文档视界 最新最全的文档下载
当前位置:文档视界 › 耐火材料的热膨胀性

耐火材料的热膨胀性

耐火材料的热膨胀性
耐火材料的热膨胀性

耐火材料的热膨胀性

热膨胀性是耐火材料随温度升高体积或长度增大的性能,其表示方法常用线膨胀率和平均膨胀系数,也可以用体积膨胀率和体积膨胀系数。

线膨胀率是指由室温至试验温度间,试样长度的相对变化率(%)。平均线膨胀系数a(k)试样长度的相对变化率,单位为1*10-6-1(k-1)。

热膨胀系数实际上并不是一个恒定值,它随温度的变化而变化,平常所说的热膨胀系数都应具有在指定的温度范围内的平均值的概念,应用时注意它适用的温度范围。

耐火原料的热膨胀是指其体积或长度随温度升高而增大的性质,有体膨胀系数与线膨胀之分。在耐火原料的性能中,通常使用线膨胀率和线膨胀系数。线膨胀率是指由室温至设定温度间,试样长度的相对变化率;线膨胀系数是指由室温至设定温度间,每升高1℃,式样长度的相对变化率。以下列公式表示:线膨胀率ρ=[(L1-L0)+AK(t)]/L0×100%

线膨胀系数α=ρ/[(t-t0)×100]10-6℃-1

式中:L0——试样在温室下的长度,mm;

Lt——试样在设定温度t时的长度,mm;

AK(t)——设定温度t时仪器的校正值,mm;

T0——室温,℃;

T——设定温度,℃

线膨胀的测试方法由顶杆式间接法、望远镜直读法等。需要指出,热膨胀系数并不是一个恒定值,而是随试验温度而变化,所以它是指定温度范围Δt内的平均值。因此,在使用这一数据时,必须注明它的温度范围。

耐火原料的热膨胀与其中所含矿物的晶体结构和化学键强度密切相关。由离子键或共价键形成分矿物,其热膨胀较小;而以分子键结合的矿物,热膨胀则非常大。化学组成相同的材料,由于结构的差异,热膨胀不同。通常矿务晶体的结构愈紧密,其热膨胀愈大;而类似于无定形的玻璃,则热膨胀往往较小;如同为SiO2,多晶石英的热膨胀系数为12×10-6℃-1,而石英玻璃则只有0.5×10-6℃-1,而垂至于C轴的膨胀系数仅为1×10-6℃-1,这是因为层内为牢固联系,而层间的分子键联系要弱的多。在结构上高度各向各异的材料,其综合表现出来的体膨胀系数都很小,比如堇青石作为一种热震稳定性优异的材料而在陶瓷窑具行业广泛应用。

耐火原料的热膨胀取决于其化学矿务组成。一般碱性耐火原料的热膨胀系数比酸性原料的大,高铝质原料介于两者之间。当原料的矿物发生晶型转变时,会导致热膨胀系数不均匀变化,在相变点发生突变。

热膨胀是耐火原料重要性能,对所组成的耐火制品的强度、热震稳定性等影响明显,常见耐火原料的热膨胀系数列于表1中。原料的热膨胀系数对研究耐火材料的热应力大小与分布、晶型转变、微裂纹的产生与弥合等非常重要。

