体未完全 燃烧热损失,锅炉散热损失,灰渣物理热损失等。降低排烟热损失 的主要措施:降低排烟容积,控制火焰中心位置、防止局部高温, 保持受热面清洁,减少漏风和保障省煤器的正常运行等;降低可燃气 体未完全燃烧热损失的主要措施:保障空气与煤粉充分混合,控制 过量空气系数在最佳值,进行必要的燃烧调整,提高入炉空气温度,注意锅炉负荷的变化并控制好一、二次风混合时间等;降低固体未完 全燃烧热损失的主要措施:选择最佳的过量空气系数,合理调整和 降低煤粉细度,合理组织炉内空气动力工况,并且在运行中根据煤 种变化,使一、二次风适时混合等;降低散热损失的措施主要措施: 水冷壁和炉墙等结构要严密、紧凑,炉墙和管道的保温良好,锅炉 周围的空气要稍高并采用先进的保温材料等;降低排渣量和排渣温度 的主要措施:控制排渣量和排渣温度。由此可见,通过提高锅炉燃 烧效率来节能减排的'潜力很大。 6.加强灰渣综合利用。 应该根据电厂所在区域的具体特点,制定符合自身情况的灰渣综合利用方案,灰渣综合利用不但可以提高资源综合利用效率,还可 以减少灰渣排放造成环境压力。7.提高汽轮机效率实现节能减排在 汽轮机内蒸汽热能转化为功的过程中,由于进汽节流,汽流通过喷 嘴与叶片摩擦,叶片顶部间隙漏汽及余速损失等原因,实际只能使 蒸汽的可用焓降的一部分变为汽轮机的内功,造成汽轮机的内部损失。降低汽轮机内部损失的方法有:通过在冲动级中采用一定的反 动度,蒸汽流过动叶栅时相对速度增加,尽量减小叶片出口边厚度, 采用渐缩型叶片、窄型叶栅等措施来降低喷嘴损失;通过改进动叶型线,采用适当的反动度来降低动叶损失;通过将汽轮机的排气管做成 扩压式,以便回收部分余速能量来降低余速损失等。 7.采用变频调速技术,实现节能减排 发电厂厂用电量约占机组容量的5%~l0%,除去制粉系统以外,泵 与风机等火电机组的主要辅机设备消耗的电能约占厂用电70%~80%。

大型燃煤发电厂节能技术监督相关国家和行业技术标准适用范围汇总

大型燃煤发电厂节能技术监督相关国家和行业技术标准适用范围汇总 一、GB 474-2008煤样的制备方法 规定了煤样制备的术语和定义,试样的构成、破碎、混合、缩分和空气干燥,各种煤样的制备及存查煤样。 二、GB 475-2008商品煤样采取方法 规定了商品煤人工采样方法的术语和定义、采样的一般原则和采样精密度、采样方案的建立、采样方法、人工采样工具、煤样的包装和标识以及采样报告。 三、GB 3216-2005回转动力泵水力性能验收试验1级、2级和3级 规定了回转动力泵(离心泵、混流泵和轴流泵,以下简称“泵”)的水力性能验收试验。它适用于任何尺寸的泵和任何性质如同清洁冷水输送液体。本标准既不涉及泵的具体结构细节,也与泵组成件的机械性能无关。 本标准包括两种测量精度等级;1级用于较高的精度,2级用于较低的精度。这些等级包含不同的容差系数值、容许波动值和测量不确定度值。 本标准既适用于不带任何管路附件的泵本身又适用于连接上全部或部分上游和/或下游管路附件的泵组合体。 四、GB/T 7119-2006节水型企业评价导则 标准规定节水型企业和相关术语和定义、计算方法、评价指标体系建立的原则、评价指标体系、考核要求和评价程序。本标准适用于工业企业的节水评价工作。 五、GB/T 10184-2015电站锅炉性能试验规程 本标准规定了燃用煤、油、气(主要指天然气)和生物质燃料的电站锅炉性能试验(包括鉴定试验、验收试验和常规试验)方法。标准适用于蒸汽流量不低于35t/h,蒸气压力不低于3.8MPa,蒸汽温度不低于440℃的电站锅炉;适用于为了其他目的(包括:燃烧调整、燃料变动、设备改进等)进行的锅炉性能试验;燃用其他燃料的电站锅炉性能试验可参照本标准执行。 本标准不适用于核电站蒸汽发生器的性能试验以及余热锅炉、垃圾焚烧锅炉

