文档视界 最新最全的文档下载
当前位置:文档视界 › 随钻NMR测井仪与井下NMR流体分析仪

随钻NMR测井仪与井下NMR流体分析仪

随钻NMR测井仪与井下NMR流体分析仪
随钻NMR测井仪与井下NMR流体分析仪

随钻核磁共振测井技术参数

INTEQ 的6 ?” MagTrak?随钻核磁共振测井技术提供实时总孔隙度,不需要放射源和岩性参考。通过石油工业标准定义的T 2分布,随钻核磁共振测井可以得到自由水和束缚水含量,流体饱和度以及孔隙特征。 MagTrak 随钻测井工具有着很高的垂直分辨率。探测直径可达12.6”。6 ?” 的MagTrak 工具可以适用8 3/8” – 9 7/8” 大小的井眼。 预先设定操作模式,简易井上操作。这种模式能够适应绝大多数地层和流体特性。 ■ “孔渗核磁”模式:可以得到总孔隙度,毛管束 缚水孔隙度,粘土束缚水孔隙度和预测的渗透率 ■ “孔渗核磁+轻烃”模式:可以得到总孔隙度,毛 管束缚水孔隙度,粘土束缚水孔隙度,预测的渗透率和轻烃饱和度 对于特殊的应用也可以自定义测量参数。 每一种模式的原始数据都在井下处理。经计算的地层性质参数,如总孔隙度和束缚水孔隙度等可以实时传输到地面。所有原始数据都被储存在内存中,工具出井后可下载,进行高级处理。 MagTrak 随钻测量工具由一个传感器短节和两个扶正器组成。工具下面需要配置一个柔性短节以减少震动。MagTrak 传感器短节有独立的发电装置,需要泥浆驱动发电。 服务优势: ■ 核磁共振随钻测量数据 - 总孔隙度和有效孔隙度(实时数据) - 自由水孔隙度和束缚水孔隙度(实时数据) - 预测的渗透率(实时数据) - 孔隙特征 - 轻烃饱和度 ■ 优化的井下测量环境 - 原始地层 - 无污染的井眼 ■ 可适用于高井斜井 ■ 高的垂直分辨率 ■ 对定向测量没有磁干扰 ■ 低的震动敏感性 技 术 参 数 表 6 3/4" MagTrak

6 3/4" MagTrak 工具规格 传感器规格 井眼尺寸 8 3/8“ - 9 7/8“传感器距底端位置 9.97ft(3.04m)公称外径 6 3/4" (17.15cm)公称直径12.6“(320mm)两个低震动扶正器回波间隔可自定义,最小0.6ms 套筒长度9.6“(24.5cm)回波数可自定义,最大5000外径 1/8“欠尺寸 共振频率500kHz 总长/总重 名义磁场梯度 2.0G/cm 传感器带下扶正器 24.2ft(7.4m)3 197lbs(1 450kg)内存384MB,相当于340小时上扶正器 5.7ft(1.73m)705lbs(320kg) 2.8"(70mm)电源泥浆涡轮发电*静态纵向分辨率 接头 纵向分辨率 2 ft(钻速50ft/hr 和1空隙单位) 4 ft(钻速100ft/hr 和1空隙单位) NC50 下:INTEQ 标准扣 NC50 NC50 下:INTEQ 标准扣 NC50 操作参数 1 300 - 2 500 lpm 1 000 - 1688 lpm 最大钻压562 022 lbf(2 500kN)最大扭矩(钻头处)23 500ft-lbf(32 kNm)最大失效扭矩(钻头处)47 500ft-lbf(65 kNm)最大失效拉力 无旋转持续操作无旋转最大温度最大最小操作时300°F (150°C)-14°F(-10°C)极限温度347°F(175°C)-40°F(-40°C)最大静水压25 000 psi (1 725 bar)泥浆类型不含铁矿粉,不含海绵铁最小泥浆电阻率0.02ohm-m 最大轴向,径向,切向震动参阅《补充技术参数》881 251 lbf (3 920 kN) 1 16 2 262 lbf (5 170 kN) 最大狗腿度值对应相应的钻具组合, 它受到不同参数的影响,如钻具组合方式, 井身结构,钻进模式(造斜、降斜或稳斜)。为了优化钻具,需要专家的建议(BHASYS PRO)至于转速, 含沙量, 堵漏剂等可参照其它 随钻测量工具技术参数,如OnTrak, NaviTrak

核磁共振测井简介

核磁共振测井简介 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。1956 年,Brown 和Fatt 研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。1960年,Brown 和Gamson 研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。因此,这种类型的核磁共振测井仪器难以推广。1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。这个方案后来成为核磁共振测井大规模商业化应用的基础。但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。1985 年,Zvi Taicher 和 Schmuel 提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。 1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。此后,核

磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。他们代表性的产品分别是:Schlumberger--CMR、Halliburton--MRIL-P、Baker hughts—MREX。基本原理在没有任何外场的情况下,核磁矩(M)是无规律地自由排列的。在有固定的均匀强磁场σ0影响下,这个自旋系统被极化,即M重新排列取向,沿着磁场方向排列。同时,原子核还存在轨道动量矩,象陀螺一样环绕,这个场的方向以频率ω0 进动。 ω0与磁场强度σ0 成正比,并称ω0为拉莫尔频率。在极化后的磁场中,如果在垂直于的方向再加一个交变磁场,其频率也为质子(氢核)的进动频率时,将会发生共振吸收现象,即处于低能态的核磁矩,通过吸收交变磁场提供的能量,越迁至高能态,此现象称为核磁共振。造岩元素中各种原子核的核磁共振效应的数值是不同的,它首先决定于原子核的旋磁比,岩石中元素的天然含量以及包含该元素的物质赋存状态。核磁测井以氢核与外加磁场的相互作用为基础,可直接测量孔隙流体的特征,不受岩石骨架矿物的影响,能提供丰富的底信息,如地层的有效孔隙度、自由流体孔隙度、束缚水孔隙度、孔径分布及渗透率等参数。氢核在地磁场中具有最大的旋磁比和最高的共振频率,根据含氢物质的旋磁比、天然含量和赋存状态,氢是在钻井条件下最容易研究的元素。因此,包含某种流(水、油或天然气)中的氢原子核是核磁测井的研究对象。对于静磁场,热平衡时,处于地

核磁测井文献综述——核磁共振测井仪器的发展

核磁共振测井仪器的发展 核磁共振测井仪器的构想最早由Varian[19]提出,并进行了可行性研究。20 世纪60 年代,Chevron 和Schlumberger 合作研制出利用地磁场的核磁共振测 井仪器(Nuclear Magnetism Logging - NML),并用于油田测井]。但是这种仪器 在使用上受到两方面的限制:第一个限制是仪器不但测量到来自地层流体的信号,而且还测量到来自井眼泥浆信号。为了消除来自井眼信号的影响,需要在井中加入磁粉来缩短井眼信号;第二个限制是在检测信号之前切断很高的直流电流需要很长的时间,造成仪器“死时间”很长,小孔隙的信号无法观测到,测量不 到地层的总孔隙度。由于受到仪器“死时间”和井眼中的泥浆信号的影响,地磁 场核磁共振测井仪没有被广泛使用。 为了克服NML 仪器带来地局限性,Jackson等人提出了利用永久磁铁在井 眼之外的地层中产生一个环形的均匀磁场,即“Inside-out”的概念,设计了基于 反向磁体的核磁共振测井仪的方案。但是这种方案产生地均匀磁场区域太小,观测信号的信噪比很低。同时在操作过程中,环形的均匀磁场的位置和磁场强度是随时间变化的,当射频线圈调到一个固定的频率时,很难满足共振条件。 1987 年,Shtrikman 和Taicher[25]提出一种新的磁体与天线结构,克服了Jackson 设计中的共振匹配问题,使核磁共振测井信噪比问题得到解决。Shtrikman 和Taicher 的设计后来进一步发展为Numar/Halliburton公司的磁共 振成像仪器(Magnetic Resonance Imaging Logging - MRIL)。 MRIL 仪器以人工梯度磁场和自旋回波CPMG 脉冲序列为基础,观测地层 孔隙流体中氢核的NMR 信号,得到横向弛豫时间T2,使核磁共振测井进入实 用化阶段。MRIL-B 型仪器于1990 年开始投入油田服务,并很快得到成功应用。1994年,Numar 公司推出MRIL-C 型双频核磁共振测井仪。至今,已推出了MRIL-B、MRIL-C、MRIL-C/TP 以及MRIL-Prime 型四代仪器。MRIL-Prime 仪器最多可以用9 种不同的频率工作,做9 个圆柱壳的观测,通过改变频率可以在各个圆柱壳间转换。9 个圆柱壳的探测深度总变化为 2.5cm。多频率工作方式可以测量总孔隙度,而在每一圆柱壳上使用不同的观测模式可以进行多参数数据采集,从而对地层流体进行识别和评价。实践证明,新的仪器提高了测井速度和

