文档视界 最新最全的文档下载
当前位置:文档视界 › 锚固力计算

锚固力计算

锚固力计算
锚固力计算

锚杆、锚索锚固力计算

1、帮锚杆

锚固力不小于50KN(或5吨或12.5MPa) 公式计算:

拉力器上仪表读数(MPa)×4=锚固力(KN)锚固力(KN)÷10=承载力(吨)例:

13MPa(拉力器上仪表读数)×4= 52KN(锚固力) 52KN(锚固力)÷10=5.2吨(承载力)

2、顶锚杆

锚固力不小于70KN(或7吨或17.5MPa) 公式计算:

拉力器上仪表读数(MPa)×4=锚固力(KN)锚固力(KN)÷10=承载力(吨)例:

18MPa(拉力器上仪表读数)×4= 72KN(锚固力) 72KN(锚固力)÷10=7.2吨(承载力)

3、Ф15.24锚索

锚固力不小于120KN(或12吨或40MPa) 公式计算:

拉力器上仪表读数(MPa)×3.044=锚固力(KN)锚固力(KN)÷10=承载力(吨)

例:

40MPa(拉力器上仪表读数)×3.044= 121.76KN(锚固力) 121.76KN (锚固力)÷10=12.176吨(承载力) 4、Ф17.8锚索

锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算:

拉力器上仪表读数(MPa)×3.768=锚固力(KN)锚固力(KN)÷

10=承载力(吨)

例:

45MPa(拉力器上仪表读数)×3.768= 169.56KN(锚固力) 169.56KN (锚固力)÷10=16.956吨(承载力) 5、Ф21.6锚索

锚固力不小于250KN(或25吨或55MPa) 公式计算:

拉力器上仪表读数(MPa)×4.55=锚固力(KN)锚固力(KN)÷10=承载力(吨)

例:

55MPa(拉力器上仪表读数)×4.55= 250KN(锚固力) 250KN(锚固力)÷10=25吨(承载力)型号为:YCD22-290型预应力张拉千斤顶备注:

1、使用扭力矩扳手检测,帮锚杆扭力矩不小于120KN,顶锚杆扭力矩不小于150KN。

2、井下排版填写记录,均填锚固力(帮锚杆50KN、顶锚杆70 KN、Ф15.24锚索120KN、Ф17.8锚索169.6KN)。

3、检测设备型号:

锚杆拉力计型号:LSZ200型锚杆拉力计

Ф15.24锚索拉力计型号:YCD-180-1型预应力张拉千斤顶Ф17.8锚索拉力计型号:YCD18-200型张拉千斤顶 21.6锚索承载力为504KN

锚杆抗拔试验方法

锚杆抗拔试验方法(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

锚杆抗拔实验方法 一)施工准备 1.材料 (1)预应力杆体材料宜选用钢绞线、高强度钢丝或高强螺纹钢筋。当预应力值较小或锚杆长度小于20m时,预应力筋也可采 用 II 级或 III 级钢筋。 (2)水泥浆体材料:水泥应普通硅酸盐水泥,必要时可采用抗硫酸盐水泥,不得使用高铝水泥。细骨料应选用粒径小于2mm的 中细砂。采用符合要求的水质,不得使用污水,不得使用PH值小于4的酸性水。 (3)塑料套管材料:应具有足够的强度,保证其在加工和安装过程中不致损坏,具有抗水性和化学稳定性,与水泥砂浆和防腐 剂接触无不良反应。 (4)隔离架应由钢、塑料或其它杆体无害的材料制作,不得使用木质隔离架。 (5)防腐材料:在锚杆服务年限内,应保持其耐久性,在规定的工作温度内或张拉过程中不开裂、变脆或成为流体,不得于相邻材料发生不良反应,应保持其化学稳定性和防水性,不得对锚杆自由段的变形产生任何限制。 2.作业条件 (1)在锚杆施工前,应根据设计要求、土层条件和环境条件,合理选择施工设备、器具和工艺方法。 (2)根据设计要求和机器设备的规格、型号,平整出保证安全和足够施工的场地。 (3)施工前,要认真检查原材料型号、品种、规格及锚杆各部件的质量,并检查原材料和主要技术性能是否符合设计要求。 (4)工程锚杆施工前,宜取两根锚杆进行钻孔、注浆、张拉与锁定的试验性作业,考核施工工艺和施工设备的适应性。 (二)操作工艺 1.钻孔 (1)钻孔前,根据设计要求和土层条件,定出孔位,做出标记。 (2)作业面场地要平坦、坚实、有排水沟,场地宽度大于4m。 (3)钻机就位后,应保持平稳,导杆或立轴与钻杆倾角一致,并在同一轴线上。 (4)

锚杆的锚固长度设计计算

锚杆(索) 1.锚杆(索)的作用机理 立柱在荷载的作用下,有绕着基地转动的趋势,此时可以利用灌浆锚杆(索)的抗拔作用力来进行抵抗。灌浆锚杆(索)指用水泥砂浆(或水泥浆、化学浆液等)将一组钢拉杆(粗钢筋或钢丝束、钢轨、小钢筋笼等)锚固在伸向地层内部的钻孔中,并承受拉力的柱状锚固体。它的中心受拉部分是拉杆。其受拉杆件有粗钢筋,高强钢丝束,和钢绞线等三种不同类型。而且施工工艺有简易灌浆、预压灌浆以及化学灌浆。锚固的形式应根据锚固段所处的岩土层类型、工程特征、锚杆(索)承载力大小、锚杆(索)材料和长度、施工工艺等条件,按表1-1进行具体选择。 同时,为了更好地对锚杆(索)进行设计,以下将对锚杆(索)的抗拔作用力机理进行介绍。 锚杆(索)的抗拔作用力又称锚杆(索)的锚固力,是指锚杆(索)的锚固体与岩土体紧密结合后抵抗外力的能力,或称抗拔力,它除了跟锚固体与孔壁的粘结力、摩擦角、挤压力等因素有关外,还与地层岩土的结构、强度、应力状态和含水情况以及锚固体的强度、外形、补偿能力和耐腐蚀能力有关。 许多资料表明,锚杆(索)孔壁周边的抗剪强度由于地层土质不同,埋深不同以及灌桨方法不同而有很大的变化和差异。对于锚杆(索)抗拔的作用机理可从其受力状态进行分析,由图1-1表示一个灌浆锚杆(索)中的砂浆锚固段,如将锚固段的砂浆作为自由体,其作用力受力机理为: 锚杆选型表1-1