表1耐火原料的热膨胀系数

石墨片环氧树脂复合材料的力学性能和热性能

石墨片环氧树脂复合材料的力学性能和热性能 酸酐固化的双酚A二缩水甘油醚(DGEBA)与2.5—5%重量的石墨微片增强已被制造出来。对这些复合材料的结构,力学性能,粘弹性进行了研究和比较,XRD研究表明,对复合材料的处理并没有改变原来的纯石墨d-间距。复合材料的拉伸性能测量表明弹性模量与拉伸强度随着石墨微片的浓度增加而增加,储能模量和玻璃化转变温度(Tg)也随着石墨微片浓度上升而上升,但是线性热膨胀系数却降低了。热稳定性通过热重分析测定。与纯环氧树脂相比,这种复合材料表现出较高的热稳定性和炭浓度。通过扫描电子显微镜对这些复合材料的损伤机理加固效果进行了研究。 关键词: 石墨微片环氧树脂复合材料 一.介绍 对更高性能的复合材料的需求不断在增加,以满足更高的要求或取代现有的材料,高性能的连续纤维(如碳纤维,玻璃纤维)增强聚合物基复合材料是众所周知的。然而,这些复合材料在基体性能方面具有一些不足之处,往往限制他们的广泛应用和创造发展的需要新型的复合材料。在塑胶行业,填料的加入对聚合物材料是一种常见的操作。这不仅提高刚度,韧性,硬度,热变形温度,以及模具收缩率,也显著降低了加工成本。事实上,超过50%的聚合物生产都用无机填料以某种填充方式达到所希望的性能。最常用的粒子有碳酸钙、粘土、云母、氢氧化铝、玻璃珠,和金属磷酸盐。填料的选择往往是基于最终产品所需要的性能。改善复合材料的机械和其他性能在很大程度上依赖于填料粒子的含量、颗粒形状和大小,表面特征和分散性。因此,对其增韧的这些复合材料的机理很多来自于如裂纹尖端应力场,应力表面的衔接,剥离∕微裂纹和裂纹偏转等。 据报道,微米级填料填充的复合材料的性能不如那些充满了纳米粒子级相同的填料。此外,改进后的物理性质,化学性质,如表面平整度和阻隔性能,使用传统微米大小的粒子均不能达到。因此,近年来纳米基础的复合材料已引起相当的重视。这些都是一些很有前景的聚合物/粘土纳米复合材料,聚合物/石墨纳米微片材料,聚合物/碳纳米管复合材料。这些纳米复合材料含有非常低量的填料(10%),相比之下,传统的颗粒复合材料常用的填料含量在40-60%的范围内。此外,这些纳米复合材料是准各向同性,由传统方式相比,可以处理连续纤维增强复合材料。 值得一提的是硅酸盐粘土(蒙脱石)和石墨颗粒显示分层的自然结构并具有很高的长宽比(>1000)。一次插层或剥离的化学过程[7,21]。虽然粘土纳米复合材料显示出较高的强度,弹性模量,热变形温度和阻隔性能,但是石墨烯纳米复合材料显示出优良的导电性能和热导性。碳纳米管也显示出优异的机械性能(模量=1 TPa,强度=10倍的钢)、热、电性能。在此基础上考虑,可以发展这些纳米级粒子提供材料的可修整性。另据报道, 碳纳米管的价格是石墨烯500倍左右,可以用常规方法剥离和复合,而碳纳米管复合材料需要处理技术的发展对于分散,纳米管的波纹和排列。因此,考虑到成本和所需的属性,石墨微片是碳纳米管方面的一个潜在的替代品。然而,在纳米尺度的基本认识强化机制仍是重要和必要的。 众所周知石墨具有高强度和高导热性,它提供了决定真正的多功能复合材料的功能性,并具有成本效益的方式。这种颗粒增强聚合物有许多潜在的应用,例如:阴极射线管和燃料电池,百代唱片,屏蔽电子罩,雷达吸波涂料,热机械增强材料。我们现在的目标是研究制造以环氧树脂为基体,石墨烯微片增强的复合材料,并探讨其力学,热学和粘弹性能以及失效机制作为石墨烯浓度的功能。 2 实验 2.1 原材料 基体材料是三组分环氧系统是由双酚A二缩水甘油醚(DGEBA)通过酸酐固化剂,甲基

北京科技大学+耐火材料期末复习

基质:基质是耐火材料中大晶体或骨料间隙中存在的物质。 主晶相:主晶相是指构成耐火制品结构的主体且熔点较高的晶相 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能。 显微结构:在光学和电子显微镜下分辨出的试样中所含有相的种类及各相的数量、形状、大小、分布取向和它们相互之间的关系,称为显微结构。 陶瓷结合:又称为硅酸盐结合,其结构特征是耐火制品主晶相之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合。 直接结合:指耐火制品中,高熔点的主晶相之间或主晶相与次晶相间直接接触产生结晶网络的一种结合,而不是靠低熔点的硅镁酸盐相产生结合。 混练:使两种以上不均匀的物料的成分和颗粒均匀化,促进颗粒接触和塑化的操作过程称混炼。 液相烧结:凡有液相参加的烧结过程;液相起到促进烧结和降低烧结温度的作用。 低水泥浇注料:由水泥带入的CaO含量一般在1.0-2.5%之间的反絮凝浇注料。 热硬性结合剂:热硬性结合剂是指在常温下硬化很慢和强度很低,而在高于常温但低于烧结温度下可较快的硬化的结合剂 水硬性结合剂:水硬性结合剂是必须同水进行反应并在潮湿介质中养护才可逐渐凝结硬化的结合剂 气硬性结合剂:气硬性结合剂是在大气中和常温下即可逐渐凝结硬化而具有相当高强度的结合剂 减水剂:保持浇注料流动值基本不变的条件下,可显著降低拌和用水量的物质称为减水剂弹性后效:坯体压制时,外部压力被内部弹性力所均衡,当外力取消时,内部弹性力被释放出来,引起坯体膨胀的作用称为弹性后效 荷重软化点:以压缩0.6%时的变形温度作为被测材料的荷重软化温度,即荷重软化点 镁碳砖:镁碳砖是以烧结镁砂或电熔镁砂为主要原料,并加入适量的石墨和含碳质有机结合剂而制成的镁质制品。 电熔镁砂:由天然菱镁矿、水镁石、轻烧镁砂或烧结镁砂在电弧炉中高温熔融而成的镁质原料 矿化剂:加入耐火材料中,在烧成过程中能促进其他物质转变或结晶的少量物质。 防氧化剂:含碳耐火材料采用金属添加剂的作用在于抑制碳的氧化,被称为防氧化剂 可塑性: 物料受外力作用后发生变形而不破裂,在所施加使其变形的外力撤除后,变形的形态仍保留而不恢复原状,这种性质称为可塑性。 熔铸莫来石制品:由高铝矾土或工业氧化铝、粘土或硅石进行配料,在电弧炉内熔融,再浇铸成型及退火制成的耐火制品称为熔铸莫来石制品。 再结晶碳化硅制品:再结晶碳化硅制品是一种无结合物的碳化硅制品,它是在不加入结合剂的条件下,靠碳化硅晶粒的再结晶作用制成的。 水玻璃的模数:氧化硅与氧化钠的分子比称为水玻璃的模数。 捣打料:以粉粒状耐火物料与结合剂组成的松散状耐火材料称为捣打料。 耐火泥:耐火泥也叫铝酸盐水泥,是以铝矾土和石灰石为原料,经煅烧制得的以铝酸钙为主要成分、氧化铝含量约为50%的熟料,再磨制成的水硬性胶凝材料。