核磁测井

核磁测井 1、现代NMRR测井 1、1脉冲NMR测井仪 传感器(如磁铁和天线)是脉冲NMR测井仪的核心部分。它对仪器的S/N、最小回波间距、探测深度(DOI)、测井速度和垂直分辨率有重要影响。在用的所有仪器在传感器的设计上都不尽相同,主要差别是电子线路、固件、脉冲序列、数据处理和解释算法。NMR仪器的详细技术指标都能在各家服务公司的网站上找到。 斯伦贝谢电缆式NMR测井仪器有三个天线和一个完全可编程的脉冲序列发生器,能进行多种不同方式的测量。两个152mm天线用于高分辨率测量,提供总孔隙度、束缚流体孔隙度和自由流体孔隙度。高分辨率天线还可用来探测天然气和轻烃,计算渗透率和孔隙大小分布。主天线长457mm,有多个频率,用于不同地层评价,提供多种NMR 测量。每个频率都对应不同DOI(从井壁算起为38~102mm)。主天线所提供的地层评价包括两个高分辨率天线所提供的所有地层评价,还用于评价流体径向剖面、流体体积和石油黏度。所有的商用NMR仪都有一些共同的特征,譬如:所有的仪器都采用强度很大的钐钴合金永久磁体,磁铁对温度变化相对不敏感。磁体用于极化(磁化)烃和水分子中的氢核(质子)。另一个共同的特征是它们都采用脉冲NMR测量。 1.2测量原理 NMR测量有两步。第一步是建立储层流体的净磁场,当仪器沿井简移动时,磁铁的磁场矢量B。磁化储层流体中的氢核,产生净磁场,磁场沿着B。方向,即纵向。在井壁附近区域(距井壁几英寸),B。的大小一般为几百高斯。B。的大小随着离磁铁径向距离的增加而减小,从而在测量区域内形成磁场梯度或梯度分布。正如下面讨论的,磁场梯度用于识别储层流体并描述流体特征。在施加B。之前,氢核磁矩的方向是无序的,因此流体净磁场为0。在极化时间Tp内,磁化强度以指数形式增大到其平衡值Mo。描述磁场指数方式的时间常数为纵向弛豫时间,称之为T1。 在储层岩石中,用T1分布描述磁化过程。T1分布反映的是沉积岩中油气的复杂成分和孔隙大小分布。极化所需时间至少是最长T1时间的3倍以确保充分磁化。如果极化时间太短,得到的NMR孔隙度就会小于真实的地层孔隙度。极化时间一到,立即将RF脉冲串用于地层。第一个RF脉冲称为9O°脉冲,这是因为它能把最初与B。平行的磁化矢量旋转到垂直于B0的横向平面上。一旦磁化在横向平面内进行,它就会绕着B。旋转,就在原来产生脉冲的同一天线上产生一个随时问变化的信号。紧跟着9O。脉冲,首先产生一个NMR自由感应衰减(FID)信号,但由于其衰减太快而无法探测到。900脉冲之后是一系列间隔均匀的180。脉冲,用来使氢核的磁矩重新聚焦,形成连贯的自旋回波信号。在每对180。脉冲信号之间记录自旋回波信号。之所以把信号称之为回波,是因为它们在每一对180。脉冲的中间点能够达到最大幅度,然后在下一个脉冲到来之前快速衰减为零,下一脉冲重聚磁矩以产生下一个回波。 RF脉冲及相关的自旋回波就是所谓的Carr-Purcell-Meiboom(CPMG)序列,这是应用最广泛的NMR测井序列。自旋回波信号的包络线随特征时问常数(7"2)以指数规律衰减,称为横向弛豫时间或自旋一自旋弛豫(衰减)时间。外推到零时间(紧跟9O。脉冲)的自旋回波衰减曲线的幅度就等于推导的NMR总孔隙度(假设流体含氢指数等于1)。 NMR测井仪的一个重要技术指标是它的最小回波间隔。在确定T2敏感性极限--仪器能测量出的最小值方面,最小回波间隔和信噪比S/N起了重要作用。短的最小回波间隔对于准确而重复地测量包含黏土束缚水和微小孔隙(如测量小于3ms的T2值)在内的地层NMR总孔隙度是必需的。对于目前所用的仪器而言,其最小回波问隔大约在0.2~

斯伦贝谢公司新一代测井仪器—Scanner家族

斯伦贝谢公司新一代测井仪器—Scanner家族斯伦贝谢公司新一代测井仪器Scanner家族于2006年正式投入油田服务,其家族成员包括MR Scanner、Rt Scanner- Scanner 、Sonic Scanner、 Flow Scanner、Isolation Scanner。各种仪器已在油田投入使用,取得了很好的效果,为研究疑难储层提供了重要手段。我们将该家族各仪器的性能逐一介绍如下:1.新型核磁共振测井仪MR Scanner 斯伦贝谢公司2006年新推出了Scanner家族的成员—核磁共振仪器MR Scanner,该仪器采用偏心梯度设计,具有多种探测深度、测量结果不受井眼条件的影响、能进行流体表征等特点。在低阻、低对比度储层的评价中具有较大优势。 MR Scanner 测井仪的主要优点包括:测量结果不受储层破坏带的影响;可以通过径向剖面来识别流体及环境的影响;可以应用到井眼不规则或者薄的泥饼储层评价中;降低了钻井时间。 MR Scanner仪器的主要特性 偏心,梯度设计; 多种探测深度,最深可达4 in, 而且测量结果不受井眼大小及形状的影响; 纵向分辨率为7.5 ft; 最大测速可达 3600 ft/h; 具有良好的油气表征能力; 可以得到不同探测深度下的横向弛豫时间(T2)、纵向弛豫时间(T1)以及扩散分布。 2.三分量感应测井仪Rt Scanner Rt Scanner仪器可以同时测量纵向和横向电阻率以及地层倾角和方位角的信息。它能够提供多种探测深度上的三维测井信息。通过这些信息增强了储层的含烃和含水饱和度解释模型的精度,使计算的结果更符合地层实际情况。尤其是在薄层,各向异性或断层中的计算结果将更加准确。 该仪器具有六个三维的芯片,每一个芯片上面都安装了三个定位线圈以测量不同深度地层的纵向电阻率Rt和横向电阻率Rh。在每两个线圈之间都安装了三个单轴接收器用以完全表征从三维芯片上传递到井眼中的信号。除了测量电阻率之外,Rt Scanner仪器还可以用来测量地层的倾角和方位角以进行构造解释。 除了能够提供高质量的电阻率和地层构造信息之外, Rt Scanner仪器还能