当锚固段受力时,拉力T 。首先通过钢拉杆周边的握固力(u)传递到砂浆中,然后再通过锚固段钻孔周边的地层摩阻力(τ)传递到锚固的地层中。因此,钢拉杆如受到拉力作用,除了钢筋本身需要有足够的截面积(A)承受拉力外,锚杆(索)的抗拔作用还必须同时满足以下三个条件: ①锚固段的砂浆对于钢拉杆的握固力需能承受极限拉力; ②锚固段地层对于砂浆的摩擦力需能承受极限拉力; ③锚固土体在最不利的条件下仍能保持整体稳定性。 以上第①、②个条件是影响灌浆锚杆(索)抗拔力的主要因素。 i 孔壁摩阻力τ i 图1-1 灌浆锚杆(索)锚固段的受力状态 2.锚杆(索)的设计计算 锚杆(索)的设计原则: (1)锚杆(索)设计前应进行充分调查,综合分析其安全性、经济性与可操作性,避免其对路堤周围构筑物和埋设物产生不利影响。 (2)设计锚杆(索)时应考虑竣工后荷载作用对路堤的影响,要保证它们在载荷作用下不产生有害变形。 (3)设计锚杆(索)时,应对各种设计条件和参数进行充分的计算和试验来确定,只有少数有成熟的试验资料及工程经验的可以借用。 锚杆(索)的设计要素: 锚杆(索)的设计要素包括:锚杆(索)长度、锚固长度、相邻结构物的影

锚杆抗拔力

粘结型锚杆的抗拔力(粘结力) 1 计算方法和原理 1.1 基本原理 对于粘结型锚杆,其粘结力一般考虑3个部分: 1) 锚杆钢筋的屈服应力s R ; 2) 锚杆钢筋与周围灌浆料(砂浆锚固体)之间的粘结力b R ; 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; 取其中的小值作为锚杆承载力的设计值。 1.2 计算方法 1) 锚杆钢筋的屈服应力s R ; y s y s s f d n f nA R ????=??=22 24 ξπξ (5-1-1) 其中,n :钢筋、钢绞线的根数; s A 、s d :锚杆钢筋截面面积、直径; 2ξ:锚筋抗拉工作条件系数,永久性锚杆取为0.69,临时性锚杆取为0.92。 y f :锚筋抗拉强度设计值或标准值; 2) 锚杆钢筋与周围灌浆料(砂浆)之间的粘结力b R ; b b b s b L f d n R ?????=ξξπ3 (5-1-2) 其中,n :钢筋、钢绞线的根数; s d :锚杆钢筋或钢绞线的直径; 3ξ:工作条件系数,永久性锚杆取为0.60,临时性锚杆取为0.72。

b ξ:粘结强度折减系数,两根钢筋点焊成束时,取0.85,三根钢筋点焊 成束时,取0.70。 b L :锚杆钢筋、钢绞线与砂浆锚固体间的锚固长度; b f :锚筋或钢绞线与砂浆锚固体间的粘结强度特征值,可参考下表: 表5-1-1 锚杆与砂浆锚固体间的粘结强度特征值(KPa ) 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; g rb g L f D R ????=1ξπ (5-1-3) 其中,D :锚固体的直径,可取为孔道的内径; 1ξ:工作条件系数,永久性锚杆取为1.00,临时性锚杆取为1.33。 g L :锚杆砂浆锚固体与地层间的锚固长度; rb f :砂浆锚固体与地层间的粘结强度特征值,可参考表5-1-2、5-1-3: 表5-1-2 岩石与锚固体间的粘结强度特征值(KPa ),M30砂浆 表5-1-3 土体与锚固体间的粘结强度特征值(KPa ),M30砂浆

锚杆拉拔力试验标准

K P a、K N、吨之间关系换算 P=F/S F=Mg 牛是力的单位 吨是质量单位 帕是压强单位 他们之间必须定义一个单位面积(比如一平方米)才可以换算,否则无法换算 牛这个单位通常为质量乘重力常数,即千克乘9.8(地球重力常数)获得的值。即F=Mg 吨就是质量单位,他是一个物体体积与密度乘积得到的,M=V*密度 帕,就是一个压力作用于某一单位面积上得到的比值, P=F/S 兆帕是M P a,而K P a是千帕,两者相差1000倍。 另外注意大小写,帕的P必须大写,a必须小写,前面的前缀单位如果是正位,也就是倍数为正10倍整数的,那么用大写,比如M[兆(一百万倍)]K[千(一千倍)] 而如果是负10的倍数的,则用小写,比如d[分(10份之一)]c[厘(百份之一)] 吨是个质量单位1吨就是1000千克,帕是个压力单位(原来叫压强),即单位面积的压力,1M P a既10的6次方牛在1平方米上的压力,一千牛等于0.1吨在1平方米上的压力!