材料热稳定性的测定

材料热稳定性的测定 一、实验目的 1、了解陶瓷测定热稳定性的实际意义。 2、了解影响热稳定性的因素及提高热稳定性的措施。 3、掌握热稳定性的测定原理及测定方法。 二、实验原理 热稳定性(抗热震性)是指陶瓷材料能承受温度剧烈变化而不破坏的性能。普通陶瓷材料由多种晶体和玻璃相组成,因此在室温下具有脆性,在外应力作用下会突然断裂。当温度急剧变化时,陶瓷材料也会出现裂纹或损坏。测定陶瓷的热稳定性可以控制产品的质量,为合理应用提供依据。 陶瓷的热稳定性取决于坯釉料配方的化学成分、矿物组成、相组成、显微结构、坯釉料制备方法、成型条件及烧成制度等工艺因素以及外界环境。由于陶瓷内外层受热不均匀,坯料与釉料的热膨胀系数差异而引起陶瓷内部产生应力,导致机械强度降低,甚至发生分裂现象。 一般陶瓷的热稳定性与抗张强度成正比,与弹性模量、热膨胀系数成反比。而导热系数、热容、密度也在不同程度上影响热稳定性。 釉的热稳定性在较大程度上取决于釉的热膨胀系数。要提高陶瓷的热稳定性首先要提高釉的热稳定性。陶瓷坯体的热稳定性则取决于玻璃相、莫来石、石英及气孔的相对含量、粒径大小及其分布状况等。 陶瓷制品的热稳定性在很大程度上取决于坯釉的适应性,所以它也是带釉陶瓷抗后期龟裂性的一种反映。 陶瓷热稳定性测定方法一般是把试样加热到一定的温度,接着放入适当温度的水中,判定方法为: 1)根据试样出现裂纹或损坏到一定程度时,所经受的热变换次数; 2)经过一定次数的热冷变换后机械强度降低的程度来决定热稳定性; 3)试样出现裂纹时经受的热冷最大温差来表示试样的热稳定性,温差愈大,热稳定性愈好。 陶瓷热稳定性的测定方法一般是将试样(带釉的瓷片或器皿)置于电炉内逐渐升温到220℃,保温30分钟,迅速将试样投入染有红色的20℃水中10分钟,取出试样擦干,检查有无裂纹。或将试样置于电炉内逐渐升温,从150℃起,每隔20℃将试样投入20±2℃的水中急冷一次,直至试样表面发现有裂纹为止,并将此不裂的最高温度为衡量瓷器热稳定性的数据。 也有将试样放在100℃沸水中煮半小时到1小时,取出投入不断流动的20℃的水中,取出试样擦干,检查有无裂纹。如没有裂纹出现,则重复上述试验,直至出现裂纹为止。记录水煮次数,以作为衡量瓷器热稳定性的数据。热交换次数越多,说明该陶瓷样品的热稳定性越好。 本实验采用前面两种方法来测定试样的热稳定性。 三、实验仪器与材料 1、实验仪器:普通陶瓷热稳定性测定仪(由加热炉体、恒温水槽、送试样机构、控温仪表四部分组成)、万能材料试验机。 2、实验材料:市场购买的瓷砖样品、红墨水或黑墨水。 四、实验步骤 (一)方法一

A2M3O12型负热膨胀材料的研究

负热膨胀系数材料的研究现状与展望1 华祝元,刘佳琪,严学华 (江苏大学材料科学与工程学院镇江212013) 摘要:本文从负热膨胀材料的发展概况、负热膨胀产生机理、负热膨胀材料分类出发,着重介绍了化学通式为A2M3O12的负热膨胀材料。通过几种A2M3O12型负热膨胀材料的性质、制备方法和晶体结构的归纳和总结,对这一系列的负热膨胀材料未来研究方向进行了展望。 关键字:热膨胀;A2M3O12;制备方法 Negative Thermal Expansion Material A2M3O12 Hua Zhu-yuan,LIU Jia-qi,YAN Xue-hua (School of Materials science and engineering,Jiangsu University,Zhengjiang 212013,China) Abstract:Negative thermal expansion materials A2M3O12was mainly introduced based on the development situation of the negative thermal expansion materials ,the mechanism of the negative thermal expansion ,as well as its divisions .Summarize the properties, preparation processing and the crystal structures of several A2M3O12 materials .Finally ,the future point of this kind of material was propounded.. Key words: Negative thermal expansion; A2M3O12; preparation methods 由晶格热振动的非谐效应产生的“热胀冷缩”性质已成为人们普遍接受的自然属性之一,但在自然界中也存在一些较为少见“热缩冷胀”的反常现象,由此,通过人工合成并存在负热膨胀特性的材料成为目前研究的热点之一。随着科技的发展,人们希望制备出更多具有低的膨胀系数或者零膨胀系数的材料,而通过研究负热膨胀(NTE)材料,并使这种材料与一般的正热膨胀材料复合,从而使复合材料的热膨胀系数可控,甚至为零,成为可能。这种复合材料可以最大限度的减少高温材料的内应力,增加材料的抗热冲击强度,可广泛应用于航空航天、光电子精密仪器制造等领域。 负热膨胀指材料体积随温度升高而缩小,随温度降低而变大,与常规材料的热胀冷缩现象相反。而负热膨胀材料是指在一定的温度范围内其线膨胀系数(αT)或体膨胀系数(βT)为负值。 1发展概况 1935年,Büssem等发现β-方石英的热膨胀系数很小;并于1975年由Wright等研究者进一步通过实验证实。1951年,Hummel研究发现β-锂霞石晶体呈现出负的体积膨胀。由此人们开始意识到,可以制备出在一定温度范围内体积稳定的零膨胀材料。经过科学家们的不断研究,相继生产出一系列低热膨胀玻璃陶瓷等材料。但所发现的负热膨胀材料由于存在响应温度远离室温、响应温度范围太窄或负膨胀系数受温度影响太大等因素,应用受到限制。进入20世纪90年代,负热膨胀材料的研究得到进一步发展。1995年,美国俄勒冈州立大学(Oregon State University)的Sleight研究发现ZrV2-x P x O7系列的负热膨胀材料均表现为各 2010年月日收到初稿;2010年月日收到修改稿。 基金项目:国家自然科学基金(50772044);教育部高等学校博士点基金(200802990001);江苏省自然基金(BK2008224);江苏省高校自然科学重大基础研究(09KJA430001)和江苏省青蓝工程资助项目。 作者简介:华祝元硕士主要从事负热膨胀材料的研究。