核磁共振发展现状

1)核磁共振测井的未来发展方向决定于其真正解决油气勘探开发问题的能力和潜力。为了提高力。油气勘探开发效益,它必定在满足解决日益复杂的油气地层评价问题需要的基础上,充分发挥在流体识别和岩石物理评价中的独特优势,不断地向前发展。 2)鉴于核磁共振测井的独特优越性,各油公司将会建立以核磁共振为中心的油气评价技术体系,包括随钻核磁共振测量、电缆核磁共振测井、与地层测试结合在一起的核磁共振流体分析以及系统的数据处理和综合解释方法系列。随钻核磁共振测井技术将备受关注。该技术是在钻井过程中实现对地层的核磁共振测量,提供地层的孔隙度、束缚水孔隙体积以及T1分布等信息,其应用前途是不可估量的 3)当前核磁共振测井自身存在的一些问题,可能会成为新仪器研制和应用研究的突破口。例如,MRIL 与CMR 的探测深度都仍然较浅,对于泥浆侵入比较深的轻质油和气层,NMR 测井在评价含烃性时将遇到困难;再如,在碳酸盐岩地层,T2分布与孔径分布及油气赋存状态的关系不像砂泥岩地层那么明确。这些都将给核磁共振测井的应用带来挑战。 俄罗斯ⅡMK 型 (大地电磁型) 斯伦贝谢公司CMR 型 (脉冲强磁场贴井壁型) NUMAR 公司MRIL-C 型(成像测井型) 测量原理 预极化-自由进动测量 永久磁铁局部均匀磁场-脉冲方式 偶极梯度-脉冲方式 观测方式 预极化-FID 自旋回波 自旋回波 提供信息 自由流体指数等(FFI) FFI 、束缚水等 FFI 、渗透率、扩散系数、束缚水 探测深度 150 cm(从井轴起) 2.5 cm(从井壁起) 19.7~21.6 cm(从井轴起) 纵向分辨率 30 cm 25 cm(慢速),15 cm(点测) <50 cm

核磁共振测井技术的研究现状

摘要核磁共振测井在我国的应用已经有十余年的历史,对我国复杂油气藏测井评价以及石油测井技术本身的发展都做出了有目共睹的积极贡献。例如,它提供的地层信息的丰富性,远多于其他任何单项测井方法;在复杂岩性,特殊岩性,如砂砾岩、火山岩等储层,常常是少数几种有效的重要方法之一;在束缚水引起的低阻油气藏,它是必不可少的方法;它是迄今为止唯一能够提供比较合理的地层渗透率的测井方法;对于深部气层,当天然气孔隙体积比较大时,它的显示十分明显;在稠油以及水淹层,有一定的经验关系存在;对原油粘度以及毛管压力曲线等信息也有较好的反映,等等。但是,由于或是使用条件的不适应,或是使用方法的不恰当,或是技术本身的不完善,也存在或出现过不少问题。例如,它求出的孔隙度时常偏低,有时也偏高;它求出的束缚水对地区或地层的依赖性比较强;它求出的渗透率还没有得到油藏专家的广泛应用;而在流体识别方面,它还有比较大的随意性和不确定性,等等。深入研究这些问题,对提高应用效果,挖掘应用潜力,发展核磁共振测井技术等,都有重要意义。本文从实际效果和技术适应性等几个方面,介绍和讨论我国核磁共振测井应用中存在的一些常见问题,以促进该项技术的正确应用。 我国的核磁共振测井是1996年开始的[1]。中油测井有限公司(CNLC)和华北油田测井公司(现中国石油集团测井有限公司即CPL的华北事业部)最先引进了NUMAR公司的C型磁共振成像测井仪(MRIL-C)。随后,这项技术在我国迅速推广。如今,10余套老的MRIL-C或升级后的MRIL-C/TP,30余套新的代MRIL-Prime(哈里伯顿商标),6套MREx(贝克阿特拉斯商标),3套CMR(斯仑贝谢商标)以及1套MR-Scanner在我国境内服务。均估算,年测井工作量在1000口左右,既有探井,也有生产井。油田公司对核磁共振测井的认可程度正逐年增加,特别是在复杂岩性,特殊岩性(碳酸盐岩,火山岩,砂砾岩等),低孔低渗,束缚水引起的低饱和度等复杂油气藏,核磁共振测井时常成为最后的、甚至是少数几个真正有效的测井手段。 但是,在我国核磁共振测井应用实践中,也发现许多问题,不仅影响了应用效果,还曾经在某种程度上影响过人们对这项技术的信心。这些问题主要集中在孔隙度和流体识别上。在孔隙度方面,从理论上来讲,核磁共振测井是最好的测量方法,应该能够提供准确的地层孔隙度测量结果,而实际上在气层,稠油层,或高矿化度钻井液等条件下,往往出现测量孔隙度偏低或偏高的情况,甚至表现出与地层岩性的某种相关性。在流体识别方面,从理论上讲,有这些可能性,并且也发展了相应的数据采集和处理方法,但是,却都有非常强的使用条件!如果不满足这些使用条件,当然不会有好的使用效果。至于核磁共振测井得到的束缚水,渗透率,孔径分布,毛管压力曲线,原油粘度等信息,都是由回波串反演出T2分布,然后再导出的二级参数,也都有非常强的使用条件。对应用实践中出现的种种问题进行归纳,总结和分析,将有益于改进提高核磁共振测井的应用效果。 核磁共振测井孔隙度 核磁共振测井孔隙度是被观测区域孔隙流体含氢指数与孔隙度的综合反映[2][3],而且,受到多个因素的影响。这些因素包括:CPMG回波串采集参数;刻度;孔隙流体含氢指数;回波串的信噪比;钻井液矿化度;以及采集模式与处理方法。 一般来说,回波串采集参数如TW(等待时间),TE(回波间隔),NE(回波个数)以及90o脉冲和刻度等将影响对地层孔隙度的观测比较好理解。在测井作业中,也容易控制。孔隙流体含氢指数对核磁共振孔隙度的影响与对中子测井的影响是一样的,理论上容易分析,而实际情况则往往是:要么含氢指数无法已知,要么流体实际孔隙体积不能确定,所以,校正起来常常相当困难。这几个因素通常是使核磁共振观测的孔隙度比地层实际孔隙度偏低。而下