你说1MP=10的6次方牛在1平方米上的压力, 那么请问1MP=???? 公式:1Pa=1N/平方米 压强的定义:单位面积上所受到的力. 力-重力---千克力-k g f(非法定计量单位)牛顿-N(法定计量单位), 1kgf=9.81N 压力 - 压强 ----1kgf/cm2=9.80665*10 的 4 次方 Pa. N--- 力的单位 t--- 重量单位 Pa-- 压力单位 杨家寨煤矿锚杆抗拔力检测管理规定

为了能够及时掌握锚杆支护巷道锚杆锚固力的情况,根据锚 杆支护巷道安全质量标准化的要求,特制定此规定: 一、锚杆抗拔力检测总体要求 1 、根据 GB50086-2001 《锚杆喷射混凝土支护技术规范》 ,锚 杆支护必须进行强度检测,一般采取锚杆抗拔力试验。 2 、锚杆抗拔力试验的目的是判定巷道围岩的可锚性、评价锚 杆、树脂、围岩锚固系统的性能和锚杆的锚固力。 3 、试验必须在现场进行,使用的材料和设备与巷道正常支护 相同。检测结果必须如实填写,严禁弄虚作假。 二、锚杆抗拔力检测试验要求 1 、操作人员必须认真学习安全规程、作业规程的有关内容, 熟悉锚杆支护施工工艺,具有一定的现场施工经验。 2

锚杆、锚索锚固力计算方法

锚杆、锚索锚固力计算 1、帮锚杆 锚固力不小于50KN(或5吨或12.5MPa) 公式计算 拉力器上仪表读数MPa4=锚固力KN 锚固力KN10=承载力 例 13MPa4= 52KN 52KN10=5.2吨 2、顶锚杆 锚固力不小于70KN(或7吨或17.5MPa) 公式计算 拉力器上仪表读数MPa4=锚固力KN 锚固力KN10=承载力 例 18MPa4= 72KN 72KN锚固力÷10=7.2吨 3、Ф15.24锚索 锚固力不小于120KN(或12吨或40MPa) 公式计算 拉力器上仪表读数MPa 3.044= 锚固力KN 锚固力KN÷10= 承载力例

40MPa 3.044= 121.76KN 121.76KN10=12.176吨 4、Ф17.8锚索 锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算 拉力器上仪表读数MPa 3.768=锚固力KN 锚固力KN10=承载力 例 45MPa 3.768= 169.56KN 169.56KN10=16.956吨 5、Ф21.6锚索 锚固力不小于250KN(或25吨或55MPa) 公式计算 拉力器上仪表读数MPa 4.55=锚固力KN 锚固力KN10=承载力 例 55MPa 4.55= 250KN 250KN10=25吨 型号为YCD22-290型预应力张拉千斤顶 备注 1、使用扭力矩扳手检测120KN,顶锚杆扭力矩不小于150KN。

2、井下排版填写记录50KN、顶锚杆70 KN、Ф15.24锚索120KN、Ф17.8锚索169.6KN 3、检测设备型号 锚杆拉力计型号LSZ200型锚杆拉力计 Ф15.24锚索拉力计型号YCD-180-1型预应力张拉千斤顶Ф17.8锚索拉力计型号YCD18-200型张拉千斤顶 21.6锚索承载力为504KN

(植筋)后锚固抗拔承载力现场检测作业指导书

(植筋)后锚固抗拔承载力现场检测 作业指导书 文件编号: 受控编号: 编制: 审核: 批准:

(植筋)后锚固抗拔承载力现场检测作业指导书 1 范围 本作业指导书适用于被连接件以普通混凝土为基材的后锚固连接的设计、施工及验收。 2 具体要求 2.1业务委托 业务员应指导委托方按要求认真填写现场检验委托合同单,并要求客户提供有关项目信息。如需委托方提供配合,应及时告知委托方。 其内容可包括:榔头、钢筋钳、人员、安全防护、环境设施等。 2.2 业务流转 流转卡信息由业务人员将流转卡复核无误后与委托单一并交给监察室负责人,由检测室负责人安排检测人员进行检测。 2.3 准备工作 2.3.1 检测人员 1、现场检测工作的检测人员必须为两人。 2、检测人员必须着工作服,佩戴安全帽,检测人员进行现场检测,进入现场后检测人员禁止吸烟。 3、检测人员携带好用于记录数据的笔、原始记录单。 4、检测人员在离开单位之前必须检查核对仪器设备,检查仪器设备状态并填写仪器设备使用记录。

2.3.2 所需仪器设备 HC-5型或者HC-20型或HC-50型锚杆拉拔仪、夹具、机械秒表。 2.3.2 仪器设备检查内容 1、是否在有效检定周期内,超出检定周期的仪器设备不允许用于检测工作。 2、打开电源开关,检查电池电量及显示屏是否正常显示数值。 3、打开储油筒的油盖,检查油量,如油不满,可加注N32号耐磨液压油。 4、各类型号夹具是否齐全。 2.33 上述准备工作结束后如设备没有出现异常情况,检测人员应如实填写现场检测设备使用记录,可以将设备带出。如果有异常情况存在,应检查异常发生的原因,将异常情况如实记录在现场检测设备使用记录中,同时告知科室负责人,可以选择其他设备。 现在检测的仪器设备在运输途中,要尽量做好防雨,防晒、防震措施。 2.4 检测方法 2.4.1 检测人员进入施工现场,在进行检测之前应就所检项目对委托方进行工程概况的询问,同时提醒委托方通知见证人到场。 2.4.2 检测人员还应在检测前告知委托方及见证人所检项目的检