热射病的症状表现有哪些

热射病的症状表现有哪些 热射病是指因高温引起的人体体温调节功能失调,体内热量过度积蓄,从而引发神经器官受损。在中暑的分级中就是重症中暑。该病通常发生在夏季高温同时伴有高湿的天气。该病对患者的身体有很大的危害性,如果日常出现热射病的症状时,还需及早治疗。 中暑的分型: 1.先兆中暑是患者在高温环境中劳动一定时间后出现头昏、头痛、口渴、多汗、全身疲乏、心悸、注意力不集中、动作不协调等症状,体温正常或略有升高。 2.轻症中暑除有先兆中暑的症状外,还会出现面色潮红、大量出汗、脉搏快速等表现,体温升高至38.5℃以上。 3.重症中暑包括热射病、热痉挛和热衰竭三型。 专家称,热射病的典型临床表现为:高热(41℃以上)无汗和意识障碍。常在高温环境中工作数小时或老年体弱慢性病患者,在连续数天高温后发生中暑先驱症状有全身软弱乏力、头昏、头痛、恶心、出汗减少、继而体温迅速上升出现嗜睡谵妄或昏迷、皮肤干燥、灼热、无汗、呈潮红或苍白。 周围循环衰竭时呈紫绀,脉搏快脉压增宽血压偏低可有心律失常、呼吸快而浅后期呈陈-施氏呼吸。四肢和全身肌肉可有抽搐,瞳孔缩小后期扩大,对光反应迟钝或消失,严重患者出现休克、心力衰竭、肺水肿、脑水肿或肝肾功能衰竭、弥散性血管内凝血。 实验室检查有白细胞总数和中性粒细胞比例增多,尿蛋白和管型出现血尿,素氮谷丙和谷草转氨酶、乳酸脱氢酶、肌酸磷酸激酶和红细胞超氧化物,岐化酶增高血pH降低血,钠钾降低,心电图有心律失常和心肌损害表现。 热痉挛常发生在高温环境中,强体力劳动后患者常先有大量出汗,然后四肢肌肉腹壁肌肉,甚至胃肠道平滑肌发生阵发性痉挛和疼痛,实验室检查有血钠和氯化物降低,尿肌酸增高。 热衰竭常发生在患者对热不适应体内,常无过量热蓄积,患者先有头痛、头晕、恶心、继有口渴、胸闷、脸色苍白、冷汗淋漓、脉搏细弱或缓慢血压偏低,可有晕厥,并有手足抽搐,重者出现周围循环衰竭,实验室检查有低钠和低钾。 热射病热痉挛和热衰竭的主要发病机制和临床表现虽有所不一,但在临床上可有二种或三种同时并存,不能截然区别。