随钻测井

随钻测井 一、随钻测井的引入 在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题: 1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去 2、井壁状况不好易发生坍塌或堵塞 3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层 二、随钻测井的概念 随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术. 首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。 其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性. 而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。 另外,近二十年来海洋定向钻井大量增加。采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化 (现代随钻测井技术大致可分为三代) ●20 世纪80 年代后期以前属于第一代 可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。 ●20 世纪90 年代初至90 年代中期属于第二代 过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。 ●20 世纪90 年代中期到目前属于第三代 称为钻井测井(Logging for Drilling) ,提供界定地质环境、钻井过程、采集实时信息时所要求的数据。

核磁共振测井简介

引言 核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。 发展历史 核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。 但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。因此,这种类型的核磁共振测井仪器难以推广。1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。这个方案后来成为核磁共振测井大规模商业化应用的基础。但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。 此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。他们代表性的产品分别是:Schlumberger--CMR、Halliburton--MRIL-P、Baker hughts—MREX。 基本原理 在没有任何外场的情况下,核磁矩(M)是无规律地自由排列的。在有固定的均匀强磁场σ0影响下,这个自旋系统被极化,即M重新排列取向,沿着磁场方向排列。同时,原子核还存在轨道动量矩,象陀螺一样环绕,这个场的方向以频率ω0 进动。ω0与磁场强度σ

核磁共振测井理论与应用

核磁共振测井理论与应用 核磁共振测井技术应用研究的发展 一、快速发展的核磁共振测井技术 1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。如今,NMR已成为这些领域的重要分析和测试手段。 40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。但这些难题没有使核磁共振测井研究中止。70年代末至80年代初,美国Los Alamos国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。在相同时期,磁共振成象(MRI)概念也得到很大发展。1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。总体来看,十几年来核磁共振测井技术的快速发展表现在以下几个方面: 第一,根据“INSIDE-OUT”思想,不用地磁场,而是在井中人工放置一个高强度磁体,所推出的核磁共振率统核心部分是由稳恒磁体发射射频(RF)脉冲并采集自旋回波信号的RF线圈组成。该技术使稳恒场B0与RF场B1相互垂直,磁体的轴沿井筒主向,其磁场方向垂直地地层。B0场与B1场的特点是:在空间任意处它们均相互正交;它们的等场强线为同心圆柱面;场强在径向上均与距离的平方成反比。B0与B1的正交性是获取最大信号的关鍵。核磁共振空间是由RF脉冲频率确定的,可以通