锚杆抗拔力试验方案

锚杆抗拔试验作业方案 编制: 审批: 深圳市铁科岩土工程有限公司 2012年11月

根据施工现场实际情况及业主方要求,本工程锚杆抗拔检测由我单位负责进行,并在业主及监理方的见证、监督下进行。特编制本方案。 一、工程概况 施工单位:深圳市铁科岩土工程有限公司 监理单位:北京康迪建设监理咨询有限公司 建设单位:王家峪煤业有限公司 本工程场地位于山西武乡县东南部王家峪村北侧,行政区划属武乡县韩北乡管辖。场地系山西王家峪煤业有限公司的120万吨矿井开采场区。 根据施工图设计将本场地边坡采用锚杆加坡面挂网喷砼进行防护,场地内主要为第四系黄土。锚杆采用Φ25钢筋制作,锚杆成孔直径为80mm,采用干法成孔。锚杆注浆材料为P.O 42.5普通硅酸盐水泥净浆。设计抗拔力为60KN。 二、适用范围 根据现场实际情况,本工程的锚杆抗拔检测现场抽检,在业主及监理方共同见证下进行拉拔,检测锚杆抗拔力是否达到设计要求。 三、目的 编制张拉作业方案的目的就是为了更好的指导现场作业,使现场作业人员能够规范的进行张拉作业。 四、编制依据 《建筑边坡工程技术规范》GB50330-2002 《王家峪新井工业广场边坡支护工程施工图设计》(中国铁道科学研究院深圳研究设计院2012-06) 五、张拉机具设备

1.1 千斤顶 1.1.1 千斤顶的技术参数 选用柳州雷姆预应力机械有限公司生产的YCW60B200型穿心 1.1.2 千斤顶的数值计算 公式p=F/S(压强=压力÷受力面积) 其中:p—压强(单位:帕斯卡,符号:Pa) F—压力(单位:牛顿,符号:N) S—受力面积(单位:平方米,符号:㎡) 根据施工图设计可知锚杆设计抗拔力为:60KN,按设计值的1.1倍计算,荷载力为60*1.1=66KN。 即:F=66*1000=66000N; 从上表的千斤顶参数可知:S为张拉活塞面积。 即:S=1.15×10-2=0.0115m2 由以上可知:p=66000N/0.0115m2=5739130.434Pa

抗浮锚杆计算书.

结构计算书 项目名称: 设计代号: 设计阶段: 审核: 校对: 计算: 第 1 册共1 册 中广电广播电影电视设计研究院 2015年04月07日

综合楼锚杆布置计算 一、 工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,±0.00相对于绝对标高7.50m ,室内外高差-0.300m ,地下室夹层高 2.18m ,地下室高 5.30m ,地下室建筑地面标高-7.480m ,建筑地面垫层厚150mm ,结构地下室底板顶标高-7.630m 。基础形式筏板,抗浮水位标高 6.500m (绝对标高)。建筑地下室底板顶标高- 7.630m (绝对标高-0.130m ),底板厚400mm 。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt=1.3Nk=325KN 钢筋:3 ?25三级钢: A s =1470mm 2, f=360 N/mm 2 , f yk =400 N/mm 2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(f rbk ),见第2页所附表1。 1、 根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 K f DL N mg a t /ψπ= 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

锚杆锚索参数计算

(一)按加固拱原理确定锚杆参数 综合分析国内外关于锚杆参数的经验数据和规定,对于跨度小于10米的巷道、硐室,可按下面经验公式确定锚杆参数 1.锚杆长度L=N(1.1+W/10) =1.1×(1.1+3.6/10) =1.606m (2200mm) 2.锚杆间(排)距D≤0.5L=0.5×1.606 =0.803m (800×900mm) 3.锚杆直径d=1/110×L=1/110×1.606 =0.0146米=14.6mm (18mm)式中W-巷道或硐室跨度,米;取3.6; N-围岩稳定量影响系数,取1.1,规定如下: Ⅱ类(稳定性较好)围岩,N=0.9; Ⅲ类(中等稳定)围岩,N=1.0; Ⅳ类(稳定性较差)围岩,N=1.1; Ⅴ类(不稳定)围岩,N=1.2; 通过计算,φ18×L2200(mm)锚杆满足设计要求,间排距800×900(mm)满足设计要求。 (二)悬吊理论校核锚索间(排)距 为防止巷道顶板岩层发生大面积整体跨落,用φ17.8mm,L=6300mm的钢绞线,将锚杆加固的“组合梁”整体悬吊于坚硬岩层中,校核锚索间(排)距,冒落方式按最严重的冒落高度大于锚杆长度的整体冒落考虑,此时,靠巷

道两帮锚杆和锚索一起发挥悬吊作用,在忽略岩体粘结力和内摩擦力的条件下,取垂直方向力的平衡,可用下式计算锚索间(排)距。 L=nF2/[BHγ-(2F1sinθ) /L1] 式中L-锚索间(排)距,m; B-巷道最大冒落宽度,取3.6+1.2=4.8m; H-巷道冒落高度,按最严重冒落高度取2.0m; γ-岩体容重,25kN/m3; L1-锚杆排距,0.9m; F1-锚杆锚固力(以最小锚固力计算),85kN; F2-锚索极限承载力(以最小锚固力计算),取200kN; θ-角锚杆与巷道顶板夹角,90°; n -锚索每排根数,取2; 通过上式计算, L=2×200÷[4.8×2.0×25-(2×85×sin90°÷0.9)] =400÷﹙240-188.9﹚=7.8m 得出锚索间排距小于7.8m,所选间排距2150×900(mm)满足设计要求。

某基坑支护锚杆抗拔检测方案

*******基坑支护 锚杆抗拔试验检测方案 工程名称: 建设单位: 施工单位: 检测单位: 申报时间: 工程检测方案备案前,检测单位不得进行检测。以下检测方案在质监站委派的监督工程师具体监督下实施,监督工程师未到位的检测报告质监站不予认可。 (本表一式四份:备案后施工、监理、检测、质监站各留一份)