耐火材料概论知识点总结

硅砖的应用:是焦炉、玻璃熔窑、高炉热风炉、硅砖倒焰窑和隧道窑、有色冶炼和酸性炼钢炉及其它一些热工设备的良好筑炉材料。 粘土质耐火材料的原料 软质粘土 生产过程中通常以细粉的形式加入,起到结合剂和烧结剂的作用。苏州土和广西泥是我国优质软质粘土的代表。 硬质粘土 通常以颗粒和细粉的形式加入,前者起到配料骨架的作用,后者参与基体中高温反应,形成莫来石等高温形矿物。 结合剂 水和纸浆废液 粘土质耐火材料制品原料来源丰富,制造工艺简单,产量很大,广泛用于各种工业窑炉和工业锅炉上。如隧道窑,加热炉和热处理炉等的全部或大部分炉体,排烟系统内衬用耐火材料,其中钢铁冶金系统是粘土质耐火材料制品的大用户,用于盛钢桶,热风炉、高炉、焦炉等使用温度在1350℃以下的高温部位。 铝矾土的加热变化 a. 分解阶段(400~1200℃) b 二次莫来石化阶段(1200~1400℃或1500℃) 二次莫来石化时发生约10%的体积膨胀 c. 重结晶烧结阶段(1400~1500℃)。 ? 高铝质耐材的应用 ? 由于高铝质耐火材料制品的优良性能,因而被广泛应用于高温窑炉一些受炉气、炉 渣侵蚀,温度高承受载荷的部位。例如高铝风口、热风炉炉顶、电炉炉顶等部位。 ? 硅线石族制品具有较高的荷重软化温度、热震稳定性好、耐磨性和抗侵蚀性优良, 因此适用于钢铁、化工、玻璃、陶瓷等行业,如用作烟道、燃烧室、炉门、炉柱、炉墙及滑板等。在高炉上,为确保内衬结构的稳定性、密封性,避免碱性物的侵入和析出,或风口漏风,在出铁口、风口部位,选择内衬大块型组合砖结构的硅线石族耐火材料,延长了使用寿命。 ? 莫来石制品的抗高温蠕变、抗热震性能力远远优于包括特等高铝砖在内的其它普通 高铝砖 ,广泛应用于冶金工业的热风炉、加热炉、钢包,建材工业的玻璃窑焰顶、玻璃液流槽盖、蓄热室,机械工业的加热炉,石化工业的炭黑反应炉,耐火材料和陶瓷工业的高温烧成窑及其推板、承烧板等窑具。 刚玉耐材的原料 氧化铝 所有熔点在2000℃以上的氧化物中,氧化铝是一种最普通、最容易获 得且较为便宜的氧化物。氧化铝在自然界中的储量丰富。天然结晶的 Al 2O 3被称为刚玉,如红宝石、蓝宝石即为含Cr 2O 3或TiO 2杂质的刚玉。大 232232400~600()H O Al O H O Al O αα-?????→-℃刚玉假象+23222322400~600222H O Al O SiO H O Al O SiO ?????? →?℃+23223229503(2)324SiO Al O SiO Al O SiO ????→?℃+232232 12003232Al O SiO Al O SiO ≥+????→?℃

热熔胶粘剂热稳定性测定

热熔胶粘剂热稳定性测定GB/T16998-1997 Hot-melt adhesives—Determination of thermal stability 1范围 本标准规定了测定非反应性热熔胶粘剂热稳定性的方法,最高试验温度为260℃。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用标准的各方应探讨使用下列标准最新版本的可能性。 GB/T2794—1995胶粘剂粘度的测定 GB/T15332—94热熔胶粘剂软化点的测定环球法 3原理 将一定量的热熔胶在给定条件下加热,以一定的时间间隔取出样品,记录加热期间粘度和软化点的数值。胶粘剂试验温度和试验时间由供需双方商定。 4仪器 4.1不锈钢或玻璃容器:外径65mm,高95mm,配有松动配合的盖子。 4.2油浴或鼓风恒温烘箱:温度波动范围为±2℃。 4.3玻璃棒。 4.4测定软化点所用的仪器,按GB/T15332规定。 4.5测定粘度所用的仪器,按GB/T2794规定。 4.6温度计:分度值为0.1℃。 5操作步骤 5.1将不锈钢或玻璃容器(4.1)放入油浴或烘箱(4.2)中,将温度调节至所需的试验温度。 5.2将足量的试样放入容器中,用玻璃棒(4.3)搅拌热熔胶直至样品完全熔融,将温度计(4.6)插入样品中,测量温度。从该点开始计时。在试验温度±2℃范围内连续加热2h以达到热平衡。 5.3在试验温度±2℃范围内,按GB/T2794测量粘度1]。取适量胶粘剂,按GB/T15332测定软化点2]。 5.4以4h至6h的时间间隔,重复5.3中所述的全部操作,直至达到预定的试验时间止。如果在热熔胶粘剂表面发现形成表皮,则应在测量粘度前先除去表皮。 如果不可能以每隔4h至6h的时间间隔进行试验,则时间间隔的选取应避免使胶粘剂产生破坏。 采用说明: 1]ISO10363中,粘度测量按ISO2555:1989规定进行。 2]ISO10363中,软化点测量按ISO4625:1980规定进行。 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。 国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

物质热稳定性的热分析试验方法

物质热稳定性的热分析 试验方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

物质热稳定性的热分析试验方法 1 主题内容与适用范围 本标准规定了用差热分析仪和(或)差示扫描量热计评价物质热稳定性的热 分析方法所用的试样和参比物、试验步骤和安全事项等一般要求。 本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变 的固体、液体和浆状物质热稳定性的评价。 2 术语 物质热稳定性 在规定的环境下,物质受热(氧化)分解而引起的放热或着火的敏感程度。 焓变 物质在受热情况下发生吸热或放热的任何变化。 焓变温度 物质焓变过程中的温度。 3 方法原理 本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度(包括起始温度、外推起始温度和峰温)并以此来评价物质的热稳定性。 4 仪器和材料 仪器 差热分析仪(DTA)或差示扫描量热计(DSC):程序升温速率在2~30℃/min 范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95% 的满刻度偏离。 样品容器

坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。气源 空气、氮气等,纯度应达到工业用气体纯度。 冷却装置 冷却装置的冷却温度应能达到-50℃。 参比物 在试验温度范围内不发生焓变。典型的参比物有煅烧的氧化铝、玻璃珠、硅 油或空容器等。在干燥器中储存。 5 试样 取样 对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分 法取样。 试样量 试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温 速率等因素来决定,一般为1~5mg,最大用量不超过50mg。如果试样有突然释放大量潜能的可能性,应适当减少试样量。 6 试验步骤 仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内。 将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的 热接触(对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触。