核磁测井原理与解释

核磁共振测井技术的进展 关键词:核磁共振测井,测量原理,测井解释,储层评价 1历史回顾 人们第一次认识核磁共振(NMR)的潜在价值是在20世纪50年代,在60年代早期研制出核磁测井(NML)仪。NML仪因其许多局限性最终在80年代末停止了服务。尽管它有诸多局限性,但为支持NML测井而进行的实验研究,预见了今天仍在进行的多种地层评价,其中包括估算渗透率、孔隙大小分布、自由流体体积、原油黏度和润湿性。 现代NMR测井的发展可以追溯到1978年在LosAlamos国家实验室开展的NMR井眼测井研究项目。该项目的部分目标是制造和测试一种在井眼中使用的NMR测井仪,它能克服NML仪的局限性。LosAlamos 试验仪器使用的是强永久磁铁,正如那些在现代实验室的NMR仪器一样,进行了脉冲NMR自旋回波测量。这些测量结果极其灵活,可适用于许多不同的地层评价。 LosAlamos实验室仪器证明了NMR测井的可行性,但由于其信噪比(S/N)太低,而且磁铁和射频(RF)线圈的设计产生很大的井眼信号而无法满足商用需求。可行性论证后不久,1983年成立的Numar公司和斯伦贝谢公司开始了独立的研究,试图设计NMR磁铁和RF天线,从而满足商用NMR测井需求。 20世纪90年代初,研究有了收获,有两家公司开始对电缆式仪器样机进行现场测试。仪器性能远远超过NML仪,在地层评价方面很快有了效果。自从第一支商用仪器投入使用以来,这两家公司都推出了

先进的电缆式NMR测井仪和随钻测井(LWD)NMR仪器。1997年,Numar 公司被哈里伯顿收购,现已完全成为其子公司。2001年,哈里伯顿公司推出了NMR流体分析仪,它是电缆式流体采样仪的一部分。2000和2002年,哈里伯顿公司和斯伦贝谢公司分别推出了LWD仪器。贝克·休斯公司在2004年推出了电缆式NMR仪,2005年推出了LwDNMR 仪。 2现代NMR测井 2.1脉冲NMR测井仪 传感器(如磁铁和天线)是脉冲NMR测井仪的核心部分。它对仪器的S/N、最小回波间距、探测深度(DOI)、测井速度和垂直分辨率有重要影响。在用的所有仪器在传感器的设计上都不尽相同,主要差别是电子线路、固件、脉冲序列、数据处理和解释算法。NMR仪器的详细技术指标都能在各家服务公司的网站上找到。 斯伦贝谢电缆式NMR测井仪器有三个天线和一个完全可编程的脉冲序列发生器,能进行多种不同方式的测量。两个152mm天线用于高分辨率测量,提供总孔隙度、束缚流体孔隙度和自由流体孔隙度。高分辨率天线还可用来探测天然气和轻烃,计算渗透率和孔隙大小分布。主天线长457mm,有多个频率,用于不同地层评价,提供多种NMR 测量。每个频率都对应不同DOI(从井壁算起为38~102mm)。主天线所提供的地层评价包括两个高分辨率天线所提供的所有地层评价,还用于评价流体径向剖面、流体体积和石油黏度。 所有的商用NMR仪都有一些共同的特征,譬如:所有的仪器都采

核磁共振测井原理

核磁共振测井原理 一、快速发展的核磁共振测井技术 1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。如今,NMR已成为这些领域的重要分析和测试手段。 40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。但这些难题没有使核磁共振测井研究中止。70年代末至80年代初,美国Los Alamos 国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。在相同时期,磁共振成象(MRI)概念也得到很大发展。1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。总体来看,十几年来核磁共振测井技术的快速发展表现在以下几个方面: 第一,根据“INSIDE-OUT”思想,不用地磁场,而是在井中人工放置一个高强度磁体,所推出的核磁共振率统核心部分是由稳恒磁体发射射频(RF)脉冲并采集自旋回波信号的RF线圈组成。该技术使稳恒场B0与RF场B1相互垂直,磁体的轴沿井筒主向,其磁场方向垂直地地层。B0场与B1场的特点是:在空间任意处它们均相互正交;它们的等场强线为同心圆柱面;场强在径向上均与距离的平方成反比。B0与B1的正交性是获取最大信号的关鍵。核磁共振空间是由RF脉冲频率确定的,可以通过选频选定探测空间。因此使用各种新型核磁共振测井仪不象过去那样要进行繁重的泥浆处理作业。 第二,选用了由Carr,Purcell,Meiboon和Gill改进的脉冲回波序列技术,即CPMG 序列脉冲回波技术,它的思想是对可逆转散相效应引起的快衰减进行补偿。设计RF线圈和稳恒磁场的独特组合可以实现自旋回波序列。选用这种技术的优点是:(1)利用自旋转回波方法可以获得较高的信噪比,这对任何测量都是一个基本指标,对井下连续测量更重要。(2)自旋回波技术可放松对磁场极高均匀性的需求。这对MIR(核磁共振成象)和MRL(磁共振测井)都非常重要。MIR使用梯度场来定位信号怪生区域。MRL特别要求其测量对象置在探头之外,因此均匀度很高的磁场是不可能的。(3)自旋回波序列可视具体情况需要进行修改,有灵活可变化的特点,适于多种多样的井眼和地质情况。近二、三十年已发展出几百种回波序列。由于计算机和电子技术的不断发展,使僺作者控制RF脉冲的强度、相位、宽度和发射时间的能力不断增强,也使核磁共振测井可选用的自旋回波序列更丰富多样。 第三、开展了大量实验研究,为NMR测井应用提供了科学基础。实验研究是进场应用的基础,多年来国内外石油公司、研究单位、测井公司、大学对多孔岩石NMR测井应用的主要原理如孔隙度表面弛豫特性、体积流体弛豫特性、流体扩散弛豫、岩石中顺磁物质对弛豫影响,岩石孔隙度、渗透率、孔隙结构、润湿性与弛豫特性的关系,束缚流体、可动流体弛豫特性,油、水、气弛豫特性差别,粘度、矿化度对弛豫时间影响等等方面开展了大量实验研究,同时对实验资料分析处理研究所作的假设与近似作了充分阐述,为应用核磁共振测井资料求岩石物理参数,识别油、气、水,预测产能,选择测井参数等建立了应用基础,大大推进发该技在油气勘探、开发中的应用。 第四、对测量参数的选择做了很多分析研究工作。每次测井中有三个参数能够控制,它们是回波间隔、等待时间和采集的回波总数。因而NMR测量是一种动态结果,取决于如何