基坑支护锚杆抗拔试验检测方案责任主体审查表

***********基坑支护 锚杆抗拔试验检测方案 一、工程概况 拟建场地位于*************,东临*****路,南临拟建*******,西临**********。 基坑为一层地下车库,大致为矩形,周长约1386m(一基坑底边线)。该基坑范围建筑正负零绝对标高为33.90m,地下室底板顶标高基坑一部分27.00m,基坑二部分25.00m,基坑三部分为24.00m,考虑地下室底板及垫层厚度0.70m,则基坑开挖底标高基坑一为26.30m,基坑二为24.30m,基坑三为23.30m。目前基坑场地周边地面标高在29.5-31.0m 之间,基坑开挖前设计整平标高为30.00-31.00m,则基坑开挖深度在3.70-6.70m之间。基坑范围包括的建筑物有13层的1#、2#、3#病房楼及VIP病房楼,2层的儿科门诊楼和3-18层的行政科研办公楼,5层门诊楼。基础形式均为机械成孔桩基础。 基坑北侧和动测拟建临时施工道路和灌溉水渠,南侧只拟建灌溉水渠,紧靠用地红线布置,水渠宽3.0m,深约1.5m,道路宽5.5m。 基坑为临时支护,基坑使用年限为两年。 为了确保基坑安全,常德湘雅医院委托我公司进行锚杆抗拔验收试验检测。 二、检测依据 (1)《建筑基坑支护技术规范》(JGJ120-2012); (2)****设计院《*********基坑支护工程施工图》图纸; (3)*****建设、监理单位确认的基坑支护抗拔试验统计表。 三、检测目的 主要目的是检验锚杆、土钉的抗拔承载力是否满足设计要求。 四、工程地质概况 场地原始地貌为沅江北岸Ⅰ级阶地,大部分为耕地、农田,局部有水塘,场地地势平缓,场地抗震设防烈度为8度。场地内对基坑开挖支护有影响的地层从上往下依次主要为: 1、耕土:黄褐色,稍密,稍湿。以粘性土为主,可见植物根系,未完成自重固结。整个场地均有分布。 2、粉质粘土:黄褐色,硬塑。含铁锰质结核,夹高岭土条带,强度及韧性中等,摇振反

抗拔锚杆计算

抗拔锚杆MG-1计算书 一、锚杆竖向抗拔承载力特征值(以试验为准): 锚杆竖向抗拔承载力特征值: R t≤0.8πd1l? 锚杆锚固段注浆体直径:D=150 mm 锚杆锚固段有效锚固长度:La=5 m ?——砂浆与岩石间的粘结强度特征值(kPa),按规范表6.8.6并考虑一定的可靠度选用0.1MPa=100 kpa R t≤0.8πd1l?=0.8*3.14*0.15*100=188.4KN 锚杆竖向抗拔承载力特征值:Rra=uC2f rs h r= =3.14x0.15x0.05*(15000*0.8)*4.5=1272 KN 以上两者比较取小值,锚杆竖向抗拔承载力特征值实际取值为: R =188.4KN 二、抗拔锚杆钢筋横截面面积 抗拔锚杆钢筋横截面面积:A≥Ntd/(ζ2fy) 荷载效应基本组合下的锚杆轴向拉力设计值: N =1.35 R 锚杆竖向上拔力:R=600/4=150KN 钢筋的抗拉强度设计值:f =360 N/mm 钢筋抗拉工作条件系数:ζ =0.69

A≥1.35x150x1000/(0.69x360)=815.2 mm 选用3Φ36 (A=1018 mm ) 三、锚杆钢筋与砂浆之间的锚固长度: 锚杆钢筋与砂浆之间的锚固长度: t ≥Ntd/(ζ3 nsπDfb) 钢筋根数:n =1根 单根钢筋的直径:D=36 mm 钢筋与锚固注浆体间的粘结强度设计值:f =2.4 Mpa 钢筋与砂浆粘结强度工作条件系数:ζ3 =0.6 t≥ Ntd/(ζ3nsπDfb)=(1.35x150x1000)/(0.60x3.14x36x(2.4x0.7))=1777 mm < 5000mm

锚固力的计算

锚杆的锚固剂不是通长都要使用,一般锚固端长度不小于1米,具体根据现场情况确定。 你的成孔面积减去锚杆断面积再乘以锚固长度就是锚固剂 的使用量了。 0锚固力主要取决于锚杆与岩土层之间的摩阻力,不同的岩土层所能提供的摩阻力是不同的。所以,同样的锚固段长度,锚固力多少要看锚固在什么岩土层。 查GB50330-2002《建筑边坡工程技术规范》,弱风化的普通玄武岩按较硬岩取值,当钻孔直径为150mm时,锚固3m 的M30锚杆与岩土层之间的摩阻力可达到770kN,而Φ25二级螺纹钢筋作为永久性锚杆只能提供105kN的锚固力(0.69x310x490.9=105000,该值与锚固长度无关),故锚固力为105kN。 锚杆拉拔力一般按锚杆横截面积与该锚杆材料的许拉应力来计算的,至于锚固的长度必须按规程规定执行,否则锚固眼直径打大了,深度不够,锚杆被拉出,起不到锚固的作用是决对不允许的! 锚杆,英文“Bolt”;"bolting(准确称谓)"; "anchor(早期称谓)" 是当代煤矿当中巷道支护的最基本的组成部分,他将巷道的围岩束缚在一起,使围岩自身支护自身.