负热膨胀材料研究进展

AbstractThedevelopmentandthemajorachievementsofstudiesonnegativethermalexpansionmaterialsarereviewed.Variousmechanismstoexplainnegativethermalexpansionarediscussedwithseveraltypicalnegativethermalexpansionmaterialsasexamples.Therecentlydiscoveredmanganesenitridesnegativethermalexpansionmaterialandtheproblemsrelatedtothisimportantnewclassofmaterialsarediscussedindetails.Keywords negativethermalexpansionmaterials;mechanismsof negativethermalexpansion;manganesenitrides 大多数材料具有热胀冷缩的性能。材料的热胀冷缩是机械电子、光学、医学、通信等领域所面临的普遍问题之一,对各种器件的性能均有影响。因此,研究开发负热膨胀材料或零膨胀材料,实现部件热膨胀系数的可控可调,提高材料的抗热冲击性,延长材料的使用寿命,就成为亟需解决的问题。 负热膨胀指材料体积随温度升高而缩小,随温度降低而变大,与常规材料的热胀冷缩现象相反。负热膨胀材料可单 独使用,也可与常规正热膨胀材料按一定成分配比、按一定方式制备成复合材料,根据实际需求精确控制材料的膨胀系数。 1负热膨胀材料的发展历程 1951年,Hummel发现β-锂霞石的结晶聚集体在温度达到1000℃后,若温度继续升高则会出现体积缩小的现象[1],从而引起了科技界对负热膨胀问题的重视。此后,科研人员相继发现一系列负热膨胀材料,但所发现的负热膨胀材料,由于响应温度远离室温、响应温度范围太窄或负膨胀系数受温度影响太大,应用受到了限制。20世纪90年代,随着对低膨胀材料需求的不断增多,负热膨胀材料受到广泛关注[2-11],其研究力度也进一步加大。1995年, Sleight等[2]发现ZrV2-xPxO7系列各向同性负热膨胀材料,其最大负热膨胀温度可达到950K;A.W.Sleight等[3]发现立方晶体结构的ZrW2O8负热膨胀材料。1996年,T.A.Mary等[4]发现ZrW2O8从0.3K到其分解温度1050K的整个温度范围内都具有优良的各向同性负热膨胀性能,并利用氧化物前驱物和高温淬火方法制备出了稳定的ZrW2O8。1997年,Sleight等[5]发现化学通式为A2M3O12的钨酸盐和钼酸盐系列负热膨胀材料。其中,Sc2W3O12是迄今所发现的响应温度范围最宽的负热膨胀材料,其响应温度范围为10~1200K[6]。1998年,Sleight等[7]发现Lu2W3O12负热膨胀材 料。这些各向同性(以ZrW2O8为代表)和各向异性(以Sc2W3O12为代表)氧化物负热膨胀材料的发现,极大地推动了材料科学和制造业的发展[8]。进入21世纪,负热膨胀材料成为 材料科学中的一大研究热点[4,9-11]。日本理化学研究所发现性 能优良的搀杂锗的锰氮化物Mn3AN( A代表Zn、Ga、Cu)负热膨胀材料[12],这种材料有望成为负热膨胀材料的一个重要研究方向。 负热膨胀材料研究进展 摘要概述负热膨胀材料的发展历程及近年的主要研究成果,介绍负热膨胀的微观机理,分析几种典型负热膨胀材料的特点,展望新型锰氮化物负热膨胀材料的应用前景,探讨负热膨胀材料研究所面临的问题。关键词负热膨胀材料;负热膨胀机理;锰氮化物中图分类号TB34 文献标识码A 文章编号1000-7857(2008)12-0084-05 蔡方硕1,2,黄荣进1,2,李来风1 1.中国科学院理化技术研究所,北京100190 2.中国科学院研究生院, 北京100049AdvancesinNegativeThermal ExpansionMaterials CAIFangshuo1,2,HUANGRongjin1,2,LILaifeng1 1.TechnicalInstituteofPhysicsandChemistry,ChineseAcademyofSciences,Beijing100190,China2.GraduateUniversityofChineseAcademyofSciences,Beijing100049,China 收稿日期:2008-05-12 基金项目:国家自然科学基金项目(50676101) 作者简介:蔡方硕,北京市海淀区中关村北一条2号中国科学院理化技术研究所, E-mail:caifangshuo06@mails.gucas.ac.cn;李来风(通讯作者),北京市海淀区中关村北一条2号中国科学院理化技术研究所,研究员,E-mail:lfli@mail.ipc.ac.cn 综述文章(Reviews)