国外主要测井公司介绍

国外主要测井公司介绍 (34)Rabinovich,et al.,2001,enhanced anistropy from jiont processing of multicomponent induction and multi-array induction tools, paper HH,in 42th Annual logging symposium transactions:Society of Professional Well Log Analysts,2001 测井是技术密集型产业,测井仪器装备一次性投资大,投资回收期较长。国际性的油田技术服务公司中,以测井为主营业务的公司,主要有斯仑贝谢公司、哈里伯顿公司、贝克-阿特拉斯公司,这三家公司占据90%多的测井服务市场(斯仑贝谢约占62%),哈里伯顿和贝克-阿特拉斯分别约占14%和15%)。其他公司还有威德福公司、Tucker能源服务公司、REEVES 公司和PROBE公司等等,这些公司在整体上逊色于三大公司,但在部分专项上可以与三大公司媲美。 第一节斯仑贝谢公司 一、公司概况 斯仑贝谢是测井行业的开山鼻祖,公司总部位于美国纽约。经过70多年的发展,斯仑贝谢公司已成为一家除工程建设服务以外的全球性油田和信息服务超级大型企业集团,但公司主要的经营活动还是集中在石油工业,在世界上100多个国家和地区有业务往来。公司员工60,000余人,来自140多个国家。公司2002年总收入为135亿美元,其中测井部分年收入为56亿美元,测井研发经费4亿美元(占测井收入的7%)。除现场作业外,斯仑贝谢公司在美国、英国等地建有研发中心,作为公司经营服务的强大技术支持。 斯仑贝谢公下设三个主要的经营部门: 斯仑贝谢油田服务公司:是世界上最大的油田技术服务公司,为石油和天然气工业提供宽广的技术服务和解决方案。 斯仑贝谢Sema公司:为能源工业,同时也为公共部门、电信和金融市场,提供IT咨询、系统集成、网络和基础建设服务。 斯仑贝谢西方地震服务公司:是与贝克休斯公司合作经营的公司,是世界最大的、最先进的地面地震服务公司。 斯仑贝谢公司其他方面的业务还有智能卡服务(电子付款、安全识别、公用电话、移动电话、身份证、停车系统等)、半导体测试和诊断服务、水资源服务等等。 二、斯仑贝谢油田服务公司 斯仑贝谢油田服务公司是具有测井、测试、钻井、MWD/LWD和定向钻井、陆上和海上地震、井下作业和油田化学、软件开发和资料处理等多种能力的综合性油田技术服务公司,在开放的国际测井服务方面,其市场占有率达到62%左右。 在长达七十多年的时间内,斯仑贝谢公司在测井方面始终保持着领先地位。世界上第一套数字测井仪、第一套数控测井仪、第一套成像测井仪都是斯仑贝谢公司首先推出的;各种新的测井仪器,十有八、九是斯仑贝谢公司首先推出的。可以说,斯仑贝谢一直领导着测井发展的潮流。 该公司于20世纪90年代初率先推出了成像测井系统——MAXIS 500多任务采集成像测井系统,能完成裸眼井和套管井地层评价、生产测井和射孔服务。 1996年又率先推出了快测平台技术,提高了作业效率、仪器可靠性和数据精度。 1998年推出套管井地层电阻率测量仪CHFR,采集套管后地层电阻率数据。2000年推出改进型套管井电阻率测井仪CHFR-Plus。 该公司的核磁共振测井技术也处于领先地位。1996年推出CMR200可组合磁共振成像测井仪,1998年推出其改进型CMR-Plus