煤化工工艺中二氧化碳减排技术研究 刘红玉

煤化工工艺中二氧化碳减排技术研究刘红玉 摘要:随着社会的发展,我国的煤炭工程的发展也突飞猛进。众所周知,煤炭 资源在我国经济中起着举足轻重的角色,尤其是在我国经济发展初期,煤炭在国 民生活和基础设施中起了重要的作用。由煤炭衍生的大量的化工用品也在人民生 活中扮演了重要的角色。但随着煤炭的大量使用,环境污染问题也接踵而来。大 量的焚烧不但使得煤炭的使用率较低,而且污染也相当严重。这也使得我国的煤 化工产业的发展遇到瓶颈。在全球气候逐渐变暖的大前提下,我国作为碳排量大国,应当大力发展二氧化碳减排技术。 关键词:煤化工工艺;二氧化碳;减排技术研究 引言 在我国社会经济不断发展的过程中,煤化工业对于我国工业化进程的推进起 到了非常重要的作用。近年来,随着工业不断的发展,对于煤化产品的需求与日 俱增,对其工艺也提出了更高的要求。我国是当前世界第二大经济体,在市场经 济深入发展的形势下,对煤炭等能源及相关产品的需求不断提高。伴随现代科学 技术的发展,我国煤化工工艺取得了很大进步,在产量、质量上均得到大幅提升,这也大大促进了煤化工行业的发展。但生产中 CO 2 排放在较大程度上制约了煤化工行业的可持续发展,所以,有必要探讨煤化工工艺中 CO 2 减排技术。在煤化工产品生产的过程中,除了要保证其质量之外,还要重视对于环境的保护,特别是 在生产过程中二氧化碳的排放,要给与更多的重视。针对煤化工工艺中二氧化碳 的减排技术进行分析,希望为相关企业提供一些参考。 1煤化工技术简述 在煤炭工业中,煤炭焦化是一项重要的技术手段,能够生产出高附加值的化 工产品,并且这项技术的发展对于其它一些附属行业的发展起到了非常重要的作用。这一技术的发展逐渐朝向低成本、高环保性能的方向发展,煤炭液化技术也 是一项非常重要的技术,虽然目前我国这一技术还不够完善,但这项技术有着非 常巨大的发展前景,是当前煤化工技术中一个重点的发展方向。 2煤化工过程中二氧化碳的来源分析 综合起来,煤化工过程中产生的二氧化碳主要来自这四个方面: 2.1煤制甲醇工艺流程中二氧化碳的排放 煤制甲醇要经过煤气化、合成气的净化和合成甲醇等过程,其中,煤气化过 程中产生的二氧化碳最多。煤在O2和H2O共同存在且燃烧的条件下,会发生下 面两个反应:A.C+O2=CO2;B.CO+H2O=CO2+H2。而甲醇的合成离不开H2,这样 的话部分CO与H2O反应又会生成H2和二氧化碳,从而再次产生二氧化碳。这 两次反应产生的二氧化碳只有一小部分会生成甲醇,绝大部分都被排放。有数据 表明,生产1t的甲醇,需要排放2t的二氧化碳。 2.2间接液化法过程中二氧化碳的排放 这个工艺主要包括煤气化、煤化气合成和精炼这三个过程,气化和合成是产 生二氧化碳主要来源气化和合成这两个过程。由直接液化可知,氧气和水蒸汽在 煤的液化中作为气化剂,所以间接液化产生二氧化碳主要通过以下四个反应:A. 水煤气变换反应:CO+H2O=CO2+H2;B.铁基催化剂参与的F-T反应: 2CO+H2=CO2+CH2;C.甲烷化反应:2CO+2H2=CH4+CO2;D.歧化反应: 2CO=C+CO2。数据显示生产相同的液化产品这一过程比直接液化产生的二氧化碳 要多1t左右。

相关文档
相关文档 最新文档