耐火材料复习

1、.耐火材料的化学成分、矿物组成及微观结构决定了耐火材料的性质; 2、耐火材料是耐火度不低于1580℃的无机非金属材料。 耐火材料在无荷重时抵抗高温作用的稳定性,即在高温无荷重条件下不熔融软化的性能称为耐火度,它表示耐火材料的基本性能。 3、耐火材料的分类方法很多,其中主要有化学属性分类法、化学矿物组成分类法、生产工艺分类法、材料形态分类法等多种方法。 酸性耐火材料:硅质,半硅质,粘土质 中性耐火材料:碳质,高铝质、刚玉质、锆刚玉质、铬质耐火材料 两性氧化物: Al2O3、Cr2O3 碱性耐火材料一般是指以MgO、CaO或以MgO·CaO为主要成分的耐火材料,镁质、石灰质、白云石质为强碱性耐火材料;镁铬质、镁硅质及尖晶石质为弱碱性耐火材料。 (1)硅质耐火材料含SiO2在90%以上的材料通常称为硅质耐火材料,主要包括硅砖及熔融石英制品。硅砖以硅石为主要原料生产,其SiO2含量一般不低于93%,主要矿物组成为磷石英和方石英,主要用于焦炉和玻璃窑炉等热工设备的构筑。熔融石英制品以熔融石英为主要原料生产,其主要矿物组成为石英玻璃,由于石英玻璃的膨胀系数很小,因此熔融石英制品具有优良的抗热冲击能力。 (2)镁质耐火材料是指以镁砂为主要原料,以方镁石为主晶相,MgO含量大于80%的碱性耐火材料。通常依其化学组成不同分为: 镁质制品:MgO含量≥87%,主要矿物为方镁石; 镁铝质制品:含MgO >75%,Al2O3含量一般为7-8%,主要矿物成分为方镁石和镁铝尖晶石(MgAl2O4);镁铬质制品:含MgO>60% ,Cr2O3含量一般在20%以下,主要矿物成分为方镁石和铬尖晶石; 镁橄榄石质及镁硅质制品:此种镁质材料中除含有主成分MgO外,第二化学成分为SiO2。镁橄榄石砖比镁硅砖含有更多的SiO2,前者的主要矿物成分为镁橄榄石,其次为方镁石;后者的主要矿物为方镁石,其次镁橄榄石; 镁钙质制品:此种镁质材料中含有一定量的CaO,主要矿物成分除方镁石外还含有一定量的硅酸二钙(2 CaO?SiO2)。 3)白云石质耐火材料 以天然白云石为主要原料生产的碱性耐火材料称为白云石质耐火材料。主要化学成分为:30-42%的MgO 和40-60%的CaO,二者之和一般应大于90%。其主要矿物成分为方镁石和方钙石(氧化钙)。 4)碳复合耐火材料 碳复合耐火材料是指以不同形态的碳素材料与相应的耐火氧化物复合生产的耐火材料。一般而言,碳复合材料主要包括镁碳制品、镁铝碳制品、锆碳制品、铝碳制品等。 5)含锆耐火材料 含锆耐火材料是指以氧化锆(ZrO2)、锆英石等含锆材料为原料生产的耐火材料。含锆耐火材料制品通常包括锆英石制品、锆莫来石制品、锆刚玉制品等。 (6)特种耐火材料 碳质制品:包括碳砖和石墨制品; 纯氧化物制品:包括氧化铝制品、氧化锆制品、氧化钙制品等; 非氧化物制品:包括碳化硅、碳化硼、氮化硅、氮化硼、硼化锆、硼化钛、塞伦(Sialon)、阿伦(Alon)制品等; 1.3耐火材料的组成、结构与性质 耐火材料是构筑热工设备的高温结构材料,在使用过程中除承受高温作用外,还不同程度地受到机械应力、热应力作用,高温气体、熔体以及固体介质的侵蚀、冲刷、磨损。 耐火材料的性质主要包括化学-矿物组成、组织结构、力学性质、热学性质及高温使用性质等。

热稳定性分析方法

版 本 号:0.1 页 码:1/3 发布日期:2009-12-09 实验室程序 编 写: 批 准: 签 发: 文件编号:SHLX\LAB\L2-008 题 目:热稳定性测量方法 1.0 目的 提供了产品热稳定性的测量方法。 2.0 概述 (1)原理 Na 2SO 3 方 法 : 用 1N 的 Na 2SO 3 溶 液 吸 收 样 品 粒 子 中 释 放 的 甲 醛 , 生 成HOCH 2SO 3Na 和 NaOH 。 CH 2O +Na 2SO 3+H 2O →HOCH 2SO 3Na +NaOH (2)本测量方法是利用聚甲醛树脂在高温熔融,产生甲醛气体,随氮气带出,被亚 硫酸钠溶液吸收,由滴定反应生成的氢氧化钠,得出甲醛含量。 3.0 仪器和试剂 【仪器】 (1) 油浴(容量约为 130L ,并配有样品熔融管) (2) 加热器 (3) 过热保护装置 (4) 搅拌器 (5) 自动滴定装置 (6) 数据处理计算机 【试剂】 (1) 0.005mol/l 硫酸 (2) 福尔马林(36.0~38.0%) (3) 亚硫酸钠(Na 2SO 3) (4) 缓冲液(pH 6.86) (5) 缓冲液(pH 9.18) (6) 0.1mol/l NaOH 4.0 定义 甲醛含量通过以下方式表示: (1)K 0 :表示从 2 分钟到 10 分钟之间,聚合物中溶解的甲醛,不稳定端基和聚合 物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (2)K 1 :表示从 10 分钟到 30 分钟之间,聚合物中剩余的溶解甲醛,不稳定端基