成像测井简介

成像测井简介 第一节、地层微电阻率扫描成像测井 地层微电阻率扫描成像测井是一种重要的井壁成像方法,它利用多极板上的多排钮扣状的小电极向井壁地层发射电流,由于电极接触的岩石成分、结构及所含流体的不同,由此引起电流的变化,电流的变化反映井壁各处的岩石电阻率的变化,据此可显示电阻率的井壁成像。自80年代斯伦贝谢公司的地层微电阻率扫描测井(FMS)投入工业应用以来,得到了迅速的发展,如今已是井壁成像的重要测井方法。 我们知道,微电阻率测井贴井壁测量,探测深度浅而垂向分辨率高,因而对井壁附近地层的电性不均匀极为敏感。因此,人们利用微侧向测井研究冲洗带和裂缝,利用四条微电导率测井曲线确定地层倾角,识别裂缝,研究沉积相等。但是,这些微电阻率测井无法确定裂缝的产状,无法区分裂缝、小溶洞和溶孔,这些问题都可由微电阻率扫描测井解决。 1、电极排列及测量原理 地层微电阻率扫描成像测井采用了侧向测井的屏蔽原理,在原地层倾角测井仪的极板上装有钮扣状的小电极,测量每个钮扣电极发射的电流强度,从而反映井壁地层电阻率的变化。通常把电流电平转换成灰度显示,不同级别的灰度表示不同的电流电平,这样就可用灰度图来显示井壁底电阻率的变化。 第一代FMS是在地层倾角测井仪两个相邻极板上装上钮扣状电极,每个极板上装有4排27各电极,共有54个电极,每排电极相互错开,以提高井壁覆盖率。对8.5in的井眼,井壁覆盖率为20%。 为提高井壁覆盖率,第二代仪器在4个极板上都装有两排钮扣电极,每排8个共16个电极,4个极板共64电极,对8.5in井眼,井壁覆盖率达40%,这种仪器在电极上作了很大的改进,把原来的4排电极改为2排电极,能更准确地作深度偏移。 2、全井眼地层微电阻率扫描成像测井(FMI) 斯伦贝谢公司在前述仪器基础上,又研制了FMI。该仪器除4个极板外,在每个极板的左下侧又装有翼板,翼板可围绕极板轴转动,以便更好地与井壁接触。每个极板和翼板上装有两排电极,每排12个电极,8个极板上共有192个电极,对8.5in井眼,井壁覆盖率可达80%,能更全面精确地显示井壁地层的变化。 该仪器可根据用户要求进行三种模式的测井: (1)全井眼模式测井。用192个钮扣电极进行测量,进行井壁成像。 (2)4极板模式测井。此时用4个极板上的96个电势进行测量,翼板上的电极不 工作,对于地质情况较熟悉的区域,采用这种方式测井可提高测速,降低采集数据量和测井成本,但对井壁覆盖率降低一半。 (3)地层倾角测井。当用户不需要井壁成像,而需要地层倾角时,可用这种模式 测井。这是只用4个极板上的8个电极测量,得出高分辨率地层倾角仪同样的结果,测速可进一步。 在应用FMI资料时,通常在一个地区,选有代表性的参数井进行取芯,并作FMI测井,通过与岩芯柱的详细对比,研究有关地质特征在井壁图像中的显示,就能充分利用这些特征解决地质问题。

核磁共振测井资料处理及解释规范标准[详]

核磁共振测井资料处理及解释规 I围 本标准规定了MRIL-C型、MRIL-C/TP型和MRIL-Prime型核磁共振测井数据处理和解释的技术要求。 本标准适用于MRIL-C型、MRIL-C/TP型和MRIL-Prime型核磁共振测井数据的处理和解释。 2规性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 SY/T 5132测井原始资料质量要求 SY/T 5360裸眼井单井测井数据处理流程 3解释软件 解释软件包括: ——express解释软件; ——DPP解释软件。 4测井资料质量检验 4.1依据SY/T 5132规定对测井原始资料进行质量检验。 4.2检查对比原始测井资料与编辑回放测井资料的一致性。 5数据合并及深度校正 5.1数据合并 测井资料处理前,应将程序中所用到的测井数据转换成统一的数据格式,并合并为一个文件。 5.2深度校正 用核磁共振测井并测的自然伽马曲线进行深度校正。 6 MRIL -C型、MRIL - C/TP型核磁共振测井资料处理 6.1处理流程

MRIL -C型、MRIL - C/TP型资料处理流程如图1。 图1 MRIL-C型、MRIL-C/TP型资料处理流程图 6.2回波处理( MRILPOST) 6.2.1回波处理流程如图2. 图2回波处理流程图 6.2.2对回波串进行反演拟合,得到T2分布、核磁共振有效孔隙度、地层束缚水孔隙度和可动流体孔隙度等。 6.2.3输入曲线主要包括: ——ECHO:长等待时间原始回波串,单位为毫秒(ms); ——ECHOB:短等待时间原始回波串,单位为毫秒(ms)。 6.2.4输入参数主要包括: -STEP:开关控制选择,表示暂停或继续; -DEPTH:深度信息; -BIN:用拟合回波串所用Bin的个数; -ECHO:计算T2分布的原始回波申序号、回波个数和回波间隔; -MODE:显示操作模式(浏览或记录); -SCALE:设置比例; -FILTER:设置低通滤波和平均值参数。 6.2.5输出曲线主要包括: ——MPHI:核磁共振有效孔隙度,以百分数表示;

相关文档