现在锚杆不仅用于矿山,也用于工程技术中,对边坡,隧道,坝体进行主动加固。 锚杆作为深入地层的受拉构件,它一端与工程构筑物连接,另一端深入地层中,整根锚杆分为自由段和锚固段,自由段时指将锚杆头处的拉力传至锚固体区域,其功能是对锚杆施加预应力;锚固段时指水泥浆体将预应力筋与土层粘结的区域,其功能是将锚固体与土层的粘结摩擦作用增大,增加锚固体的承压作用,将自由段的拉力传至土体深处。 锚杆根据其使用的材料可以分为:木锚杆,钢锚杆,玻璃钢锚杆等等。 按锚固方式分为:端锚固,加长锚固和全长锚固 以下列举几个称谓的锚杆 (1)木锚杆。我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。 (2)钢筋或钢丝绳砂浆锚杆。以水泥砂桨作为锚杆与围岩的粘结剂。 (3)倒楔式金属锚杆。这种锚杆曾经是使用最为广泛的锚杆形式之一。由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。 (4)管缝式锚杆。是一种全长摩擦锚固式锚杆。这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。

岩石锚杆抗拔承载力现场检验方法

附录D 岩石锚杆抗拔承载力现场检验方法 D. 1 一般规定 D.1.1岩石锚杆的最大试验荷载不宜超过锚杆杆体极限承载力的0.8倍。 D.1.2试验用的计量仪表(压力表、测力计、位移计)应满足测试要求的精度。 D.1.3 试验用的加荷装置(千斤顶、油泵)的额定压力必须大于试验压力。D.1.4荷载分散型锚杆的试验宜采用等荷载法;也可以根据具体工程情况制定相应的试验规则和验收标准。可参考《岩土(索)技术规程》(CECS:22)。 D. 2 试样选取 D.2.1锚杆抗拔承载力基本试验按试验要求执行,验收试验可采用随机抽样办法取样。 D.2.2 基本试验时,岩石锚杆极限抗拔试验采用的地层条件、杆体材料、锚杆参数和施工工艺必须与工程锚杆相同,且试验数量不应少于3根。 D.2.3 验收试验时,同规格、同型号、基本相同部位的锚杆组成一个检验批。每个检验批抽取数量不得少于一组,每组不少于3根。对于有特殊要求的工程,可按设计要求增加验收锚杆的数量。 D. 3 仪器设备要求 D.3.1 现场检验用的仪器、设备,如拉拔仪、x-y记录仪、电子荷载位移测量仪等,应在标定有效期内。 D.3.2加荷设备应能按规定的速度加荷,测力系统整机误差不应超过全量程的±2%。 D.3.3加荷设备应能保证所施加的拉伸荷载始终与锚杆的轴线一致。 D.3.4位移测量记录仪宜能连续记录。当不能连续记录荷载位移曲线时,可分阶段记录,在到达荷载峰值前,记录点应在10点以上。位移测量误差不应超过0.05mm。

D.3.5位移仪应保证能够测量出锚杆相对于岩石表面的垂直位移,直至锚固破坏。 D. 4 基本试验 D.4.1岩石锚杆施工前应进行抗拔承载力的基本试验。岩石锚杆极限抗拔试验应采用分级循环加载,加荷等级和位移观测时间应符合表D.4.1的规定。 表D.4.1岩石锚杆极限抗拔试验的加荷等级和观测时间 注:1 第五循环前加载速率为100kN/min,第六循环的加载速率为50kN/min; 2 在每级加荷等级观测时间内,测读位移不应少于3次; 3 在每级加荷等级观测时间内,锚头位移增量小于0.1mm时,可施加下一级荷载,否 则应延长观测时间,直至锚头位移增量在2h内小于2.0mm,方可施加下一级荷载。 D.4.2岩石锚杆极限抗拔试验出现下列情况之一时,可判定锚杆破坏: 1 后一级荷载产生的锚头位移增量达到或超过前一级荷载产生位移增量的2倍; 2 锚头位移持续增长; 3 锚杆杆体破坏。 D.4.3岩石锚杆极限抗拔试验结果宜按荷载与对应的锚头位移列表整理,并绘制锚杆荷载-位移(P-S)曲线、锚杆荷载-弹性位移(P-S e)曲线和锚杆荷载-塑性位移(P-S p),具体可参考《岩土(索)技术规程》(CECS:22)。 D.4.4岩石锚杆极限承载力应取破坏荷载的前一级荷载。在最大试验荷载下未

囊式扩体锚杆抗拔承载力计算

囊式扩体锚杆方案 单锚极限抗拔承载力计算 依据《高压喷射扩大头锚杆技术规程》(JGJ/T 282—2012),单根高压喷射扩大头锚杆抗拉力设计值T 计算如下: K T T uk = ()4/L D L D T 21222mg D 21mg d 1uk D P D D f f -++=πππ 式中: K ——锚杆抗拔安全系数,按规范选取,本处选取2; uk T ——锚杆抗拔力极限值(kN ); 1D ——锚杆钻孔直径; 2D ——扩大头直径(m ); d L ——锚杆普通锚固段的计算长度(m ); D L ——扩大头长度(m ); 1 mg f ——锚杆普通锚固段注浆体与土层间的摩阻强度标准值(kPa ),通过试验确定;无试验资料时,可按规范取值; 2mg f ——扩大头注浆体与土层间的摩阻强度标准值(kPa ),通过试验确定;无试验资料时,可按规范取值; D P ——扩大头前端面土体对扩大头的抗力强度值(kPa ), 对于竖直锚杆,有 D p P = 式中: γ——扩大头上覆土体的重度(kN/m3); h ——扩大头上覆土体的厚度(m );

2 )245(tan 2? -= a K 0K ——扩大头端前土体的静止土压力系数,可由试验确定;无试验资料时可按式计算:'sin 10?-=K '?——扩大头端前土体的有效内摩擦角,取??='; p K ——扩大头端前土体的被动土压力系数: ?——扩大头端前土体的内摩擦角(°); C ——扩大头端前土体的粘聚力(kN/m2); ξ——扩大头向前位移时反映土的挤密效应的侧压力系数,可按经验公式计算:a 90.0K =ξ a K ——扩大头端前土体的主动土压力系: )245(tan 2? += p K