文件编号:SHLX\LAB\L2-008 和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (3)K2:表示从50 分钟到90 分钟之间,聚合物不稳定端基和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 5.0安全注意事项 (1)搁置和取出样品过程中,要穿戴安全手套,以防被烫伤。 (2)电极容易损坏,使用时防止碰撞。 (3)作业时,穿戴安全眼镜和防护手套。 (4)实验过程中使用氮气作为载气,所以要控制好氮气流量,并确保良好的通风。6.0步骤 6.1准备 (1) 确认油浴温度223±2℃,硫酸溶液的量。 (2) 打开参比液添加孔,检查电极内饱和KCL 的量,确保液位超过甘汞位置。 (3) 打开自动电位滴定仪、打印机及电脑电源。 (4) 打开电脑桌面上AT-WIN,输入密码并确认与自动电位滴定仪联机。 (5) 调整氮气流量到60 l/h。 (6) 分别用pH 为6.86(25℃)、9.18(25℃)的缓冲液,对电极进行校正(根据 电脑提示进行),若显示“OK”,则校正通过,否则进行检查并重复校正步 骤。 (7) 对自动电位滴定仪进行排气,确保滴定管路中无气泡。 (8) 用250ml 的烧杯,取150ml 吸收液(1mol/L 亚硫酸钠溶液,它的配制方法: 将250g 的Na 2SO3溶于2000ml 的水中,充分搅拌。),放入磁性搅拌子、加 盖、并将电极、N2管、喷嘴插入溶液中,启动搅拌按钮。 (9) 用硫酸溶液(0.1N)将溶液pH 调节至9.10,待稳定后,用0.1mol/l 甲醛溶 液(配制方法:将81g 的福尔马林放入1L 的容量瓶中,然后加水到刻度线, 配成约0.1mol/l 福尔马林),调节pH 至9.21~9.22,并稳定10 分钟以上。 (10) 电极浸泡液的配制方法:PH=4 的缓冲试剂250ml 一包溶于250ml 水中, 再加入56gKCL,适当加热,搅拌至完全溶解。 6.2步骤 (1) 用铝皿取3.000±0.003g,将其放到小金属底部,然后用钩子,将准备好的 样品放入油浴的熔融管中。 (2) 盖紧硅胶塞,快速按下START,开始试验,试验过程控制pH 值为9.20。 (3) 当实验进行到设定的时间后,自动结束。(按“RESET”键,可手动停止实 验。)测定结束,打印机自动打印结果。 (4) 取出金属筒冷却,取出电极,并将电极放入浸泡液中。

材料的热膨胀系数

https://www.docsj.com/doc/a218823660.html,/p-50731110.html 陶粒5.83 耐火粘土砖的热膨胀系数是多少呀? (4.5-6)×10的负6次方/℃ 材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2

复合材料特性

(1)力学性能 石墨烯被认为是迄今为止强度最高的物质,添加石墨烯可以增加聚合物的力学性能。拓展石墨烯的改性范围,开发出多种的增强复合材料变得尤为重要。改性的程度有许多影响因素,例如强相的浓度和在基质中的分布状态,界面粘合性和增强相的长径比等。石墨稀纳米片和聚合物基体之间的界面粘合性强,是进行有效加固的关键。局部两相间不相容性可能由于石墨稀对基体的附着力差而降低应力转移几率,导致了一个较低的机械性能复合材料。可使用氢键和范德华力非共价键改善界面相互作用,提高聚合物基体机械性能[1]。 尽管些物理相互作用可以提高复合材料的性能,在外部受力下填料与基体之间相对移动是不可避免的。这限制了材料的最大使用强度。为了缓解该问题,关键是选择有效的手段,提高界面与基体间的抗剪切强度。改善填料与基体之间靠共价键形成的应力传递。例如,利用GO表面的羟基(-OH)与聚氨酯链上的端部的-NCO基团反应,形成聚氨甲酸酯键(-NH-CO)而共价键合到聚氨酯上。(2)导电导热性能 石墨烯的导电性能是目前已知导电材料中最好的,其载流子迁移率达15000 cm2·V- 1·s- 1[ 2]。这个数值是目前已知具有最高迁移率的锑化铟材料的两倍,是商用硅片迁移率的10倍以上。石墨烯具有高导电性,当加入到聚合物基体中,可导电的石墨烯分散在基体中形成导电网络,可以大大提高复合材料的导电性。复合材料表现出导电性随石墨烯含量的增加呈现一种非线性增长。 石墨烯的导热性能很高,在室温下为3000W·M-1·K-1,已被用来作为基体填充物,以改善聚合物的热导率和热稳定性。片状石墨稀的二维片层结构在聚合物较低的界面热电阻,从而产生更好的导电性增强聚合物复合材料。其他因素,例如石墨稀片的长径比,取向和分散,基体的种类等也将影响复合材料的热性能。(3)热稳定性 热稳定性是复合材料的另一个重要性能,可以通过在聚合物基体中嵌入石墨烯来实现。高的热稳定性和层状结构的石墨烯的加入,会使复合材料热性能显著提高。Ramanathan等[3]系统研究发现石墨烯的加入可以使聚甲基丙烯酸甲酯的模量、强度、玻璃化转变温度和热分解温度大幅度提高。并且石墨烯的作用效果远远好于单壁碳纳米管和膨胀石墨。 (4)气体阻隔性能 石墨烯的加入相对于原始的聚合物可以显着减少气体对聚合物复合材料的透过率。各种研究表明,气体渗透性降低可能由于石墨稀长径比和高表面积,以及在聚合物基体中形成的“弯曲通道”效应 (tortuous path effect),从而有效的阻隔了气体分子的扩散和穿透。Pinto等[4]研究了聚乳酸/石墨稀复合材料对氧气和氮气的阻隔性。结果表明,与未加入石墨稀前相比在复合物中使用0.4%(重量)添加量可以使复合材料对氧气的透过量下降三倍,对氮气的透过量下降四倍。(5)吸附性能 众所周知,吸附强烈依赖于孔隙结构和表面面积,以及吸附剂的官能团。石

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

相关文档