抗浮锚杆设计计算书

yk t t s f N K A ≥ ψ πmg t a Df KN L >ψ πεms t a df n KN L >抗浮锚杆计算书 根据建设单位提供抗浮锚杆设计要求: 1、 单根锚杆抗拔力标准值为215Kn ,锚杆设计长度6~12m 。 2、 锚杆设计参数建议值:锚杆杆体抗拉安全系数K t 取1.6,锚杆锚固体抗拔安全系数K 取2.2;锚固段注浆体与地层间的粘结强度标准值f mg =145kPa 。 3、根据以上参数,按照《北京市地区建筑地基基础勘察设计规范》(DBJ11-501-2009)中抗浮设计和《岩石锚杆(索)技术规范》(CECS 22:2005)中永久锚杆设计内容进行设计计算。 (1)锚杆杆体的截面面积计算 公式7.4.1 式中: t K ——锚杆杆体的抗拉安全系数,本次锚杆杆体采用1φ28 PSB785精轧螺纹钢,按照《岩石锚杆(索)技术规范》(CECS 22:2005)表7.3.2取1.8; t N ——锚杆的轴向拉力设计值(kN ),为215kN ; yk f ——钢筋的抗拉强度标准值(kPa ),杆体选用1φ28 PSB785精轧螺纹钢,抗拉强度标准值为785kPa 。 将以上参数代入求得: 杆杆体截面面积23 493785 102158.1mm f N K A yk t t s =??== 所需杆件直径d=sqrt (493×4/3.14)=25.06mm 故选用1φ28 PSB785精轧螺纹钢能够满足要求。 (2)锚杆锚固长度 锚杆锚固长度按下式估算,并取其中较大者: 公式7.5.1-1 公式7.5.1-2 式中:

K ——锚杆锚固体的抗拔安全系数,按照《岩石锚杆(索)技术规范》(CECS 22:2005)表7.3.1取2.2; t N ——锚杆的轴向拉力设计值(kN ) ,取215kN 。 a L ——锚杆锚固段长度(m ); mg f ——锚固段注浆体与地层间的粘结强度标准值(kPa ),根据地勘报告并结合经验,可取120kPa ; ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),注浆材料为素水泥浆,浆体强度M30,查表7.5.1-3插值法取2.4MPa ; D ——锚杆锚固段的钻孔直径(m ),取0.20m ; d ——钢筋的直径,取0.28(m ); ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85; ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0; n ——钢筋根数。 将以上 参数代入公式7.5.1-1及7.5.1-2中,可得 m Df KN L mg t a 28.60 .112020.014.32152.2=????==ψπ m df n KN L ms t a 2.20.12400028.014.32152.2=????== ψεπ 因此,锚杆锚固段长度为6.5m 。 (3)锚杆自由段长度 本次抗浮锚杆不设置自由段。 (4)各分区锚杆间距计算 根据建设单位提供的各分区浮力标准值(已扣恒载),计算各分区锚杆数量如下: 浮力标准值①区为51kN/m 2,②区为56kN/m 2,③区为65 kN/m 2,④区为58 kN/m 2,⑤区为47 kN/m 2,⑥区为24 kN/m 2,⑦为15 kN/m 2。 锚杆间距计算如下: ①区:d=sqrt(215/51)=2.05,取整得出锚杆间距2.0m ,正方形布置,共计布设8543根。

锚杆锚索锚固力计算

锚杆锚索锚固力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

锚杆、锚索锚固力计算1、帮锚杆 锚固力不小于50KN(或5吨或12.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 13MPa(拉力器上仪表读数)×4= 52KN(锚固力)52KN(锚固力)÷10=5.2吨(承载力) 2、顶锚杆 锚固力不小于70KN(或7吨或17.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 18MPa(拉力器上仪表读数)×4= 72KN(锚固力)72KN(锚固力)÷10=7.2吨(承载力) 3、Ф15.24锚索 锚固力不小于120KN(或12吨或40MPa) 公式计算: 拉力器上仪表读数(MPa)×3.044=锚固力(KN) 锚固力(KN)÷10=承载力(吨)

例: 40MPa(拉力器上仪表读数)×3.044= 121.76KN(锚固力)121.76KN(锚固力)÷10=12.176吨(承载力) 4、Ф17.8锚索 锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算: 拉力器上仪表读数(MPa)×3.768=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 45MPa(拉力器上仪表读数)×3.768= 169.56KN(锚固力)169.56KN(锚固力)÷10=16.956吨(承载力) 5、Ф21.6锚索 锚固力不小于250KN(或25吨或55MPa) 公式计算: 拉力器上仪表读数(MPa)×4.55=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 55MPa(拉力器上仪表读数)×4.55= 250KN(锚固力) 250KN(锚固力)÷10=25吨(承载力) 型号为:YCD22-290型预应力张拉千斤顶 备注:

锚杆抗拔力

粘结型锚杆的抗拔力(粘结力) 1 计算方法与原理 1.1 基本原理 对于粘结型锚杆,其粘结力一般考虑3个部分: 1) 锚杆钢筋的屈服应力s R ; 2) 锚杆钢筋与周围灌浆料(砂浆锚固体)之间的粘结力b R ; 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; 取其中的小值作为锚杆承载力的设计值。 1.2 计算方法 1) 锚杆钢筋的屈服应力s R ; y s y s s f d n f nA R ????=??=22 24 ξπξ (5-1-1) 其中,n :钢筋、钢绞线的根数; s A 、s d :锚杆钢筋截面面积、直径; 2ξ:锚筋抗拉工作条件系数,永久性锚杆取为0、69,临时性锚杆取为0、92。 y f :锚筋抗拉强度设计值或标准值; 2) 锚杆钢筋与周围灌浆料(砂浆)之间的粘结力b R ; b b b s b L f d n R ?????=ξξπ3 (5-1-2) 其中,n :钢筋、钢绞线的根数; s d :锚杆钢筋或钢绞线的直径; 3ξ:工作条件系数,永久性锚杆取为0、60,临时性锚杆取为0、72。

b ξ:粘结强度折减系数,两根钢筋点焊成束时,取0、85,三根钢筋点焊成 束时,取0、70。 b L :锚杆钢筋、钢绞线与砂浆锚固体间的锚固长度; b f :锚筋或钢绞线与砂浆锚固体间的粘结强度特征值,可参考下表: 表5-1-1 锚杆与砂浆锚固体间的粘结强度特征值(KPa) 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; g rb g L f D R ????=1ξπ (5-1-3) 其中,D :锚固体的直径,可取为孔道的内径; 1ξ:工作条件系数,永久性锚杆取为1、00,临时性锚杆取为1、33。 g L :锚杆砂浆锚固体与地层间的锚固长度; rb f :砂浆锚固体与地层间的粘结强度特征值,可参考表5-1-2、5-1-3: 表5-1-2 岩石与锚固体间的粘结强度特征值(KPa),M30砂浆 表5-1-3 土体与锚固体间的粘结强度特征值(KPa),M30砂浆

锚杆抗拔试验方法

锚杆抗拔试验方法文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

锚杆抗拔实验方法一)施工准备 1.材料 (1)预应力杆体材料宜选用钢绞线、高强度钢丝或高强螺纹钢筋。当预应力值较小或锚杆长度小于20m时,预应力筋也可采 用 II 级或 III 级钢筋。 (2)水泥浆体材料:水泥应普通硅酸盐水泥,必要时可采用抗硫酸盐水泥,不得使用高铝水泥。细骨料应选用粒径小于2mm的 中细砂。采用符合要求的水质,不得使用污水,不得使用PH值小于4的酸性水。 (3)塑料套管材料:应具有足够的强度,保证其在加工和安装过程中不致损坏,具有抗水性和化学稳定性,与水泥砂浆和防腐 剂接触无不良反应。 (4)隔离架应由钢、塑料或其它杆体无害的材料制作,不得使用木质隔离架。(5)防腐材料:在锚杆服务年限内,应保持其耐久性,在规定的工作温度内或张拉过程中不开裂、变脆或成为流体,不得于相邻材料发生不良反应,应保持其化学稳定性和防水性,不得对锚杆自由段的变形产生任何限制。 2.作业条件

(1)在锚杆施工前,应根据设计要求、土层条件和环境条件,合理选择施工设备、器具和工艺方法。 (2)根据设计要求和机器设备的规格、型号,平整出保证安全和足够施工的场地。 (3)施工前,要认真检查原材料型号、品种、规格及锚杆各部件的质量,并检查原材料和主要技术性能是否符合设计要求。 (4)工程锚杆施工前,宜取两根锚杆进行钻孔、注浆、张拉与锁定的试验性作业,考核施工工艺和施工设备的适应性。 (二)操作工艺 1.钻孔 (1)钻孔前,根据设计要求和土层条件,定出孔位,做出标记。 (2)作业面场地要平坦、坚实、有排水沟,场地宽度大于4m。 (3)钻机就位后,应保持平稳,导杆或立轴与钻杆倾角一致,并在同一轴线上。 (4)钻进用的钻具,可采用地质部门使用的普通岩芯钻探的钻头和管材系列。钻孔设备可根据土层条件选择专门锚杆钻机或地质钻机。 (5)根据土层条件可选择岩芯钻进,也可选择无岩芯钻进;为了配合跟管钻进,应配备足够数量的长度为的短套管。 (6)在钻进过程中,应精心操作,精神集中,合理掌握钻进参数,合理掌握钻进速度,防止埋钻、卡钻等各种孔内事故。一旦发生孔内事故,应争取一切时间尽快处理,并备齐必要的事故打捞工具。 (7)钻孔完毕后,用清水把孔底沉渣冲洗干净,直至孔口清水返出。

锚杆锚索设计计算案例

锚杆(索)设计 根据现场地质条件和地形特征,斜坡体由于受到先期构造作用和后期风化作用强烈影响,出露基岩破碎,裂隙发育,且距交通要道较近的特点,拟采用锚杆(索)对局部卸荷裂隙发育、稳定性较差的危岩体进行锚固,以达到加固坡面,抑制风化剥落、崩塌的发生。通过现场调查及三维激光扫描数据分析,半壁山危岩体主要失稳模式为倾倒式和滑移式。 1.倾覆推力计算: 推力计算: 式中: k-后缘裂隙深度(m)。取11.1m; hv-后缘裂隙充水高度(m).取3.7m; H-后缘裂隙上端到未贯通段下端的垂直距离(m). 取15m; a-危岩带重心到倾覆点的水平距离(m),取3.4m; b-后缘裂隙未贯通段下端到倾覆点之间的水平距离(m),取6.8m; h0-危岩带重心到倾覆点的垂直距离(m),取7.2m; fk-危岩带抗拉强度标准值(kPa),根据岩石抗拉强度标准值乘以0.4折减系数确定暴雨工况下190kPa; θ-危岩带与基座接触面倾角(°),外倾时取正,内倾时取负值; β-后缘裂隙倾角(°);

K-安全系数取1.5; 2.锚杆计算 (1)锚杆轴向拉力设计值计算公式: , 式中 Nak -锚杆轴向拉力标准值(kN); Na -锚杆轴向拉力设计值(kN); Htk -锚杆所受水平拉力标准值(kN); α-锚杆倾角(°),设计取值为15°; γa-荷载分项系数,可取1.30; (2) 锚杆钢筋截面图面积计算公式: 锚杆截面积: As-锚杆钢筋或预应力钢绞线截面面积(m2); ξ2-锚杆抗拉工作条件系数,永久性锚杆取0.69,临时性锚杆取0.92;γ0-边坡工程重要系数,取1.0; fy-钢筋或预应力钢绞线的抗拉强度标准值(kN),取300N/ mm;(3) 锚杆锚固体与地层的锚固长度计算公式:

相关文档